
Autosomal dominant optic atrophy (DOA; OMIM 
165500) is one of the major causes of inherited optic nerve 
disorders and is characterized by a slow, progressive reduc-
tion of visual acuity, by central visual field defects, and by 
the temporal pallor of the optic disc. Abnormalities in the 
OPA1 gene (Gene ID: 165500; OMIM 605290) are a major 
cause of DOA [1-4], and mutations in the OPA1 gene account 
for 32.1–89.5% of all DOA cases [3,5-10]. OPA1 encodes a 

dynamin-related GTPase that is located in the mitochondrial 
intermembrane space, and it plays a key role in controlling 
the balance of mitochondrial fusion and fission. To date, 
more than 200 OPA1 variants have been reported to cause 
DOA [11], including missense mutations, nonsense mutations, 
insertion/deletion, splice site mutations, and large-scale OPA1 
rearrangements [5-9,12,13].

The severity of DOA varies considerably, and the visual 
acuity ranges from normal to hand motion [10,14]. This vari-
ability is observed both within and among families. It should 
be noted that there is a subset of patients with DOA who 
have extraocular symptoms, such as, auditory neuropathy, 
ataxia, myopathy, neuropathy, and progressive external 
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Purpose: This study aimed to describe the genetic and clinical characteristics of four Japanese patients with autosomal 
dominant optic atrophy (DOA) accompanied by auditory neuropathy and other systemic complications (i.e., DOA-plus 
disease).
Methods: Four patients from four independent families underwent comprehensive ophthalmic and auditory examina-
tions and were diagnosed with DOA-plus disease. The disease-causing gene variants in the OPA1 gene were identified 
by direct sequencing. The genetic and clinical data of 48 DOA patients without systemic complications—that is, with 
simple DOA—were compared to those of DOA-plus patients.
Results: DOA-plus patients noticed a decrease in vision before the age of 14 and hearing impairment 3 to 13 years after 
the development of visual symptoms. Two patients had progressive external ophthalmoplegia, and one patient had ves-
tibular dysfunction and ataxia. The DOA-plus phenotypes accounted for 13.3% (4/30) of the families with the OPA1 gene 
mutations. Each DOA-plus patient harbored one of the monoallelic mutations in the OPA1 gene: c.1334G>A, p.R445H, 
c.1618A>C, p.T540P, and c.892A>C, p.S298R. Missense mutations accounted for 100% (4/4) of the DOA-plus families 
and only 11.5% (3/26) of the families with simple DOA.
Conclusions: All the patients with the DOA-plus phenotype carried one of the missense mutations in the OPA1 gene. 
They all had typical ocular symptoms and signs of DOA in their first or second decade, and other systemic complica-
tions—such as auditory neuropathy, vestibular dysfunction, and ataxia—followed the ocular symptoms. We should 
consider the occurrence of extraocular complications in cases with DOA, especially when they carry the missense 
mutations in the OPA1 gene.
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ophthalmoplegia (PEO) [15,16]. Yu-Wai-Man et al. [17] 
reported that patients with extraocular features accounted for 
17.2% of all OPA1 mutation carriers in the British population. 
They named this ocular condition the “DOA-plus” phenotype 
[17]. The majority of cases involving the DOA-plus pheno-
type were associated with missense mutations affecting 
the GTPase domain, and the most common extraocular 
manifestation was auditory neuropathy [17,18]. Auditory 
neuropathy is a type of hearing disorder that was reported by 
Kaga [19,20] and Starr [21], and it is characterized by mild to 
moderate hearing loss, poor speech discrimination, normal 
otoacoustic emission, and the absence or severe deterioration 
of the auditory brainstem response (ABR). Since the initial 
discovery of a case with DOA accompanied by hearing 
loss by Shimizu et al. [15] and the association of DOA with 
auditory neuropathy by Amati-Bonneau et al. [16], many 
cases with OPA1 mutations have been reported to have the 

DOA-plus phenotype in the European population. However, 
there have been few reports of DOA-plus disease in the 
Japanese and Asian populations, and little is known about its 
natural course and clinical features. Thus, the purpose of this 
study was to determine the genotypes and clinical courses 
of both the ocular and extraocular signs and symptoms of 
four Asian patients from four independent families with the 
DOA-plus phenotype.

METHODS

Four patients (cases 1, 2, 3, and 4; Figure 1) from four 
independent families who were diagnosed with DOA were 
examined at the National Institute of Sensory Organs (NISO). 
The genetic data of Case 2 [15,22] and Case 3 [23] and part 
of ophthalmological data of Case 2 [15] were reported by 
co-authors.

Figure 1. Pedigrees of four families affected by dominant optic atrophy (DOA)-plus disease. The proband is indicated by an arrow. Wt refers 
to the wild-type of the OPA1 gene.

http://www.molvis.org/molvis/v25/559
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To investigate the genotype-phenotype correlation of 
DOA, the genetic and clinical features of the four cases were 
compared with those of forty-eight DOA patients (27 men and 
21 women) from twenty-six families without systemic disor-
ders, defined as ‘simple DOA’. Patients with Simple DOA 
were recruited from the National Institute of Sensory Organs 
(NISO) and the Jikei University between January 2003 and 
September 2017. For the comparison of visual acuity between 
DOA-plus and age-matched simple DOA patients, data of the 
right eyes were used.

The procedures used were approved by the ethics 
committees of each institution, and all procedures were 
performed in accordance with the principles of the Declara-
tion of Helsinki. Informed consent was obtained from all the 
patients for all the procedures.

Clinical assessments: Detailed medical histories were 
obtained, and comprehensive ophthalmological examinations 
were performed on all patients. The ophthalmological assess-
ments included measurements of the best-corrected visual 
acuity (BCVA), visual field tests using Goldmann perimetry, 
ophthalmoscopic examinations through dilated pupils, color 
fundus photography, optical coherence tomography (OCT), 
and pattern-reversal visual evoked potentials (VEPs). The 
OCT images were obtained with a spectral domain OCT 
device (Cirrus HD-OCT, version 5.1; Carl Zeiss Meditec, 
Dublin, CA), and pattern VEPs were elicited by 1.0° and 
0.25° checks, in accordance with the standard protocol of the 
International Society for Clinical Electrophysiology of Vision 
(ISCEV; LE4000; Tomey Corporation, Aichi, Japan) [24].

The auditory assessments included pure-tone audiometry 
(125–8000 Hz), speech audiometry (audiometer AA-75; Rion 
Co., Tokyo, Japan), distortion product otoacoustic emission 
(DPOAE) testing using the ILO-92 system (Otodynamics 
Ltd., Hatfield, UK), and ABR using the Neuropack system 
(Nihon Kohden Corp., Tokyo, Japan) [22]. The DPOAE test 
is an examination of the outer hair cell function, and patients 
with auditory neuropathy are characterized as having normal 
DPOAE.

Genetic examinations: The genetic analysis of the OPA1 gene 
in cases 1, 3, and 4 was done by T. Matsunaga and that of Case 
2 by S. Shimizu (Table 1). The procedures used for the genetic 
analysis have previously been described in detail [15,23]. In 
brief, genomic DNA was extracted from leukocytes of the 
peripheral blood, and exons 1 through 30 were amplified and 
directly sequenced. The genetic analyses were performed on 
both the proband and the parents in cases 1 and 3, on the 
proband and his father in Case 2, and on only the proband 
in Case 4 (Figure 1). For patients with simple DOA, the 
sequence of the OPA1 gene was performed separately by Jikei 

University (Appendix 1). The screening of OPA1 variants was 
performed using Sanger sequencing for the coding region of 
the OPA1 gene [25], the multiplex ligation-dependent probe 
amplification method [12], or target gene panel sequencing 
using a modification of a previously reported method [26] or 
under the same conditions as previously reported [27]. The 
modifications involved the use of newly designed amplicon-
specific primer sequences for the OPA1 gene (Appendix 1) 
and the use of the Illumina MiSeq platform (San Diego, CA) 
instead of the 454 Genome Sequencer FLX system (Roche 
Diagnostics Corp., Basel, Switzerland). The confirmation 
and segregation of identified OPA1 variants were performed 
using Sanger sequencing. The nomenclature of the variants 
was based on the OPA1 cDNA sequence of NM_015560.2.

RESULTS

Case 1: The proband was a 24-year-old man who noticed a 
decrease in his vision bilaterally at age 14 and consulted a 
local ophthalmologist (Table 2). No ocular abnormalities were 
detected to explain his decreased vision. His vision slowly 
deteriorated until age 20 and became stable thereafter. He 
noticed hearing impairments at age 17 and was diagnosed 
with auditory neuropathy at age 21 at a local hospital. He 
was referred to the NISO for genetic examination at age 23, 
and a heterozygous mutation of the OPA1 gene (c.1334G>A, 
p.R445H) was found (Table 1). He had no family history of 
either visual or auditory impairments (Figure 1). A segrega-
tion analysis of this family revealed that the proband in Case 
1 had a de novo mutation.

Ophthalmological examinations at age 24 showed that 
his decimal BCVA was 0.3 oculus dexter (OD) and 0.5 oculus 
sinister (OS) (Table 3). The pupillary light reflexes were 
normal in both eyes, but a relative afferent pupillary defect 
(RAPD) was present in the right eye. The eye positions and 
eye movements were normal. There was no ptosis in either 
eye. Goldmann visual field examinations showed central and 
paracentral scotomas and the enlargement of Marriott’s blind 
spot bilaterally (Figure 2). The color discrimination tests, 
which included the Ishihara test, Tokyo Medical College test, 
and Panel-D 15, were normal. Ophthalmoscopic examinations 
showed temporal pallor of the optic disc bilaterally (Figure 
3). OCT showed a thinning of the nerve fiber layer (NFL) 
and ganglion cell layer (GCL) between the optic disc and the 
fovea, but micro retinal cysts were not observed (Figure 4). 
The N75 and P100 components of the pattern-reversal VEPs 
were extinguished in both eyes.

Auditory examinations showed a bilateral sensorineural 
hearing loss of approximately 20–40 dB HL by pure-tone 
audiometry (Table 4). The maximum speech discrimination 
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scores were 45% in right ear and 20% in left ear. ABRs were 
absent at 100 dB nHL stimulation bilaterally, but DPOAEs 
were normal in both ears. Cochlear implant was undertaken 
in his left ear at age 26, and his ability to participate in audi-
tory–verbal communications improved significantly.

Case 2: The proband was a 33-year-old man who noticed a 
decrease in his vision bilaterally at age 10 and consulted a 
local ophthalmologist (Table 2). The ocular examinations 
found no ocular abnormalities to explain his reduced vision. 
He noticed hearing impairment at age 15. At age 16, bilateral 
optic nerve abnormality was detected at a local hospital, and 
his BCVA was 0.4 OU. Genetic analysis for Leber heredi-
tary optic neuropathy was performed, but no mutation was 
detected in the mitochondrial gene. At age 17, he noticed 
an unsteadiness while riding a bicycle due to vestibular 
dysfunction. His vision gradually deteriorated, and he visited 
the Teikyo University Hospital at age 19, where genetic 
tests revealed a heterozygous mutation in the OPA1 gene 
(c.1334G>A, p.R445H) [15] (Table 1). He was later diagnosed 

with auditory neuropathy at age 28 at Keio University. At the 
same time, he noticed difficulty in walking due to weakness 
in his lower extremities. He had no family history of either 
visual or auditory impairment (Figure 1).

Ophthalmological examinations at age 33 showed that 
his decimal BCVA was 0.2 OD and 0.09 OS (Table 3). The 
pupillary light reflexes were normal in both eyes. The eye 
positions were normal, but there was a limitation of elevation, 
depression, and abduction in both eyes. There was no ptosis 
in either eye.

Goldmann visual field testing revealed central and para-
central scotomas, and the enlargement of Marriott’s blind 
spots bilaterally (Figure 2). The color discrimination tests, 
which included the Ishihara test, Tokyo Medical College test, 
and Panel-D 15, were normal. OCT showed a thinning of the 
NFL and GCL between the optic disc and the fovea, but micro 
retinal cysts were not observed (Figure 4). The N75 and P100 
components of the pattern-reversal VEPs were extinguished 
in both eyes.

Table 2. General clinical features of four patients with DOA-plus disease.

Case Variant ID Age Sex F a m i l y 
history

Clinical features

Optic 
atrophy

Auditory 
neuropathy

Vestibular 
dysfunction

Ataxia /
Myopathy/ 

Neuropathy

Progressive 
external 

ophthalmoplegia
1 V1 24 M - + + - - -
2 V1 33 M - + + + + +
3 V2 31 F - + + - - +
4 V3 37 M + + + - - -

Table 3. Ocular findings of four patients with DOA-plus phenotype.

Case

Age 
of 
onset

Chief 
complaint

Best 
corrected 
decimal VA

Goldmann 
perimetry

Funduscopic 
appearance OCT Pattern VEP

1 14
Decreased 
VA (0.3)/(0.5)

Cent ra l  and 
p a r a c e n t r a l 
scotoma, OU

Temporal pallor of 
optic disc, OU

Thinning of NFL and 
GCL in the papillomac-
ular bundle, OU

E x t i n g u i s h e d 
responses of N75 and 
P100, OU

2 10 Decreased 
VA (0.2)/(0.09)

Cent ra l  and 
p a r a c e n t r a l 
scotoma, OU 
Enlargement of 
blind spot, OU

Temporal pallor of 
optic disc, OU

Thinning of NFL and 
GCL in the papillomac-
ular bundle, OU

Severely reduced 
responses of N75 and 
P100, OU

3 3 Decreased 
VA (0.03)/(0.03) Large central 

scotoma, OU

Mo d e r a t e  a n d 
diffuse pallor of 
optic disc, OU

Thinning of NFL and 
GCL in the papillomac-
ular bundle, OU

E x t i n g u i s h e d 
responses of N75 and 
P100, OU

4 6 Decreased 
VA (0.04)/(0.03)

Cent ra l  and 
p a r a c e n t r a l 
scotoma, OU

Mo d e r a t e  a n d 
diffuse pallor of 
optic disc, OU

Thinning of NFL and 
GCL in the papillomac-
ular bundle, OU

E x t i n g u i s h e d 
responses of N75 and 
P100, OU

VA; visual acuity, OCT; optical coherence tomography, VEP; visually evoked potential, NFL; nerve fiber layer, GCL; ganglion cell layer

http://www.molvis.org/molvis/v25/559


Molecular Vision 2019; 25:559-573 <http://www.molvis.org/molvis/v25/559> © 2019 Molecular Vision 

564

A bilateral sensorineural hearing loss of approximately 
60 dB HL was found by pure-tone audiometry (Table 4). The 
maximum speech discrimination scores were 20% in both 
ears. ABRs were absent at 100 dB nHL stimulation bilater-
ally, but DPOAEs were normal at all frequencies tested in 
both ears.

Case 3: The proband was a 30-year-old woman. Her poor 
visual acuity was detected at age 3, and a local ophthalmolo-
gist diagnosed her with bilateral optic atrophy of unknown 
origin (Table 2). She noticed hearing impairment at age 16. 
She was referred to the NISO at age 28 and was diagnosed 
with auditory neuropathy. Genetic tests revealed a heterozy-
gous mutation in the OPA1 gene (c.1618A>C, p.T540P) [23] 

Figure 2. Results of Goldmann visual field tests. Central and paracentral scotomas, and the enlargement of Marriott’s blind spots were 
present in all DOA-plus cases.

http://www.molvis.org/molvis/v25/559
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(Table 1). She had no family history of either visual or audi-
tory impairments (Figure 1). A segregation analysis of her 
family revealed that Case 3 had a de novo mutation.

Ophthalmological examinations at age 31 showed that 
her BCVA was 0.03 in both eyes (Table 3). The pupillary light 
reflexes were normal in both eyes. Horizontal nystagmus 
was present in both eyes, and a limitation of adduction was 

observed in the left eye. A mild ptosis of the right eye was 
present, with a margin-to-reflex distance of 1.0 mm in the 
right eye and 2.5 mm in the left eye.

Goldmann visual field tests revealed a large central 
scotoma bilaterally (Figure 2). She could not read any plates 
of either the Ishihara test or Tokyo Medical College test. OCT 
showed a thinning of the NFL and GCL between the optic 

Figure 3. Fundus photographs of the four DOA-plus patients with enlarged optic discs in the left columns. Diffuse or temporal pallor of the 
optic disc was present in all cases.

http://www.molvis.org/molvis/v25/559
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Figure 4. Optical coherence tomographic (OCT) images along the horizontal meridian. An example of a normal 19-year-old woman is shown 
at the bottom. In all cases, a thinning of the nerve fiber layer (NFL) and ganglion cell layer (GCL) was observed between the optic disc and 
the fovea (asterisk).

Table 4. Auditory findings of four patients with DOA-plus phenotype.

Case
Age of 
onset

Chief 
complaint Audiometric tests

Maximum 
speech discrimi-
nation scores DPOAE ABR

1 17
Hearing 
impairment

A bilateral sensorineural hearing loss of approxi-
mately 20–40 dB

45% in right ear, 
20% in left ear Normal

Absent 
bilaterally

2 15 Hearing 
impairment

A bilateral sensorineural hearing loss of approxi-
mately 60 dB 20% in both ears Normal Absent 

bilaterally

3 16 Hearing 
impairment

A bilateral sensorineural hearing loss of approxi-
mately 50 dB in right, and 40 dB in left

40% in right ear, 
30% in left ear Normal Absent 

bilaterally

4 16 Hearing 
impairment

A bilateral sensorineural hearing loss of approxi-
mately 70 dB in right, and 60 dB in left 0% in both ears Normal Absent 

bilaterally

DPOAE; distortion product otoacoustic emission, ABR; auditory brainstem responses
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disc and the fovea, but micro retinal cysts were not observed 
(Figure 3). The N75 and P100 components of the pattern-
reversal VEPs were extinguished in both eyes.

A bilateral sensorineural hearing loss of approximately 
50 dB HL in the right ear and 40 dB HL in the left ear was 
found by pure-tone audiometry (Table 4). The maximum 
speech discrimination scores were 40% in the right ear and 
30% in the left ear. ABRs were absent at 95 dB nHL stimula-
tion bilaterally, but DPOAEs were normal in both ears.

Case 4: The proband was a 37-year-old man whose low 
visual acuity was detected at age 6, and a local ophthalmolo-
gist diagnosed him with bilateral optic atrophy of unknown 
origin (Table 2). He noticed hearing impairment at age 16, 
and he was later diagnosed with auditory neuropathy at age 
31. Genetic tests revealed a novel heterozygous mutation in 
the OPA1 gene (c.892A>C, p.S298R; Table 1). His father had 
both visual and hearing impairments before age 20, but he 
died at age 68 without undergoing detailed ophthalmological 
examination (Figure 1).

Ophthalmological examinations at age 37 showed that 
the patient’s BCVA was 0.04 OD and 0.03 OS (Table 3). The 
pupillary light reflexes were normal in both eyes. He had 
exotropia in his right eye, but the eye movements were normal 
in both eyes. There was no ptosis in either eye.

Goldmann visual field tests revealed central and para-
central scotomas bilaterally (Figure 2). He could not detect 
the characters of any of the Ishihara test plates. OCT showed 
a thinning of the NFL and GCL between the optic disc and 
the fovea, but micro retinal cysts were not observed (Figure 
3). The N75 and P100 components of the pattern-reversal 
VEPs were extinguished.

A bilateral sensorineural hearing loss of approximately 
70 dB HL in the right ear and 60 dB HL in the left ear was 
found by pure-tone audiometry (Table 4). The maximum 
speech discrimination scores were 0% in both ears. ABRs 
were absent at 100  dB nHL stimulation bilaterally, but 
DPOAEs were normal in both ears. Cochlear implant 
was undertaken in his left ear at age 37, and his ability to 
participate in auditory–verbal communications improved 
significantly.

Comparison between cases with and without systemic disor-
ders: The clinical and genetic records of 48 cases from 26 
families with simple DOA were reviewed and compared with 
the four DOA-plus cases [12,13,28]. The mean ± standard 
deviation (SD) age at the time of the examination of DOA-
plus disease was 31.3 ± 3.9 years and of simple DOA was 37.3 
± 17.7. All the cases had heterozygous pathogenic variants in 

the OPA1 gene, and the variants are listed in Appendix 2. All 
the DOA-plus cases had missense mutations, whereas splice 
site mutations were most common in simple DOA. Missense 
mutations accounted for only 11.5% (3/26) of the simple DOA 
cases.

The BCVA of the four DOA-plus cases were compared 
to age-matched simple DOA cases who were no older than 
50 years (38/48 cases). The mean age ± SD of the DOA-plus 
cases was 31.3 ± 3.9 years and of the simple DOA cases was 
30.4 ± 12.7 years (p = 0.40, Student t test). The mean BCVA 
of the four eyes of the DOA-plus cases was 1.04 ± 0.43 loga-
rithm of the Minimum Angle of Resolution (LogMAR) units 
and that for the 38 eyes of the simple DOA cases was 0.55 ± 
0.34 LogMAR units (p = 0.07, Student t test).

DISCUSSION

DOA is one of the major causes of inherited optic nerve 
disorders, and even before the major genetic cause of DOA 
was determined to be the OPA1 gene [1,2], a subset of patients 
with DOA had been shown to have extraocular symptoms 
such as hearing loss [14,29-32]. The OPA1 gene was first 
considered to be causative of DOA with extraocular symp-
toms by Shimizu [15] and Amati-Bonneau [16], who both 
showed that a missense mutation in the GTPase domain, 
R445H, was causative of optic neuropathy and hearing loss. 
Since then, several cases with this complex phenotype have 
been detected, mainly in the European population [17,18,33-
38]. Yu-Wai-Man et al. reported their findings on a large 
multi-center study of 104 DOA patients from 45 independent 
families. They presented a detailed DOA-plus phenotype, 
which was associated with varying combinations of hearing 
loss, ataxia, myopathy, peripheral neuropathy, and PEO [17].

The OPA1 protein is located within the inner mitochon-
drial membrane and is critical for the fusion of mitochondria. 
Pathogenic OPA1 mutations result in marked mitochondrial 
network fragmentation [18], which then decreases the stability 
of the mitochondrial respiratory chain complexes [35,39,40]. 
OPA1 mutations also cause mitochondrial genome instability, 
which leads to the accumulation of multiple mtDNA dele-
tions in the affected tissues [33,41]. Patients with DOA-plus 
phenotypes have significantly higher levels of these somatic 
mtDNA abnormalities, and these abnormalities may lead to 
the development of the more severe neuromuscular compli-
cations [17]. However, the variations in the manifestations 
of DOA-plus patients indicate the existence of other factors 
modulating the changes induced by the primary OPA1 muta-
tion. Although very rare, optic atrophy and auditory neurop-
athy are known to co-occur through other genetic causes, 
such as autosomal recessive optic atrophy and auditory 
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neuropathy with mutations of the TMEM126A gene (Gene ID: 
612989; OMIM 612988) [42].

Ocular signs and symptoms: The decimal BCVA of the four 
DOA-plus cases varied from 0.03 (Case 3, OU) to 0.5 (Case 
1, OS), and the age of onset varied from 3 years (Case 3) 
to 14 years (Case 1). It is well known that the ocular signs 
and symptoms of DOA vary considerably, and the variations 
observed in the DOA-plus cases are comparable to those of 
simple DOA. In all the DOA-plus cases, ophthalmoscopy 
showed temporal or diffuse pallor of the optic discs, OCT 
showed a thinning of the NFL and GCL in the papillomacular 
bundle, and pattern-reversal VEPs were severely reduced or 
extinguished. Microcystic changes in the inner nuclear layer 
were found in some cases with DOA [43], but our cases with 
DOA-plus did not show any cystic changes. In addition, the 
BCVA of the DOA-plus cases were not significantly different 
from that of age-matched simple DOA cases. These findings 
indicate that the visual signs and symptoms do not signifi-
cantly differ between DOA-plus and simple DOA cases, at 
least until the fourth decade of life. However, the multicenter 
study by Yu-Wai-Man et al. indicated that individuals with 
DOA-plus phenotypes had significantly worse vision than did 
those with simple DOA phenotypes [17]. In our four cases of 
DOA-plus, there was a tendency to have lower BCVAs, and it 
is possible that statistical significance may arise if the number 
of DOA-plus patients is increased.

Auditory signs and symptoms: Among the extraocular disor-
ders other than optic neuropathy caused by the OPA1 gene 
mutations, sensorineural hearing impairment was reported 
in 62.5% of the OPA1 mutation carriers and was the second 
most frequent major clinical feature in DOA-plus patients 
[17]. Auditory neuropathy is a hearing disorder character-
ized by the absence or severe deterioration of the ABR in the 
presence of normal cochlear outer hair cell function, as deter-
mined by the DPOAE test [19-21]. It has been reported that in 
42% of patients with auditory neuropathy, it is associated with 
hereditary neurologic disorders, while in 10% of patients, it is 
associated with toxic, metabolic, immunological, and infec-
tious causes. The cause is unknown in 48% of patients [44].

Several genes are involved in the pathology of auditory 
neuropathy, including OPA1 [18,22] and those encoding 
DIAPH3 (Gene ID: 609129; OMIM 614567) and OTOF (Gene 
ID: 601071; OMIM 603681) [45,46]. Mutations in OTOF is 
the most common cause in Japanese patients with congenital 
auditory neuropathy [47]. In patients who have the p.R445H 
mutation in the OPA1 gene, progressive hearing impairment 
begins in childhood, and audiological examinations show 
features of auditory neuropathy [18,44].

All four of our cases had bilateral hearing loss in their 
second decade of life, and they presented with features typical 
of auditory neuropathy due to the OPA1 gene mutations 
(Table 4). Two patients (cases 1 and 4) underwent cochlear 
implant and recovered the ability to engage in auditory–verbal 
communication. It is noteworthy that Case 2 noticed not only 
hearing loss but also unsteadiness while riding a bicycle at the 
age of 17. Although he did not clearly complain of a balance 
dysfunction, vestibular function tests revealed that Case 2 
had impaired vestibular function accompanied by auditory 
neuropathy [22].

Ataxia, myopathy, neuropathy, and PEO: PEO was reported 
in 46.2% of the patients who were OPA1 mutation carriers 
and was the third most common major clinical feature in 
DOA-plus patients [17]. Among our four patients, a limita-
tion of elevation, depression, and abduction in both eyes was 
observed in Case 2, and horizontal nystagmus in both eyes 
and a limitation of adduction in the left eye were observed in 
Case 3 (Table 2). Case 3 also had mild ptosis of the right eye. 
These signs are thought to be part of PEO; however, neither 
patient noticed any disabilities related to these disorders and 
thus, the age of onset was not clear. Case 2 noticed difficulty 
in walking due to weakness of the lower extremities at age 
28. It is likely that this was due to myopathy or neuropathy 
related to the OPA1 mutation, but detailed examination by a 
neurologist had not been performed on this patient.

Complications during natural course of disease process: 
Yu-Wai-Man et al. reported that in 104 DOA-plus patients 
from 45 independent families, optic nerve dysfunction 
was present in 85.6%, deafness in 62.5%, PEO in 46.2%, 
myopathy in 35.6%, ataxia in 21.8%, and neuropathy in 21.8% 
[17,35,37]. They reported that optic nerve dysfunction was 
usually detected in the first or second decade of life, followed 
by auditory dysfunction in the second or third decade. Other 
signs, such as ataxia, myopathy, neuropathy, and PEO devel-
oped after the third decade of life.

In our four cases, optic nerve dysfunction occurred in 
the first to second decade of life, and auditory dysfunction 
occurred later in the second decade of life (Figure 5). In Case 
2, myopathy or neuropathy occurred in the third decade. 
Although the onset of PEO was uncertain, the course of 
complications was comparable to that observed in the Euro-
pean population [17].

Genotypical comparisons between DOA-plus and simple 
DOA: The majority of the reported mutations in the OPA1 
gene resulted in a loss of function, and haploinsufficiency is 
a major disease mechanism for DOA pathogenesis [5,7,11,48]. 
However, missense mutations within the GTPase domain 
have been reported to cause DOA via a dominant negative 
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effect [33], and DOA patients with missense mutations exhibit 
more severe phenotypes than those with deletion/trunca-
tion mutations associated with haploinsufficiency [17,49]. 
There is a two- to threefold increase in the risk of having 
DOA-plus features when missense mutations are located 
within the GTPase domain [17]. In our cohort, the cases with 

DOA-plus phenotypes had missense mutations in either the 
GTPase domain (cases 1, 2, and 4) or the dynamin central 
domain (Case 3). As for the type of variant, missense muta-
tions accounted for 100% (4/4) in DOA-plus cases but for 
only 11.5% (3/26) in simple DOA cases (Appendix 2). The 
p.R445H-mutation in cases 1 and 2 is most commonly found 

Figure 5. Progress of ocular and extraocular signs in patients with the DOA-plus phenotype. The horizontal axis shows age. Visual distur-
bance preceded auditory disturbance in all cases. In Case 2, the symptoms of vestibular dysfunction and ataxia followed those of auditory 
disturbances. Cases 2 and 3 had PEO, but we did not show it in the figure because the onset of PEO was not clear in either patient.
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in the DOA-plus phenotype. This mutation may impair GTP 
hydrolysis and interfere with nucleotide binding and affinity, 
which would then affect the hydrolysis rate of the GTPase 
domain [33]. Namba et al. [23] demonstrated, using molecular 
modeling, that the p.T540P mutation in Case 3 decreased the 
GTP binding ability because of the destabilization of loop-14, 
which caused a decrease in GTPase activity [23].

Prevalence of DOA-plus among all patients with OPA1 
mutations: Yu-Wai-Man et al. estimated that the prevalence 
of DOA-plus patients among all OPA1 mutation carriers 
was 17.2% in the Northern England population [17]. Simi-
larly, Ferre et al. [11] estimated it to be 10% in the French 
and Spanish populations [11]. In our cohort, the DOA-plus 
families accounted for 13.3% (4/30) of all the families with 
OPA1 gene mutations.

According to the locus-specific database of OPA1 muta-
tions compiled by Ferre et al., 27% (55/204) of OPA1 muta-
tions were missense mutations [11,48], whereas missense 
mutations accounted for only 17.5% (7/30) of families in our 
total cohort (Table 1 and Appendix  2). The difference in the 
incidence of DOA-plus may arise from genotypical char-
acteristics of the Japanese population; however, the size of 
our cohort was small, making it difficult to draw any strong 
conclusions.

Biallelic mutations in the OPA1 gene are known to 
cause Behr syndrome, which is characterized by early-onset 
optic atrophy accompanied by spinocerebellar degeneration 
resulting in ataxia, pyramidal signs, peripheral neuropathy, 
and developmental delay [50,51]. This disorder is clinically 
heterogeneous, and our cases also showed clinical features 
common with autosomal recessive Behr syndrome. In our 
cohort, however, none of either the DOA-plus or simple DOA 
patients had biallelic pathogenic variants in the OPA1 gene.

There are limitations in our study. First, the total number 
of DOA patients was 52 from 30 families, meaning it is not 
a large enough sample from which to compare genetic and 
clinical features among different ethnicities. Second, the 
onset of extraocular complications was unclear in some 
cases, even for the patients themselves, and it was difficult 
to conclusively describe the natural courses of the DOA-plus 
phenotype.

In conclusion, all the patients with the DOA-plus pheno-
type had a missense mutation in the OPA1 gene. These 
patients had the typical ocular signs and symptoms of DOA in 
their first or second decade of life, and other systemic compli-
cations, such as auditory neuropathy, vestibular dysfunction, 
and ataxia, followed the ocular symptoms. Considering that 
patients with auditory neuropathy are known to recover their 

auditory–verbal communications through the use of cochlear 
implant [52], we should carefully observe the occurrence of 
extraocular complications in cases with DOA especially when 
missense mutations in the OPA1 gene are present.

APPENDIX 1. SUPPLEMENTARY TABLE 1.

To access the data, click or select the words “Appendix 1.”

APPENDIX 2. SUPPLEMENTARY TABLE 2.

To access the data, click or select the words “Appendix 2.”
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