Skip to main content
. 2019 Jul 1;26(11):1286–1296. doi: 10.1093/jamia/ocz089

Table 4.

Classification performance of models with various implementations

Category Implementation Accuracy Precision F1 Cohen’s kappa
Graph based (baseline) LP 0.734 ± 0.0175 0.763 ± 0.0479 0.674 ± 0.0269 0.642 ± 0.0241
Randomized LP (20) 0.652 ± 0.0465 0.709 ± 0.0277 0.584 ± 0.0453 0.528 ± 0.0741
Randomized LP (90) 0.686 ± 0.0318 0.702 ± 0.0519 0.624 ± 0.0394 0.577 ± 0.0477
Model 2 (supervised) Network depth 16 0.679 ± 0.0375 0.67 ± 0.0623 0.652 ± 0.046 0.6 ± 0.0491
Network depth 32 0.683 ± 0.0368 0.671 ± 0.0661 0.656 ± 0.0458 0.6 ± 0.0486
Network depth 64 0.667 ± 0.0431 0.628 ± 0.0784 0.626 ± 0.0554 0.572 ± 0.0601
Model 3 (supervised) Network depth 16 0.787 ± 0.0369 0.804 ± 0.0376 0.774 ± 0.0354 0.733 ± 0.0439
Network depth 32 0.808 ± 0.045 0.819 ± 0.034 0.798 ± 0.0448 0.761 ± 0.052
Network depth 64 0.816 ± 0.0384 0.822 ± 0.0446 0.807 ± 0.0425 0.768 ± 0.0498
Model 4 (semisupervised) Network depth 16 0.784 ± 0.046 0.789 ± 0.0419 0.776 ± 0.0458 0.731 ± 0.0542
Network depth 32a 0.824 ± 0.0329 0.832 ± 0.0302 0.816 ± 0.0342 0.781 ± 0.04
Network depth 64 0.815 ± 0.0252 0.814 ± 0.0265 0.804 ± 0.0262 0.768 ± 0.0306

LP = label spreading.

a

Best performing model.