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ABSTRACT

Objective: Neural network–based representations (“embeddings”) have dramatically advanced natural language

processing (NLP) tasks, including clinical NLP tasks such as concept extraction. Recently, however, more advanced

embedding methods and representations (eg, ELMo, BERT) have further pushed the state of the art in NLP, yet there

are no common best practices for how to integrate these representations into clinical tasks. The purpose of this

study, then, is to explore the space of possible options in utilizing these new models for clinical concept extraction, in-

cluding comparing these to traditional word embedding methods (word2vec, GloVe, fastText).

Materials and Methods: Both off-the-shelf, open-domain embeddings and pretrained clinical embeddings from

MIMIC-III (Medical Information Mart for Intensive Care III) are evaluated. We explore a battery of embedding

methods consisting of traditional word embeddings and contextual embeddings and compare these on 4 con-

cept extraction corpora: i2b2 2010, i2b2 2012, SemEval 2014, and SemEval 2015. We also analyze the impact of

the pretraining time of a large language model like ELMo or BERT on the extraction performance. Last, we pre-

sent an intuitive way to understand the semantic information encoded by contextual embeddings.

Results: Contextual embeddings pretrained on a large clinical corpus achieves new state-of-the-art performan-

ces across all concept extraction tasks. The best-performing model outperforms all state-of-the-art methods

with respective F1-measures of 90.25, 93.18 (partial), 80.74, and 81.65.

Conclusions: We demonstrate the potential of contextual embeddings through the state-of-the-art performance

these methods achieve on clinical concept extraction. Additionally, we demonstrate that contextual embed-

dings encode valuable semantic information not accounted for in traditional word representations.
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INTRODUCTION

Concept extraction is the most common clinical natural language

processing (NLP) task1–4 and a precursor to downstream tasks such

as relations,5 frame parsing,6 co-reference,7 and phenotyping.8,9

Corpora such as those from Informatics for Integrating Biology and

the Bedside (i2b2),10–12 ShARe/CLEF,13,14 and SemEval15–17 act as

evaluation benchmarks and datasets for training machine learning

(ML) models. Meanwhile, neural network–based representations

continue to advance nearly all areas of NLP, from question answer-

ing18 to named entity recognition (a close analogue of concept ex-

traction).3,19–22 Recent advances in contextual representations,

including ELMo23 and BERT,24 have pushed performance even fur-

ther. These have demonstrated that relatively simple downstream

models using contextual embeddings can outperform complex mod-

els25 using embeddings such as word2vec26 and GloVe.27

In this article, we aim to explore the potential impact these repre-

sentations have on clinical concept extraction. Our contributions in-

clude the following:
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1. An evaluation exploring numerous embedding methods: word2-

vec,26 GloVe,27 fastText,28 ELMo,23 and BERT.24

2. An analysis covering 4 clinical concept corpora, demonstrating

the generalizability of these methods.

3. A performance increase for clinical concept extraction that

achieves state-of-the-art results on all 4 corpora.

4. A demonstration of the effect of pretraining on clinical corpora

vs larger open-domain corpora, an important trade-off in clini-

cal NLP.29

5. A detailed analysis of the effect of pretraining time when starting

from prebuilt open-domain models, which is important due to

the long pretraining time of methods such as ELMo and BERT.

In the following sections, we introduce the theoretical knowledge

that supports the shift from word-level embeddings to contextual

embeddings.

Word embedding models
Word-level vector representation methods learn a real-valued vector

to represent a single word. One of the most prominent methods for

word-level representation is word2vec.26 So far, word2vec has

widely established its effectiveness for achieving state-of-the-art per-

formances in a variety of clinical NLP tasks.30 GloVe27 is another

unsupervised learning approach to obtain a vector representation

for a single word. Unlike word2vec, GloVe is a statistical model that

aggregates both a global matrix factorization and a local context

window. The learning relies on dimensionality reduction on the co-

occurrence count matrix based on how frequently a word appears in

a context. fastText28 is also an established library for word represen-

tations. Unlike word2vec and GloVe, fastText considers individual

words as character n-grams. For instance, cold is made of the

n-grams c, co, col, cold, o, ol, old, l, ld, and d. This approach ena-

bles handling of infrequent words that are not present in the training

vocabulary, alleviating some out-of-vocabulary issues.

However, the effectiveness of word-level representations is hin-

dered by the limitation that they conflate all possible meanings of a

word into a single representation and so the embedding is not ad-

justed to the surrounding context. In order to tackle these deficien-

cies, advanced approaches have attempted to directly model the

word’s context into the vector representation. Figure 1 illustrates

this with the word cold, in which a traditional word embedding

assigns all senses of the word cold with a single vector, whereas a

contextual representation varies the vector based on its meaning in

context (eg, cold temperature, medical symptom or condition, an

unfriendly disposition). Although a fictional figure is shown here,

we later demonstrate this on real data.

The first contextual word representation that we consider to

overcome this issue is ELMo.23 Unlike the previously mentioned tra-

ditional word embeddings that constitute a single vector for each

word and the vector remains stable in downstream tasks, this con-

textual word representation can capture the context information

and dynamically alter a multilayer representation. At training time,

a language model objective is used to learn the context-sensitive

embeddings from a large text corpus. The training step of learning

these context-sensitive embeddings is known as pretraining. After

pretraining, the context-sensitive embedding of each word will be

fed into the sentences for downstream tasks. The downstream task

learns the shared weights of the inner state of pretrained language

model by optimizing the loss on the downstream task.

BERT24 is also a contextual word representation model, and,

similar to ELMo, pretraining on an unlabeled corpus with a

language model objective. Compared to ELMo, BERT is deeper in

how it handles contextual information due to a deep bidirectional

transformer for encoding sentences. It is based on a transformer ar-

chitecture employing self-attention.31 The deep bidirectional trans-

former is equipped with multiheaded self-attention to prevent

locality bias and to achieve long-distance context comprehension.

Additionally, in terms of the strategy for how to incorporate these

models into the downstream task, ELMo is a feature-based language

representation while BERT is a fine-tuning approach. The feature-

based strategy is similar to traditional word embedding methods

that considers the embedding as input features for the downstream

task. The fine-tuning approach, on the other hand, adjusts the entire

language model on the downstream task to achieve a task-specific

architecture. So while the ELMo embeddings may be used as the in-

put of a downstream model, with the BERT fine-tuning method, the

entire BERT model is integrated into the downstream task. This

fine-tuning strategy is more likely to make use of the encoded infor-

mation in the pretrained language models.

Clinical concept extraction
Clinical concept extraction is the task of identifying medical con-

cepts (eg, problem, test, treatment) from clinical notes. This is typi-

cally considered as a sequence tagging problem to be solved with

machine learning–based models (eg, conditional random field

[CRF]) using hand-engineered clinical domain knowledge as fea-

tures.4,32 Recent advances have demonstrated the effectiveness of

deep learning–based models with word embeddings as input. Up to

now, the most prominent model for clinical concept extraction is a

bidirectional long short-term memory (Bi-LSTM) with CRF archi-

tecture.19,22,33 The bidirectional LSTM-based recurrent neural net-

work captures both forward and backward information in the

sentence and the CRF layer considers sequential output correlations

in the decoding layer using the Viterbi algorithm.

Most similar to this article, several recent works have applied

contextual embedding methods to concept extraction, both for clini-

cal text and biomedical literature. For instance, ELMo has shown

excellent performance on clinical concept extraction.34 BioBERT35

applied BERT primarily to literature concept extraction, pretraining

on MEDLINE abstracts and PubMed Central articles, but also ap-

plied this model to the i2b2 2010 corpus10 without clinical pretrain-

ing (we include BioBERT in our experiments). A recent preprint by

Alsentzer et al36 pretrains on MIMIC-III (Medical Information Mart

for Intensive Care III), similar to our work, but achieves lower per-

formance on the 2 tasks in common, i2b2 2010 and 2012.11 Their

Figure 1. Fictional embedding vector points and clusters of cold.
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work does suggest potential value in only pretraining on MIMIC-III

discharge summaries, as opposed to all notes, as well as combining

clinical pretraining with literature pretraining. Finally, another re-

cent preprint proposes the use of BERT not for concept extraction,

but rather for clinical prediction tasks such as 30-day readmission

prediction.37

MATERIALS AND METHODS

In this article, we consider both off-the-shelf embeddings from the

open domain as well as pretraining clinical domain embeddings on

clinical notes from MIMIC-III,38 which is a public database of inten-

sive care unit patients.

For the traditional word-embedding experiments, the static

embeddings are fed into a Bi-LSTM CRF architecture. All words

that occur at least 5 times in the corpus are included and infrequent

words are denoted as UNK. To compensate for the loss due of those

unknown words, character embeddings for each word are included.

For ELMo, the context-independent embeddings with trainable

weights are used to form context-dependent embeddings, which are

then fed into the downstream task. Specifically, the context-

dependent embedding is obtained through a low-dimensional pro-

jection and a highway connection after a stacked layer of a

character-based convolutional neural network (char-CNN) and a 2-

layer Bi-LSTM language model (bi-LM). Thus, the contextual word

embedding is formed with a trainable aggregation of highly-

connected bi-LM. Because the context-independent embeddings al-

ready consider representation of characters, it is not necessary to

learn a character embedding input for the Bi-LSTM in concept ex-

traction. Finally, the contextual word embedding for each word is

fed into the prior state-of-the-art sequence labeling architecture, Bi-

LSTM CRF, to predict the label for each token.

For BERT, both the BERTBASE and BERTLARGE off-the-shelf

models are used with additional Bi-LSTM layers at the top of the

BERT architecture, which we refer to as BERTBASE(General) and

BERTLARGE(General), respectively. For background, the BERT

authors released 2 off-the-shelf cased models: BERTBASE and BER-

TLARGE, with 110 million and 340 million total parameters, respec-

tively. BERTBASE has 12 layers of transformer blocks, 768 hidden

units, and 12 self-attention heads, while BERTLARGE has 24 layers

of transformer blocks, 1024 hidden units, and 16 self-attention

heads. So BERTLARGE is both “wider” and “deeper” in model struc-

ture, but is otherwise essentially the same architecture. The models

initiated from BERTBASE(General) and BERTLARGE(General) are

fine-tuned on the downstream task (ie, clinical concept recognition

in our case). Because BERT integrates sufficient label-correlation in-

formation, the CRF layer is abandoned and only a Bi-LSTM archi-

tecture is used for sequence labeling. Additionally, 2 clinical domain

embedding models are pretrained on MIMIC-III, initiated from the

BERTBASE and BERTLARGE checkpoints, which we refer to as

BERTBASE(MIMIC) and BERTLARGE(MIMIC), respectively.

Datasets
Our experiments are performed on 4 widely-studied shared tasks,

the 2010 i2b2/VA challenge,10 the 2012 i2b2 challenge,11 the

SemEval 2014 Task 7,15 and the SemEval 2015 Task 14.16 The de-

scriptive statistics for the datasets are shown in Table 1. The 2010

i2b2/VA challenge data contain a total of 349 training and 477 test-

ing reports with clinical concept types: PROBLEM, TEST, and

TREATMENT. The 2012 i2b2 challenge data contain 190 training

and 120 testing discharge summaries, with 6 clinical concept types:

PROBLEM, TEST, TREATMENT, CLINICAL DEPARTMENT,

EVIDENTIAL and OCCURRENCE. The SemEval 2014 Task 7

data contain 199 training and 99 testing reports with the concept

type: DISEASE DISORDER. The SemEval 2015 Task 14 data con-

sists of 298 training and 133 testing reports with the concept type:

DISEASE DISORDER. For the 2 SemEval tasks, the disjoint con-

cepts are handled with “BIOHD” tagging schema.39

The clinical embeddings are trained on MIMIC-III,38 which con-

sists of almost 2 million clinical notes. Notes that have an ERROR

tag are first removed, resulting in 1 908 359 notes with 786 414 528

tokens and a vocabulary of size 712 286. For pretraining traditional

word embeddings, words are lowercased, as is standard practice.

For pretraining ELMo and BERT, casing is preserved.

Experimental settings
Concept extraction

Concept extraction is based on the model proposed in Lample et

al,40 a Bi-LSTM CRF architecture. For traditional embedding meth-

ods and ELMo embeddings, we use the same hyperparameters set-

ting: hidden unit dimension at 512, dropout probability at 0.5,

learning rate at 0.001, learning rate decay at 0.9, and Adam as the

optimization algorithm. Early stopping of training is set to 5 epochs

without improvement to prevent overfitting.

Pretraining of clinical embeddings

Across embedding methods, 2 different scenarios of pretraining are

investigated and compared:

1. Off-the-shelf embeddings from the official release, referred to as

the General model.

2. Pretrained embeddings on MIMIC-III, referred to as the MIMIC

model.

In the first scenario, more details related to the embedding mod-

els are shown in in Table 2. We also apply BioBERT,35 which is the

most recent pretrained model on biomedical literature initiated from

BERTBASE.

In the second scenario, for all the traditional embedding meth-

ods, we pretrain 300 dimension embeddings from MIMIC-III clini-

cal notes. We apply the following hyperparameter settings for all 3

traditional embedding methods including word2vec, GloVe, and

fastText: window size of 15, minimum word count of 5, 15 itera-

tions, and embedding size of 300 to match the off-the-shelf embed-

dings.

For ELMo, the hyperparameter setting for pretraining follows

the default in Peters et al.23 Specifically, a char-CNN embedding

layer is applied with 16-dimension character embeddings, filter

Table 1. Descriptive statistics for concept extraction datasets

Dataset Subset Notes Entities

i2b2 2010 Train 349 27 837

Test 477 45 009

i2b2 2012 Train 190 16 468

Test 120 13 594

SemEval 2014 Task 7 Train 199 5816

Test 99 5351

SemEval 2015 Task 14 Train 298 11 167

Test 133 7998

i2b2: Informatics for Integrating Biology and the Bedside.

Journal of the American Medical Informatics Association, 2019, Vol. 26, No. 11 1299



widths of [1, 2, 3, 4, 5, 6, 7] with respective [32, 32, 64, 128, 256,

512, 1024] number of filters. After that, a 2-layer Bi-LSTM with

4096 hidden units in each layer is added. The output of the final bi-

LM language model is projected to 512 dimensions with a highway

connection. The total number of tokens in pretraining on MIMIC-

III was 786 414 528. MIMIC-III was split into a training corpus

(80%) for pretraining and a held-out testing corpus (20%) for evalu-

ating perplexity. The pretraining step is performed on the training

corpus for 15 epochs. The average perplexity on the testing corpus is

9.929.

For BERT, 2 clinical-domain models initialized from BERTBASE

and BERTLARGE are pretrained. Unless specified, we follow the

authors’ detailed instructions to set up the pretraining parameters,

as other options were tested and it has been concluded that this is a

useful recipe when pretraining from their released model (eg, poor

model convergence). The vocabulary list consisting of 28 996 word-

pieced tokens applied in BERTBASE and BERTLARGE is adopted.

According to their article, the performance on the downstream tasks

decrease as the training steps increase, thus we decide to save the in-

termediate checkpoint (every 20 000 steps) and report the perfor-

mance of intermediate models on the downstream task.

Fine-tuning BERT

Fine-tuning the BERT clinical models on the downstream task

requires some adjustments. First, instead of randomly initializing the

Bi-LSTM output weights, Xavier initialization is utilized, without

which the BERT fine-tuning failed to converge (this was not neces-

sary for ELMo). Second, early stopping of fine-tuning is set to 800

steps without improvement to prevent overfitting. Finally, postpro-

cessing steps are conducted to align the BERT output with the con-

cept gold standard, including handling truncated sentences and

word-pieced tokenization.

Evaluation and computational costs

A total of 10% of the official training set is used as a development

set and the official test set is used to report performance. The spe-

cific performance metrics are precision, recall, and F1 measure for

exact matching. The pretraining BERT experiments are imple-

mented in TensorFlow41 on a NVidia Tesla V100 GPU (32G) (NVI-

DIA, Santa Clara, CA), other experiments are performed in

TensorFlow on a NVIDIA Quadro M5000 (8G). The time for pre-

training ELMo, BERTBASE, and BERTLARGE for every 20 000 check-

point is 4.83 hours, 3.25 hours, and 5.16 hours, respectively. These

three models were run until manually set to stop at 320 000 itera-

tions (82.66 hours [roughly 3.4 days]), 700 000 iterations (113.75

hours [roughly 4.7 days]), and 700,000 iterations (180.83 hours

[roughly 7.5 days]), respectively.

RESULTS

Performance comparison
The performance on the respective test sets for the embedding meth-

ods on the 4 clinical concept extraction tasks are reported in Table 3.

The performance is evaluated in exact matching F1. In general,

embeddings pretrained on the clinical corpus performed better than

the same method pretrained on an open-domain corpus.

For i2b2 2010, the best performance is achieved by BERTLAR-

GE(MIMIC), with an F1 of 90.25. It improves the performance by

5.18 over the best performance of the traditional embeddings

achieved by GloVe(MIMIC), with an F1 of 85.07. As expected, both

ELMo and BERT clinical embeddings outperform the off-the-shelf

embeddings with relative increase up to 10%.

The best performance on the i2b2 2012 task is achieved by BER-

TLARGE(MIMIC), with an F1 of 80.91 across all the alternative

methods. It increases F1 by 5.64 over GloVe(MIMIC), which

obtains the best score (75.27) among the traditional embedding

methods. As expected, ELMo and BERT with pretrained clinical

embedddings exceed the off-the-shelf open-domain models.

The most effective model for SemEval 2014 task achieved an ex-

act matching F1 of 80.74 by BERTLARGE(MIMIC). Notably, tradi-

tional embedding models pretrained on the clinical corpus such as

GloVe(MIMIC) obtained a higher performance than contextual em-

bedding model trained on open domain, namely ELMo(General).

For the SemEval 2015 task, as the experiments are performed

only in concept extraction, the models are evaluated using the offi-

cial evaluation script from the SemEval 2014 task. Note that the

training set (298 notes) for the SemEval 2015 task is the training

(199 notes) and test set (99 notes) combined for the SemEval 2014

task. The best performance on the 2015 task is achieved by BER-

TLARGE(MIMIC) with an F1 of 81.65.

The detailed performance for each entity category including

PROBLEM, TEST, and TREATMENT on the 2010 task is shown in

Table 4. Both ELMo and BERT show improvements to all 3 catego-

ries, with ELMo outperforming the traditional embeddings on all 3,

and BERT outperforming ELMo on all 3. One notable aspect with

BERT is that TREATMENTs see a larger jump: TREATMENT is the

lowest-performing category for ELMo and the traditional embed-

dings despite there being slightly more TREATMENTs than TESTs in the

data, but for BERT the TREATMENTs category outperforms TESTs.

Table 5 shows the results for each event type on the 2012 task

with embeddings pretrained from MIMIC-III. Generally, the biggest

improvement by the contextual embeddings over the traditional

embeddings is achieved on the PROBLEM type (BERTLARGE: 86.1,

GloVe: 77.83). This is reasonable because in clinical notes, diseases

and conditions normally appear in certain types of surrounding con-

text with similar grammar structures. Thus, it is necessarily impor-

tant to take advantage of contextual representations to capture the

Table 2. Resources of off-the-shelf embeddings from the open domain

Method Resource (tokens / vocab) Size Language model

word2vec Google News (100B / 3M) 300 NA

Glove Gigaword5 þWikipedia2014 (6B / 0.4M) 300 NA

fastText Wikipedia 2017 þ UMBC corpus þ statmt.org news (16B / 1M) 300 NA

ELMo WMT 2008-2012 þWikipedia (5.5B / 0.7M) 512 2-layer, 4096-hidden,93.6M parameters

BERTBASE BooksCorpus þ English Wikipedia (3.3B / 0.03Ma) 768 12-layer, 768-hidden, 12 heads, 110M parameters

BERTLARGE BooksCorpus þ English Wikipedia (3.3B / 0.03Ma) 1024 24-layer, 1024-hidden, 16-heads, 340M parameters

B: billion; M: million; NA: Not Applicable.
aVocabulary size calculated after wordpiece tokenization.
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surrounding context for that particular concept. Interestingly,

ELMo outperforms both BERT models for CLINICAL DEPT and

OCCURRENCE.

Pretraining evaluation
The efficiency of pretrained ELMo and BERT models are investi-

gated by reporting the loss during pretraining steps and by evaluat-

ing the intermediate checkpoints on downstream tasks. It is

observed for both ELMo and BERT at their pretraining stages, the

train perplexity or loss decreases as the steps increase, indicating

that the language model is actually adapting to the clinical corpus. If

there is no intervention to stop the pretraining process, it will lead to

a very small loss value (see Supplementary Figure 1). However, this

will ultimately cause overfitting on the pretraining corpus.

Using i2b2 2010 as the downstream task, the final performance

at each intermediate checkpoint of the pretrained model is shown in

Figure 2. For ELMo, as the pretraining proceeds, the performance of

the downstream task remains stable after a certain number of itera-

tions (the maximum F1 reaches 87.80 at step 280 000). For BERT-

BASE, the performance on the downstream task is less steady and

tends to decrease after achieving its optimal model, with the maxi-

mum F1 89.55 at step 340 000. We theorize that this is due to ini-

tializing the MIMIC model with the open-domain BERT model:

Table 3. Test set comparison in exact F1 of embedding methods across tasks

Method i2b2 2010 i2b2 2012 SemEval 2014 Task 7 SemEval 2015 Task 14

General MIMIC General MIMIC General MIMIC General MIMIC

word2vec 80.38 84.32 71.07 75.09 72.2 77.48 73.09 76.42

GloVe 84.08 85.07 74.95 75.27 70.22 77.73 72.13 76.68

fastText 83.46 84.19 73.24 74.83 69.87 76.47 72.67 77.85

ELMo 83.83 87.8 76.61 80.5 72.27 78.58 75.15 80.46

BERTBASE 84.33 89.55 76.62 80.34 76.76 80.07 77.57 80.67

BERTLARGE 85.48 90.25b 78.14 80.91b 78.75 80.74b 77.97 81.65b

BioBERT 84.76 – 77.77 – 77.91 – 79.97 –

Prior SOTA 88.6034 a42 80.339 81.343

i2b2: Informatics for Integrating Biology and the Bedside; MIMIC: Medical Information Mart for Intensive Care; SOTA: state-of-the-art.
aThe SOTA on the i2b2 2012 task is only reported in partial-matching F1. That result, 92.29,42 is below the equivalent we achieve on partial-matching F1 with

BERTLARGE(MIMIC), 93.18.
bThe best performing result in the respective task.

Table 4. Performance of each label category with pretrained MIMIC models on i2b2 2010 task.

word2vec GloVe fastText ELMo BERTBASE BERTLARGE

PROBLEM 84.16 85.08 84.32 88.76 89.61a 89.26

TEST 85.93 84.96 84.01 87.39 88.09 88.8a

TREATMENT 83.14 84.73 83.89 86.98 88.3 89.14a

i2b2: Informatics for Integrating Biology and the Bedside; MIMIC: Medical Information Mart for Intensive Care;
aThe best performing result in the respective task.

Table 5. Performance of each label category with pretrained MIMIC models on i2b2 2012 task

word2vec GloVe fastText ELMo BERTBASE BERTLARGE

PROBLEM 76.49 77.83 75.35 84.1 85.91 86.1a

TEST 78.12 81.26 76.94 84.76 86.88a 86.56

TREATMENT 76.22 78.52 76.88 83.9 84.27 85.09a

CLINICAL DEPT 78.18 77.92 77.27 83.71a 77.92 78.23

EVIDENTIAL 73.14 74.26 72.94 72.95 74.21 74.96a

OCCURRENCE 64.77 64.19 61.02 66.27a 62.36 65.65

MIMIC: Medical Information Mart for Intensive Care;
aThe best performing result in the respective task.

Figure 2. Performances on the Informatics for Integrating Biology and the

Bedside (i2b2) 2010 task governed by the steps of pretraining epochs on

ELMo(MIMIC) and BERT-BASE(MIMIC). MIMIC: Medical Information Mart for

Intensive Care.
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over many iterations on the MIMIC data, the information learned

from the large open corpus (3.3 billion words) is lost and would

eventually converge on a model similar to one initialized from

scratch. Thus, limiting pretraining on a clinical corpus to a certain

number of iterations provides a useful trade-off, balancing the bene-

fits of a large open-domain corpus while still learning much from a

clinical corpus. We hope that this is a practical piece of guidance for

the clinical NLP community when they intend to generate their own

pretrained model from a clinical corpus.

DISCUSSION

This study explores the effects of numerous embedding methods on 4

clinical concept extraction tasks. Unsurprisingly, domain-specific em-

bedding models outperform open-domain embedding models. All types

of embeddings enable consistent gains in concept extraction tasks when

pretrained on a clinical domain corpus. Further, the contextual embed-

dings outperform traditional embeddings in performance. Specifically,

large improvements can be achieved by pretraining a deep language

model from a large corpus, followed by a task-specific fine tuning.

State-of-the-art comparison
Among the 4 clinical concept extraction corpora, the i2b2 2012 task

reports the partial matching F1 as the organizers reported in Sun

et al.11 and the other 3 tasks report the exact matching F1. Currently,

the state-of-the-art models for i2b2 2010, i2b2 2012, SemEval 2014

task 7, and SemEval 2015 Task 14 are reported with F1 of 88.60,34

92.29,42 80.3,39 and 81.3,43 respectively. With the most advanced lan-

guage model representation method pretrained on a large clinical cor-

pus, namely BERTLARGE(MIMIC), we achieved new state-of-the-art

performances across all tasks. BERTLARGE(MIMIC) outperform the

state-of-the-art models on all 4 tasks with respective F measures of

90.25, 93.18 (partial F1), 80.74, and 81.65.

Semantic information from contextual embeddings
Here, we explore the semantic information captured by the contextual

representation and infer that the contextual embedding can encode in-

formation that a single word vector fails to. We select 30 sentences

from both web texts and clinical notes in which the word cold appears

(The actual sentences can be found in Supplement Table 1). The em-

bedding vectors of cold in 30 sentences from 4 embedding models,

ELMo(General), ELMo(MIMIC), BERTLARGE(General), and

BERTLARGE (MIMIC), were derived. This results in 120 vectors for

the same word across 4 embeddings. For each embedding method,

Principal Component Analysis (PCA) is performed to reduce the di-

mensionality to 2.

The PCA visualizations are shown in Figure 3. As expected, the

vectors of cold generated by ELMo(General) are mixed within 2 dif-

Figure 3. Principal Component Analysis (PCA) visualizations using embedding vectors of cold from embedding models (purple: cold as temperature meaning;

red: cold as symptom). (a) ELMo General (b) ELMo MIMIC (c) BERT General (d) BERT MIMIC
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ferent meaning labels. The vectors generated by BERTLARGE(Gen-

eral) and BERTLARGE(MIMIC) are more clearly clustered into 2

groups. ELMo(General) is unable to discriminate the different

meanings of the word cold, specifically between temperature and

symptom. The visualization result is also consistent with the perfor-

mance on the concept extract tasks where ELMo(General) tends to

get a poorer performance compared with the other 3 models.

Traditional word embeddings are commonly evaluated using lex-

ical similarity tasks, such as those by Pakhomov et al,44,45 which

compare 2 words outside any sentence-level context. While not en-

tirely appropriate for comparing contextual embeddings such as

ELMo and BERT because the centroid of the embedding clusters are

not necessarily meaningful, such lexical similarity tasks do provide

motivation for investigating the clustering effects of lexically similar

(and dissimilar) words. In Supplementary Figure 2, we compare 4

words from Pakhomov et al45: tylenol, motrin, pain, and herpes

based on 50-sentence samples from MIMIC-III and the same 2-di-

mension PCA visualization technique. One would expect tylenol

(acetaminophen) and motrin (ibuprofen) to be similar, and in fact

the clusters overlap almost completely. Meanwhile, pain is a nearby

cluster, while herpes is quite distant. So while contextual embed-

dings are not well-suited to context-free lexical similarity tasks, the

aggregate effects (clusters) still demonstrate similar spatial relation-

ships as traditional word embeddings.

Lexical segmentation in BERT
One important notable difference between BERT and both ELMo and

the traditional word embeddings is that BERT breaks words down into

subword tokens, referred to as wordpieces.46 This is accomplished via

statistical analysis on a large corpus, as opposed to using a morphologi-

cal lexicon. The concern for clinical NLP, then, is if a different word

piece tokenization method is appropriate for clinical text as opposed to

general text (ie, books and Wikipedia for the pretrained BERT models).

Supplementary Table 2 shows the word piece tokenization for the medi-

cal words from the lexical similarity corpus developed by Pakhomov

et al.45 The results do not exactly conform to traditional medical term

morphology (eg, appendicitis is broken into app, -end, -icit, -is, as op-

posed to having the suffix -itis). Note that this isn’t necessary a bad seg-

mentation: it is possible this would outperform a word piece

tokenization based on the SPECIALIST lexicon.47 What is not in dis-

pute, however, is that further experimentation is required, such as deter-

mining word pieces from MIMIC-III. Note this is not as simple as it at

first seems. The primary issue is that the BERT models we use in this ar-

ticle were first pretrained on a 3.3 billion word open-domain corpus,

then pretrained further on MIMIC-III. Performing word piece tokeniza-

tion on MIMIC-III would at a minimum require repeating the pretrain-

ing process on the open-domain corpus (with the clinical word pieces)

to get comparable embedding models. Given the range of experimenta-

tion necessary to determine the best word piece strategy, we leave this

experimentation to future work.

CONCLUSION

In this article, we present an analysis of different word embedding

methods and investigate their effectiveness on 4 clinical concept ex-

traction tasks. We compare between traditional word representation

methods as well as the advanced contextual representation methods.

We also compare pretrained contextual embeddings using a large

clinical corpus against the performance of off-the-shelf pretrained

models on open-domain data. Primarily, the efficacy of contextual

embeddings over traditional word vector representations are

highlighted by comparing the performances on clinical concept ex-

traction. Contextual embeddings also provide interesting semantic

information that is not accounted for in traditional word representa-

tions. Further, our results highlight the benefits of embeddings

through unsupervised pretraining on clinical text corpora, which

achieve higher performance than off-the-shelf embedding models

and result in new state-of-the-art performance across all tasks.
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