Skip to main content
. 2019 Jul 2;26(11):1297–1304. doi: 10.1093/jamia/ocz096

Table 2.

Resources of off-the-shelf embeddings from the open domain

Method Resource (tokens / vocab) Size Language model
word2vec Google News (100B / 3M) 300 NA
Glove Gigaword5 + Wikipedia2014 (6B / 0.4M) 300 NA
fastText Wikipedia 2017 + UMBC corpus + statmt.org news (16B / 1M) 300 NA
ELMo WMT 2008-2012 + Wikipedia (5.5B / 0.7M) 512 2-layer, 4096-hidden,93.6M parameters
BERTBASE BooksCorpus + English Wikipedia (3.3B / 0.03Ma) 768 12-layer, 768-hidden, 12 heads, 110M parameters
BERTLARGE BooksCorpus + English Wikipedia (3.3B / 0.03Ma) 1024 24-layer, 1024-hidden, 16-heads, 340M parameters

B: billion; M: million; NA: Not Applicable.

aVocabulary size calculated after wordpiece tokenization.