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ABSTRACT

Objective: Our objective is to develop algorithms for encoding clinical text into representations that can be used

for a variety of phenotyping tasks.

Materials and Methods: Obtaining large datasets to take advantage of highly expressive deep learning methods

is difficult in clinical natural language processing (NLP). We address this difficulty by pretraining a clinical text

encoder on billing code data, which is typically available in abundance. We explore several neural encoder

architectures and deploy the text representations obtained from these encoders in the context of clinical text

classification tasks. While our ultimate goal is learning a universal clinical text encoder, we also experiment

with training a phenotype-specific encoder. A universal encoder would be more practical, but a phenotype-

specific encoder could perform better for a specific task.

Results: We successfully train several clinical text encoders, establish a new state-of-the-art on comorbidity data,

and observe good performance gains on substance misuse data.

Discussion: We find that pretraining using billing codes is a promising research direction. The representations

generated by this type of pretraining have universal properties, as they are highly beneficial for many phenotyp-

ing tasks. Phenotype-specific pretraining is a viable route for trading the generality of the pretrained encoder for

better performance on a specific phenotyping task.

Conclusions: We successfully applied our approach to many phenotyping tasks. We conclude by discussing po-

tential limitations of our approach.
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INTRODUCTION

Recent neural network models have shown state-of-the-art results

on a number of natural language processing (NLP) benchmarks and

even human-level performance on several narrowly defined tasks

such as question answering1 and machine translation.2 Yet, this suc-

cess required tens or hundreds of thousands of labeled examples.

Procuring annotated datasets of this size is not feasible for most

tasks in clinical NLP due to the high cost of manual labeling. The

well-known clinical NLP benchmarks such as Integrating Biology

and the Bedside (i2b2) obesity comorbidity recognition, i2b2 smok-

ing status detection, and the recent National NLP Clinical Chal-

lenges (https://n2c2.dbmi.hms.harvard.edu) have only hundreds of
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examples per phenotype, making it difficult to take advantage of

highly expressive deep learning methods.

This problem of insufficient training data is addressed in com-

puter vision by means of pretraining classifiers on massive datasets

such as ImageNet3,4 and subsequently refining them on a more spe-

cialized classification task. The idea is that the large datasets train

early layers in a deep network to recognize universal vision primi-

tives that should apply across tasks (lines of various orientations,

edges, basic shapes, etc.) In NLP, researchers have exploited large

unlabeled corpora to pretrain shallow representations of such units

of meaning as words and short phrases using techniques such as

word2vec5 and GloVe.6 However, these methods focus only on the

bottom layer in the hierarchy of language, with new ways to encode

higher level language representations needed for most NLP tasks.

More recently, word-level approaches have been extended to

sentences.7 Last year saw a number of successful attempts to con-

tinue to move up this hierarchy of language complexity by

pretraining text encoders using language modeling objectives8–11;

text encoding methods such as BERT10 and ULMfit9 can represent

sentences or even paragraph-size units. As a result of these works,

language modeling is now viewed as NLP’s equivalent of ImageNet

pretraining. We observe that the analogy with ImageNet is far from

perfect because ImageNet has a true source of supervision and lan-

guage modeling is self-supervised (ie, trained without manual labels;

a computer vision analogy would have to involve predicting artifi-

cially removed pixels of an image). In this work, we find evidence

that clinical NLP is uniquely positioned to investigate a much closer

analogy to ImageNet pretraining, which is manifested in billing code

prediction. Because billing codes are available in abundance in

healthcare institutions and are linked to document-level entities,

such as clinical encounters, we are able to move beyond sentence-

level encoding to document level by means of supervised pretraining.

Prior to this work, representation learning research focused on sen-

tence or paragraph-length sized units, with little research on encod-

ing larger units such as documents and encounters.

In our previous work,12 we introduced a simple text encoder

that takes Unified Medical Language System (UMLS) concepts as in-

put and is trained using a billing code prediction objective. The en-

coder is subsequently used to generate patient representations that

succinctly captured patient information. In this follow-up work, we

refine this idea, extend it to raw text, and introduce a novel

phenotype-specific encoder that makes it possible to trade the gener-

ality of the resulting text representations for better performance on

a specific phenotyping task.

There are currently 2 strategies for deploying pretrained models:

feature extraction and fine-tuning. In feature extraction (eg, ELMo,8

Flair11) one divides learning into 2 independent processes: learning (1)

a general model of how language works to encode sentences or docu-

ments (pretraining) and (2) how to classify documents encoded with

such a model. In concrete terms, the weights of the pretraining network

are frozen before learning how to do the downstream task. In fine-

tuning (eg, BERT,10 GPT,13 ULMFit9), pretraining works the same

way, but training for the downstream task can update the way that the

network thinks language works. In other words, the pretraining net-

work weights are allowed to update during the second phase. This

work focuses on feature extraction, as our preliminary work finds fine-

tuning to be less replicable (for more details, see Discussion).

Our work can also be viewed as learning patient representations,

which are the output of our text encoder. Most of the recent work in

clinical informatics focused on using structured EHR data, such as

International Classification of Diseases (ICD) codes, procedure codes,

and medication orders for learning patient representations.14–19

One of the few patient representation learning systems to focus on

EHR text is DeepPatient,17 which not only operates on a variety of

features including structured EHR information, but also uses topic

modeling as a way to represent text. To learn patient representa-

tions, they use a model consisting of stacked denoising autoen-

coders. The learned representations are used to predict ICD codes

occurring in the next 30, 60, 90, and 180 days. In contrast to the

previous works, Sushil et al20 focuses exclusively on EHR text to

learn patient representations using unsupervised methods, such as

stacked denoising autoencoders and doc2vec.7 They find that the

learned representations outperform traditional bag-of-words repre-

sentations when few training examples are available and that the

target task does not rely on strong lexical features. Like Sushil et

al,20 our work uses text variables only.

Existing work on encoding patient representations has focused on

predictions of convenience (tasks for which coded data is available),

such as mortality prediction or future billing codes. We evaluate our

encoder on several phenotyping tasks using labeled datasets. First, in

the interests of reproducibility, we evaluate on the publicly available

i2b2 comorbidity challenge data, establishing a new state of the art.

We also apply our encoder to 2 novel and high-impact substance mis-

use tasks, predicting opioid and alcohol misuse in trauma patients.

MATERIALS AND METHODS

Document-level clinical text encoder
With the advent of electronic health records (EHR), massive amounts

of patient data have become available at healthcare institutions.

EHR consists of 2 distinct types of data: (1) structured data such as

lab results, billing codes, and medication orders and (2) unstructured

data such as clinical notes. Our goal is training a clinical text encoder

and we observe that structured data potentially presents a good

source of supervision. An encoder that learns how to map notes text

to structured data, when trained on massive amounts of data, could

capture key elements of the information present in the notes text.

Text representations derived from this encoder, when used for down-

stream machine learning tasks such as automatic phenotyping (Fig-

ure 1), will likely benefit classifier performance because they have

representational power of a large dataset. The methods we discuss

can be viewed as representation learning. In this work, we focus on

using the billing codes as a source of supervision, which are typically

available in abundance in a healthcare institution.

We explore several neural architectures that work directly with

text and simple named entity features automatically extracted from

text. The first encoder is similar to the one used in our previous

work, which is a deep averaging network (DAN) that takes a set of

UMLS concept unique identifiers (CUIs), maps them to their 300-di-

mensional embeddings, averages them, and projects them to the pen-

ultimate fully connected hidden layer, essentially encoding the input

as a fixed-sized dense vector. During pretraining, the final (output)

network layer consists of n sigmoid units, each representing a unique

billing code (Figure 2). The architecture presented in Dligach and

Miller12 is trained at the patient level, which is suboptimal because

billing codes are assigned at the encounter level; the unit of classifi-

cation in this work is a single encounter. CUIs are extracted from

notes by mapping spans of clinically relevant text (eg, shortness of

breath, appendectomy, MRI [magnetic resonance imaging]) to

entries in the UMLS Metathesaurus. CUIs can be easily extracted by

existing tools such as Apache clinical Text Analysis Knowledge
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Extraction System (cTAKES) (http://ctakes.apache.org). The advan-

tage of this architecture is extremely fast training, which facilitates

efficient exploration of the hyperparameter space.

The second encoder is a convolutional neural network (CNN) that

operates directly on the text of the notes. The embedding layer is fol-

lowed by a convolutional layer, a max pooling layer, and a fully con-

nected layer. The output layer is identical to the DAN architecture

mentioned previously (Figure 3). In preliminary work, we also experi-

mented with Recurrent Neural Network (RNN)-based architectures,

but their performance was subpar both in terms of accuracy and speed,

likely due to the difficulty capturing long-distance dependencies.

Both encoders are trained using binary cross-entropy loss func-

tion and RMSProp optimizer to jointly predict billing codes. To use

the patient encoder as a feature extractor, we freeze the network

weights, push the text of the notes through the network, and collect

the computed values of the hidden layer nodes, thus obtaining a

dense vector representing the input text, that can be used as input

for any machine learning task (eg, to train a supervised classifier).

As noted, our text encoders are trained to jointly predict all bill-

ing codes associated with a clinical encounter. An encoder trained

this way, given sufficient amount of data, should capture a broad

spectrum of clinical information that exists in the input text, making

the representations that the encoder generates appropriate for pre-

dicting a wide range of outcomes. While our ultimate goal is learn-

ing a universal clinical text encoder, we also observe that it is

possible to train a phenotype-specific encoder by restricting the

Figure 1. We train a neural network to predict billing codes given the text of clinical encounters. After the training is finished, we save the model. We use the

saved model as a text encoder to create dense representations for the notes in a target task. These representations can be used to train a classifier.

Figure 2. Deep averaging network that takes as input concept unique identifier (CUI) embeddings and is trained to predict billing codes.
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billing code prediction targets to a set that is relevant to a specific

phenotype. While a universal encoder could be more practical, as

it needs to be pretrained only once, a phenotype-specific encoder

could potentially perform better for a specific medical condition.

We train 2 phenotype-specific text encoders for detecting sub-

stance misuse status, by modifying the encoder’s training objective

to predict only the codes associated with 2 substance misuse sce-

narios: alcohol and opioid misuse. This approach can be viewed as

a kind of transfer learning21 because the model learns to encode

the knowledge obtained from large amounts of data of a source

task (billing code prediction) to subsequently apply it to a target

task (substance misuse).

Data
We pretrain all text encoders using the Medical Information Mart

for Intensive Care III (MIMIC III) corpus.22 MIMIC III contains

notes and structured data for over 40 000 Beth Israel Deaconess

Medical Center critical care patients. Because billing codes are

assigned at the encounter level, we use a patient encounter as a unit

of classification when training an encoder; this is different from our

previous approach that worked at the patient level. Our unit of clas-

sification is thus all notes in an encounter concatenated into a single

document that the encoder learns to map to ICD-9 and Current Pro-

cedural Terminology code targets. We process these documents with

cTAKES to extract UMLS CUIs. cTAKES is an open-source library

for processing clinical texts with an efficient dictionary lookup com-

ponent for identifying mentions of clinically relevant spans of text.

To speed up the training of the encoders, we limit the maximum

length of input, set a threshold on the minimum number of examples

required for a billing code to be used as a prediction target, and col-

lapse billing codes to their general categories. This last step is cur-

rently necessary to make the training viable because there are

thousands of unique billing codes. Specifically, for the DAN and

CNN encoders, we (1) collapse all ICD-9 and Current Procedural

Terminology codes to their more general category (eg, first 3 digits

for ICD-9 diagnostic codes), (2) discard all tokens that appear fewer

than 100 times, (3) discard encounters that have more than 25 000

tokens, and (4) discard all collapsed billing codes that have fewer

than 500 examples. This preprocessing results in a dataset of 58 011

encounters mapped to 276 categories total. For the phenotype-

specific encoders, we obtain ICD-9 codes for alcohol misuse (28

codes) and ICD-9 codes for opioid misuse (21 codes) and use them

as prediction targets. The ICD code groups for both alcohol and opi-

oid misuse were based on the Agency for Healthcare Research and

Quality disease category classifications.23,24 We randomly split this

dataset into a training set (80%) and a validation set (20%) for tun-

ing model hyperparameters.

For evaluation, we use a publicly available dataset from the i2b2

obesity challenge,25 which consists of 1237 discharge summaries

from the Partners HealthCare annotated with respect to obesity and

its 15 most common comorbidities. Each patient was thus labeled

for 16 different categories. We focus on the more challenging intui-

tive task, containing 3 label types (present, absent, and question-

able). The diagnosis was annotated as present if it could be inferred

even in cases when it was not explicitly mentioned in the text, re-

quiring complex decision making and inferencing, and making this

task particularly difficult. In this evaluation, our encoders are evalu-

ated in 16 different classification tasks.

In addition, we use 2 in-house substance misuse datasets devel-

oped at the Loyola University Medical Center. The opioid misuse

dataset is a part of a larger effort to create manually annotated sub-

stance misuse data. The dataset was annotated by trained substance

use reviewers and in accordance with the National Survey on Drug

Use and Health criteria for nonmedical opioid use (patients taking

an opioid for reasons other than prescribed).26 At the time of the

experiments described here, 413 patients (208 positive cases and

205 negative cases) annotated with respect to opioid misuse were

available. The alcohol misuse dataset comprised 1423 patients (329

positive and 1094 negative cases). All patients completed an Alcohol

Use Disorders Identification Test, a validated screening tool for mis-

use, and labeled cases met criteria if scores of � 5 for women and �
8 for men were met.27 Both datasets were split into training (80%)

and test (20%) sets. Note that the prediction targets for both data-

sets are not ICD codes: for the opioid data, the labels were assigned

manually by trained reviewers, while the alcohol data used a patient

survey to derive the labels.28

Figure 3. Convolutional neural network that takes as input word embeddings and is trained to predict billing codes.
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We emphasize that the patient data we use in our evaluation

originates from healthcare institutions (Partners HealthCare and

Loyola) that are different from the one on which the encoders were

trained (Beth Israel). This evaluation is challenging, yet it presents a

true test of robustness of the proposed methods.

Experiments
Pretraining: We begin by pretraining 2 document-level clinical text

encoders: a DAN, which takes CUIs as input, and a CNN with max

pooling, which takes words as input. The hyperparameters of both

encoders are tuned on the validation set by optimizing the macro F1

score using random search.29 Importantly, the encoders are all tuned

independently from the datasets on which we evaluate them; ie, we

tune the encoders using MIMIC data but evaluate them on i2b2 co-

morbidity and Loyola substance misuse datasets. Note that our goal

is neither to achieve the best possible billing code prediction perfor-

mance on MIMIC nor to formally evaluate the performance on the

billing code prediction task. Thus we are not allocating separate val-

idation and test sets. Once the encoders achieve an acceptable level

of performance, we combine the training and the validation sets and

retrain them.

We train the DAN encoder with 5000 hidden units for 16 epochs

with a learning rate of 0.001 and a batch size of 16 as determined by

random search. We train the CNN encoder with 500 hidden units

and 1024 filters of size 5 for 8 epochs with a learning rate of 0.001

and a batch size of 8 using AdaDelta optimizer, also as determined

by random search.

Encoder evaluation: To evaluate the quality of an encoder, we

deploy it as a feature extractor to generate text representations we

can use as input to a linear support vector machine (SVM) classifier.

To obtain a vector representing a set of notes, we freeze the network

weights and push the notes text through the encoder, harvesting the

computed values of the units of one of the intermediate network

layers. For the DAN encoder, this is the hidden layer containing

5000 units. For the CNN encoder, we experiment with using either

the max pooling layer (1024 units) or the hidden fully connected

layer (500 units) to encode the text of the notes. In addition, we

evaluate the representations obtained from the encoders in combina-

tion with traditional sparse bag-of-words and bag-of-CUIs represen-

tations, hypothesizing that the dense representations contain the

information about the patient as a whole, while the sparse features

may contain the explicit signal. To this end, we concatenate the

dense encoder-derived vectors with sparse bag-of-words or bag-of-

CUIs vectors. We then train an SVM classifier using these vectors as

input.

For example, to run the evaluation on the i2b2 comorbidity

data, we obtain patient text representations from the CNN encoder

by feeding the text of the notes of a patient into the encoder. Rather

than reading the classifier’s code predictions, we collect the hidden

layer node values, forming a 500-dimensional dense vector. We then

train a multiclass SVM classifier for each disease in the comorbidity

data, building 16 classifiers. Following the i2b2 obesity challenge,

the models are evaluated using macro precision, recall, and F1

scores.25 We report the average macro precision, recall, and F1

across all 16 diseases for each system.

We compare all models to a baseline SVM classifier that we train

for each phenotype with bag-of-cui features. We use 10-fold cross-

validation on the training set to tune classifier parameters before we

evaluate on the test set.

Phenotype-specific pretraining: In addition to training an en-

coder to predict all billing codes associated with an encounter in the

MIMIC corpus, we also evaluate the effectiveness of phenotype-

specific pretraining by restricting the set of target ICD-9 codes only

to the ones associated with the target phenotype. We identify ICD-9

codes for alcohol and opioid misuse and train a DAN encoder for

each of these conditions. These encoders are then treated as feature

extractors and evaluated as described before using the opioid and al-

cohol misuse datasets in terms of area under the receiver-operating

characteristic curve.

RESULTS

Linear classifier performance for our first evaluation task, i2b2 co-

morbidity challenge, is in Table 1. Line 1 shows the performance of

a traditional baseline – a linear SVM classifier trained with bag-of-

CUIs features. Line 2 (DANprev) is our previous system12 that uses a

DAN-based patient-level encoder (included for comparison). Lines

3-8 all use various encounter-level neural network encoders.

In Tables 2 and 3, we show the performance of an SVM classifier

on the alcohol and opioid misuse datasets. The first line in these

tables show the performance of an SVM classifier trained using bag-

of-CUIs representation of the input notes (baseline). The subsequent

lines show the performance of an SVM classifier that uses input note

representations obtained from a DAN-based encoder pretrained on

different billing code prediction tasks. CUIs are used as input to the

encoder. Lines 2 and 3 show the performance when the encoder was

pretrained on all billing codes. The last line shows the performance

of a phenotype-specific encoder, ie, when the encoder was

pretrained on opioid misuse billing codes only.

DISCUSSION AND CONCLUSION

Our CNN-based clinical text encoder outperformed the bag-of-CUIs

baseline by a wide margin and showed approximately the same per-

formance as our previous DAN-based encoder. Concatenating the

encoder-generated representations with sparse bag-of-CUIs vectors

did not lead to improvements over the dense representations only

scenario, likely because the CNN encoder already captures explicit

strong features. Using CNN max pooling layer as a text representa-

tion improved the performance further, indicating that the CNN-

generated feature map already contained the necessary signal and no

benefits could be obtained by capturing feature interactions in an

additional fully connected layer.

Our DAN-based encoder outperformed the bag-of-CUIs baseline

and our previous encoder by a wide margin. Adding additional bag-

of-CUIs features to the DAN-generated representations helped to

improve the performance further, establishing the new state-of-the

art on i2b2 comorbidity data. Prior to this work, to the best of our

knowledge, the state-of-the-art on the i2b2 obesity challenge data is

presented in Yao et al,30 who report the macro F1 score of 0.677

(precision and recall not reported). In all, utilizing our text encoder

improved over the performance of the bag-of-CUIs features baseline

by 8 points and by more than 7 points over the previous state-of-

the-art.

Our DAN-based encoder showed the best performance on the

comorbidity data and we proceeded by evaluating it on the opioid

misuse data, where it helped to improve the classifier performance

by more than 5 points. Combining sparse bag-of-CUIs with the en-

coder generated representations improved the performance further.
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Finally, when the encoder was pretrained on the opioid-specific bill-

ing codes only, we obtained further improvements, outperforming

the bag-of-CUIs baseline by over eleven points.

Similarly to the opioid misuse task, we find that the use of our

text encoder helps to improve the classifier performance on the alco-

hol misuse detection task, although the size of the improvements is

more modest. This is likely due to the fact that alcohol misuse pre-

diction relies on the detection of only a handful of strong lexical fea-

tures which are captured well by a bag-of-CUIs baseline.28

In general, we find that pretraining using billing codes is a viable

route for pretraining. The representations generated by jointly

predicting the billing codes associated with a patient encounter have

properties of universal patient representations as they were benefi-

cial for all the phenotyping tasks reported here. While phenotype-

specific pretraining is beneficial, it is less practical because it requires

additional effort tuning the encoder to a specific set of billing codes.

Nevertheless, we find that this is a viable route for trading the gener-

ality of the pretrained encoder for better performance on a specific

phenotyping task.

As mentioned in the Introduction, an alternative to using

pretraining for feature extraction (as in our methods described above)

is an approach known as fine-tuning. In a fine-tuning approach, a new

task is added as an additional output layer to a pretrained network.

The task labels are then given to the network, whose entire set of

weights can be updated while learning to predict the labels for the new

task. While fine-tuning sounds better in theory, we find that it is diffi-

cult in practice. Fine-tuning requires optimizing an order of magnitude

more hyperparameters, including the learning rate, the dropout rate,

and number of training epochs, batch size, the optimizer parameters,

not to mention the choices related to the training schedule to deal with

issues like catastrophic forgetting.31 Howard and Ruder9 discuss a

number of fine-tuning methods such as discriminative fine-tuning,

which tunes the learning rate for each layer, and gradual unfreezing,

which “thaws” one layer at a time for training. These methods

amount to useful heuristics but the accumulated scientific knowledge

about how fine-tuning works seems to be insufficiently precise to al-

low for reliable use. We made some preliminary attempts to fine-tune

our pretrained encoder using heuristic approaches, but reverted to us-

ing our model in feature extraction as a more practical alternative. Fu-

ture work will continue investigating the fine-tuning approach.

Prior to our work, methods for text encoding, such as BERT,10

BioBERT,32 and ELMo,8 focused on encoding sentence or

paragraph-sized units of text. In this work, we target larger units of

text such as individual clinical notes or collections of notes for a pa-

tient. While it may be possible to combine sentence-level representa-

tions derived from models like BERT into a document-level

representation, we leave this investigation for future work. While

our ultimate goal is developing a universal patient encoder, which

captures most essential information represented in the text of the

notes, we acknowledge that using only ICD codes as pretraining tar-

gets has limitations. It is likely that extending our methods to in-

clude other structured variables, such as medication orders, primary

diagnosis, demographic information, and readmission status, could

be the next step toward building a universal encoder, leading to

even more robust document representations.

The approach we describe here has now been successfully ap-

plied to many separate phenotyping tasks, but it is worth thinking

about the limitations of using billing codes for pretraining. Because

Table 1. Average SVM classifier performance on 16 Integrating Biology and the Bedside comorbidity challenge phenotyping tasks

Encoder Encoder input SVM input Macro P Macro R Macro F1

none none bag-of-CUIs 0.733 0.65 0.675

DANprev CUIs DAN hidden layer 0.709 0.725 0.715

CNN words CNN hidden layer 0.719 0.723 0.718

CNN words CNN hidden layer þ bag-of-CUIs 0.719 0.723 0.718

CNN words CNN max pooling layer 0.737 0.726 0.729

CNN words CNN max pooling layer þ bag-of-words 0.737 0.726 0.729

DAN CUIs DAN hidden layer 0.752 0.751 0.746

DAN CUIs DAN hidden layer þ bag-of-CUIs 0.784 0.744 0.755

Performance is compared with SVM trained on a bag-of-CUIs representation of input notes (baseline) vs the representations derived from encoders pretrained

on billing code prediction tasks.

CUIs: concept unique identifiers; DAN: deep averaging network; SVM: support vector machine.

Table 2. Comparison of different input representations on the per-

formance of an SVM classifier on the opioid misuse data

Encoder Pretraining targets SVM input ROC AUC

none none bag-of-CUIs 0.838

DAN all billing codes DAN hidden layer 0.889

DAN all billing codes DAN hidden layer þ
bag-of-CUIs

0.916

DAN opioid-specific

billing codes

DAN hidden layer 0.951

Bag-of-CUIs input (baseline) is compared with the performance of the in-

put obtained from a deep averaging network encoder pretrained on different

billing code prediction tasks.

AUC: area under the curve; CUIs: concept unique identifiers; DAN: deep

averaging network; ROC: receiver-operating characteristic curve; SVM: sup-

port vector machine.

Table 3. Comparison of different input representations on the per-

formance of an SVM classifier on alcohol misuse data.

Encoder Pretraining targets SVM input ROC AUC

none none bag-of-CUIs 0.714

DAN all billing codes encoder hidden layer 0.725

DAN all billing codes encoder hidden layer þ
bag-of- CUIs

0.723

DAN alcohol-specific

billing codes

encoder hidden layer 0.730

Bag-of-CUIs input (baseline) is compared with the performance of the in-

put obtained from a deep averaging network encoder pretrained on different

billing code prediction tasks.

AUC: area under the curve; CUIs: concept unique identifiers; ROC: re-

ceiver-operating characteristic curve.
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billing codes often describe existing diagnoses, it is possible that the

tasks we describe here are successful because they have strong rela-

tions to several billing codes. In that case, one might expect that

classifiers for nondisease target variables, such as smoking status or

specific symptoms, may not benefit from the pretraining regimen de-

scribed here. In such cases it may be necessary to augment the source

of supervision with other types of labels. Future work will explore

potential limitations of billing codes as a source of supervision and

additional feasible sources of supervision; for example, combining

billing code and language modeling objectives could lead to a truly

universal clinical text encoder.
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