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Abstract

Machine learning techniques have been implemented to reveal brain features that distinguish people with autism
spectrum disorders (ASDs) from typically developing (TD) peers. However, it remains unknown whether differ-
ent neuroimaging modalities are equally informative for diagnostic classification. We combined anatomical mag-
netic resonance imaging (aMRI), diffusion weighted imaging (DWI), and functional connectivity MRI (fcMRI)
using conditional random forest (CRF) for supervised learning to compare how informative each modality was in
diagnostic classification. In-house data (N = 93) included 47 TD and 46 ASD participants, matched on age, mo-
tion, and nonverbal IQ. Four main analyses consistently indicated that fcMRI variables were significantly more
informative than anatomical variables from aMRI and DWI. This was found (1) when the top 100 variables from
CRF (run separately in each modality) were combined for multimodal CRF; (2) when only 19 top variables reach-
ing >67% accuracy in each modality were combined in multimodal CRF; and (3) when the large number of initial
variables (before dimension reduction) potentially biasing comparisons in favor of fcMRI was reduced using a
less granular region of interest scheme. Consistent superiority of fcMRI was even found (4) when 100 variables
per modality were randomly selected, removing any such potential bias. Greater informative value of functional
than anatomical modalities may relate to the nature of fcMRI data, reflecting more closely behavioral condition,
which is also the basis of diagnosis, whereas brain anatomy may be more reflective of neurodevelopmental history.
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Introduction

Autism Spectrum Disorders (ASDs) comprise a set of
developmental disorders diagnosed on the basis of socio-

communicative deficits, and restricted and repetitive behav-
iors (American Psychiatric Association, 2013). Increasing
prevalence, with recent estimates around 2% (Baio et al.,
2018), and the need for lifelong services for most affected
individuals make ASDs an urgent public health issue.
Although ASDs are considered neurological disorders, no di-
agnostic brain markers are available. Instead, diagnosis of
‘‘idiopathic’’ or nonsyndromic ASDs solely relies on behav-
ioral evaluations administered by clinicians. In the past de-
cade, much of the focus in the search for brain substrates
of ASDs has been directed at the systems level, with growing
understanding that no single brain region can account for the

observed complex patterns of behavioral anomalies in ASDs.
Numerous findings of atypical network connectivity have
been reported, but no consensus on crucial brain characteris-
tics has emerged (Hull et al., 2017).

In the absence of definitive findings from traditional
hypothesis-driven studies, several groups have begun to im-
plement data-driven and machine learning (ML) techniques
using different imaging modalities in an attempt to identify
brain features that may distinctly separate individuals with
ASDs from typically developing (TD) peers. Aside from a
few electrophysiological studies (Bosl et al., 2011; Jamal
et al., 2014; Stahl et al., 2012), most ML studies for diagnos-
tic prediction (ASD vs. TD) have used magnetic resonance
imaging (MRI). Early investigations by Ecker and col-
leagues (2010b) and Jiao and colleagues (2010) used ana-
tomical MRI (aMRI) data, such as regional cortical volume
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and thickness, and applied support vector machines (SVMs)
as well as functional trees and logistic model trees, achieving
diagnostic prediction accuracies near 85%. A more recent
study by Hazlett and colleagues (2017) in 106 infants consid-
ered ‘‘high-risk’’ (because they had an older sibling with
ASD) showed that atypical expansion of cortical surface
area in the first year of life strongly predicted an eventual
ASD diagnosis, using deep learning. While aMRI variables
have been used in other ML studies (Moradi et al., 2017;
Xiao et al., 2017), relatively few studies have included diffu-
sion weighted imaging (DWI) data. Two studies using frac-
tional anisotropy (FA) and mean diffusivity (MD) features
extracted from white matter regions of interest (ROIs) and
tracts in infants ( Jin et al., 2015) and school-age children
(Ingalhalikar et al., 2011) implemented SVM and reached
cross-validation accuracies up to 80%.

The majority of ML diagnostic classification studies have
adopted functional MRI (fMRI) mostly using functional con-
nectivity MRI (fcMRI) matrices from resting-state (rs) data
(Abraham et al., 2017; Bi et al., 2018; Emerson et al.,
2017; Iidaka, 2015; Nielsen et al., 2013). Among the very
first, Anderson and colleagues (2011), using a very large ma-
trix of over 26 million rs-fMRI connectivities, achieved an
overall classification accuracy of 79%, although accuracy
was lower (71%) in a small replication sample. More re-
cently, Yahata and colleagues (2016) reported an 85%
leave-one-out cross-validation (LOOCV) accuracy for a
small set of 16 functional connections, with 75% accuracy
in an independent validation sample from the Autism Brain
Imaging Data Exchange (ABIDE) (Di Martino et al., 2014).
Chen and colleagues (2015) and Jahedi and colleagues
(2017) achieved accuracies of 91% and 99% in out-of-bag
(OOB) validation samples, using random forest (RF) classifi-
ers including 100 and 308 features, respectively; however, ac-
curacies were *70% or lower in novel validation data sets.
Overall, findings suggest that classifiers do not perform
well in entirely new data sets (not included in training), prob-
ably due to clinical and neurobiological heterogeneity of the
disorder (Tordjman et al., 2018).

ML studies have, in the past, commonly relied on a single
imaging modality. However, information from fMRI or
aMRI on their own may not be rich enough for a robust clas-
sifier because distinctive features of ASDs may affect differ-
ent aspects of brain structure and function that can be
captured only by combined use of imaging modalities. Yet,
few multimodal ML studies of ASDs are currently available.

Libero and colleagues (2015) included aMRI, DWI, and
magnetic resonance spectroscopy data from small ASD and
TD samples, reaching 92% LOOCV accuracy with a decision
tree classifier. Ghiassian and colleagues (2016) used fMRI
and aMRI data from ABIDE, achieving more modest accura-
cies <70%. However, neither of these studies specifically ex-
amined whether imaging modalities were differentially
informative for diagnostic classification.

In the present study, we used a multimodal in-house data
set including aMRI, DWI, and fcMRI data to assess whether
different modalities contribute equally to diagnostic predic-
tion or whether some modalities may be more informative
than others.

Methods

Participants

We recruited 164 participants, aged 7–18 years, from the
community and local clinical collaborations. TD participants
did not have a family or personal history of any neurological,
developmental, or psychiatric disorders. ASD participants
had diagnoses verified using the Autism Diagnostic Observa-
tion Schedule (ADOS-2) (Lord et al., 2012) and the Autism
Diagnostic Interview-Revised (ADI-R) (Rutter et al., 2003).
A total of 71 participants had to be excluded: 23 for insuffi-
cient quality of DWI data, 12 for poor aMRI quality, 18 for
excessive motion during fMRI, 3 for failed or incomplete
data acquisition, 4 for not meeting full ASD diagnostic crite-
ria, and 5 for neurological or psychiatric findings that ex-
cluded them from the TD group. Six further participants
were removed for optimal group matching on age, motion,
and nonverbal IQ (Table 1). This yielded a final sample of
47 TD and 46 ASD participants.

The study was approved by the institutional review boards
of San Diego State University and University of California
San Diego. Assent and informed consent were obtained
from all participants and their caregivers.

Data acquisition

Imaging data were acquired at the University of California
San Diego Center for Functional Magnetic Resonance Imag-
ing (CFMRI) on a General Electric 3T Discovery MR750
scanner with an eight-channel head coil. Anatomical images
were collected using a standard fast spoiled gradient-echo
(FSPGR) T1-weighted sequence (172 slices; repetition time

Table 1. Participant Information

ASD, M – SD (range) TD, M – SD (range) p

N (female) 46 (7) 47 (9) 0.62
Age (years) 13.63 – 2.81 (7.40–17.98) 13.44 – 2.76 (8.02–17.70) 0.74
Handedness (right:left) 40:6 40:7 0.80
Nonverbal IQ 105.89 – 17.28 (53.00–140.00) 105.74 – 14.20 (62.00–137.00) 0.96
fMRI head motion (RMSD) 0.08 – 0.04 (0.02–0.22) 0.08 – 0.06 (0.02–0.30) 0.99
DWI average translation (mm) 0.83 – 0.23 (1.82–0.44) 0.86 – 0.25 (1.71–0.46) 0.58
DWI average rotation (rad; · 10�3) 4.65 – 1.91 (0.01–0.00) 4.64 – 1.91 (0.01–0.00) 0.96
DWI % bad slices 0.03 – 0.18 (1.22–0.00) 0.02 – 0.10 (0.67–0.00) 0.75
DWI average dropout score 1.07 – 0.17 (1.66–1.00) 1.05 – 0.12 (1.41–1.00) 0.40

ASD, autism spectrum disorder; DWI, diffusion weighted imaging; fMRI, functional magnetic resonance imaging; RMSD, root-mean-
squared-difference; SD, standard deviation; TD, typically developing.
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[TR] = 8.136 ms; echo time [TE] = 3.172 ms; field of view
[FOV] = 256 mm; 256 · 256 matrix; flip angle = 8�; 1 mm3

resolution). Diffusion weighted images were collected using
an echo planar imaging (EPI) pulse sequence, encoded
for 61 noncollinear diffusion directions at b = 1000 s/mm2,
and 1 at b = 0 s/mm2 (2D EPI; TR = 8500 ms; TE = 84.9 ms;
flip angle = 90�; FOV = 240 mm; 1.875 · 1.875 · 2 mm3 reso-
lution; 68 slices). Functional T2*-weighted images were
obtained using a single-shot gradient-recalled EPI sequence
of 180 whole-brain volumes (TR = 2000 ms; TE = 30 ms;
FOV = 220 mm; flip angle = 90�; 64 · 64 matrix; 3.4 mm3 res-
olution; 42 axial slices covering the whole brain). For all EPI
images, field maps were collected with the same spatial reso-
lution to correct for field inhomogeneities. For the 6-min
resting-state scan, participants were shown a white crosshair
centered on a black background and instructed to fixate on the
crosshair, relax, and to stay awake. Wakefulness and compli-
ance were tracked with in-bore video monitoring.

Imaging variables

The aMRI, DWI, and fMRI data were preprocessed using
standard procedures. Anatomical processing was performed
using FreeSurfer version 5.3.0 for semiautomated cortical re-
construction (Dale et al., 1999). Images with persistent inac-
curacies in surfaces or excessive artifacts, such as ghosting or
ringing, were excluded. The anatomical data yielded five
cortical features: cortical surface area, mean curvature, cor-
tical thickness, cortical volume, and a local gyrification
index (lGI). LGI, measured at each surface vertex using a
FreeSurfer add-on (Schaer et al., 2008), is a 3D surface-
based method that calculates the ratio of cortical surface
area within the sulcal folds relative to the amount of cortex on
the cortical hull. This calculation was made within a sphere
of 25 mm radius around the pial surface vertex, resulting in
an lGI value for each vertex on the mesh. This automated
reconstruction feature has been validated against histological
analysis and manual measurement and has been demon-
strated as a reliable measure of gyrification (Schaer et al.,
2008). The average value for the five cortical variables was
extracted from 34 ROIs per hemisphere (Desikan et al.,
2006), yielding 340 variables. Fifty-seven additional volume
measures, including subcortical structures, white matter re-
gions, and cerebrospinal fluid spaces, were added for a
total of 397 anatomical variables.

DWI images were processed using FMRIB Software
Library (FSL) (v5.0.8) (Smith et al., 2004) and AFNI
(v17.3.0; AFNI) (Cox, 1996). Susceptibility distortions were
corrected with field maps (FSLs prelude, fugue), and eddy
currents and motion with eddy correct. Diffusivity measures
were calculated using dtifit. The standard tract-based spatial
statistics (Smith et al., 2006) processing pipeline was followed
to produce spatially normalized metrics of diffusion (FA,
MD, axial diffusivity, radial diffusivity), not confounded
by partial volume effects or variations in regional volumes.
White matter skeletons were then overlaid with 48 white
matter regions provided by the Johns Hopkins University
atlas (Mori et al., 2005) to extract average values for each
of the 4 DWI metrics by region. These metrics contributed
192 features to the model.

FMRI data were processed and analyzed using methods
identical to those in the study by Chen and colleagues (2015),

using the AFNI and FSL software. The first five time points
were discarded to allow for T1 equilibration. The remaining
180 time points were motion, slice-time, and field-map cor-
rected. Functional data were aligned to anatomical images
using FMRIB’s Linear Image Regression Tool with six de-
grees of freedom, resampled to 3.0 mm isotropic voxels
using sinc interpolation, and standardized to the MNI-152
template, using the FSLs nonlinear registration tool, all in a
single transformation step. Data were spatially blurred to a
full-width at half-maximum of 6 mm. Time series were
band-pass filtered (0.008 < f < 0.08 Hz) using a second-order
Butterworth filter (Power et al., 2013; Satterthwaite et al.,
2013). In-scanner head motion was estimated using root-
mean-squared-difference calculated from six motion parame-
ters (three translational and three rotational). Average time
series from trimmed white matter and ventricles (from FSL
segmentation) as well as their first derivatives were regressed
from the data. All nuisance regressors (including motion re-
gressors) were band-pass filtered using the same procedures
as for blood oxygen level dependent (BOLD) time series
(Hallquist et al., 2013). A head motion threshold of 1 mm
was applied. Any time points above the threshold, and the
subsequent two time-points, were censored. If <10 time
points remained between two blocks of censored time series,
those time points were also removed.

We used two ROI schemes. First, we extracted time series
from 220 of the 264 ROIs in the study by Power and col-
leagues (2011), excluding 44 ROIs with missing signal in
>2 participants. Data from each participant were organized
in a 220 · 219 matrix of Fisher-transformed Pearson correla-
tion coefficients, with each cell in the matrix representing the
time series correlation (functional connectivity) between two
ROIs. There were thus 24,090 (220 · 219/2) unique features
for each participant. To reduce the very large difference be-
tween modalities in the number of features, a second set with
a smaller number of larger ROIs from the Harvard-Oxford
atlas (Desikan et al., 2006) was used in additional analyses.
Time series from 101 ROIs were extracted (excluding 35
ROIs with missing signal in >2 participants). Connectivity
matrices from this ROI scheme included 5050 (101 · 100/2)
unique features for each participant.

ML algorithm

Conditional random forest (CRF) is a variant of RF, which
employs an ensemble method often used for classification,
with the goal for a group of weak learners (decision trees) to
combine into a strong learner (the forest). In a built-in training
method, about 66% of the data are randomly chosen with re-
placement to create binary decision trees, and the remaining
data are used as testing set—termed OOB sample. Breiman
(2001) argued that OOB estimates can be used to estimate
the generalization error, eliminating the need for a set-aside
testing set. The same procedures are followed in CRF, except
for variables being chosen without replacement (see CRF
implementation section).

At each node of the tree, a certain fixed number, m, of pre-
dictor variables (typically the square root of the number of all
predictor variables) is randomly chosen for splitting. After
the forest is constructed, the majority vote determines the
classifications in terminal nodes of each tree and is then av-
eraged over all trees. Misclassifications, represented as the
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OOB error rate, are also averaged over all trees in the forest
and provide the level of accuracy of the model.

Variable importance measures for feature selection are
provided by RF and are attained by calculating the average
relative difference between OOB prediction accuracy before
and after the permutation of a variable. Strobl and colleagues
(2008) showed that RF variable importance is biased when
dealing with highly correlated and continuous variables—a
likely concern for MRI data. To address this bias in CRF,
variables are permuted in a conditional manner to measure
variable importance, which reflects the true impact of each
predictor variable more reliably (Strobl et al., 2008) and is
calculated as the average difference in prediction accuracy
or the mean decrease in accuracy (MDA).

CRF implementation

Four analyses using a supervised CRF algorithm were
implemented. In the first analysis, each modality was run in-
dependently, and the top 100 variables with the highest
MDAs from the first run (one dimension reduction) were se-
lected from each modality. CRF was then run on this com-
bined set of 300 variables and MDAs were recorded.

Analyses 2–3 were designed to reduce any potential bias
favoring the fcMRI modality, for which much larger numbers
of variables were available before feature selection. Analysis
2 permitted for more informative anatomical and DWI fea-
tures to be selected. Instead of using a predetermined number
of top variables from each modality (such as the top 100 var-
iables in analysis 1), the performance of each modality was
assessed during separate CRF runs for each modality, with ac-
curacy, sensitivity, and specificity rates determined for each
dimension reduction. The number of top variables for each
modality was determined based on a minimum 67% accuracy
criterion applied to each modality separately. Use of the top
19 variables fulfilled this criterion (>67% accuracy) in each
modality (regardless of modality-specific accuracy peaks;
Supplementary Fig. S1). CRF was run on the 57 variables
(combined from the 3 modalities), and MDAs were recorded.

The third analysis followed the same methods as analyses
1–2, but the number of initially included fcMRI variables
was reduced from 24,090 to 5,050 by using the Harvard-
Oxford ROI scheme, as described above. This served to re-
duce the large difference in number of variables between
fcMRI and the other two modalities. However, to further

eliminate potential bias favoring the fcMRI modality, an-
other analysis was implemented with no feature selection
and randomly chosen variables. In this fourth analysis, 100
variables were randomly chosen from each modality and
were combined to form a set of 300 variables. This set was
run through CRF, and all variables within the set that had
negative MDAs were removed. Also, only sets with an
OOB error rate <0.4 were kept for further analysis to ensure
that the retained sets performed above chance level. This
process was repeated 1 million times to ensure that all vari-
ables from each modality were being chosen.

Results

Analysis 1

This analysis used the top 100 variables from each modal-
ity (cf. Supplementary Fig. S1). For the anatomical modality,
white matter hypointensities and right parahippocampal
cortical thickness stood out as features with highest MDA.
However, MDAs were generally low (all <0.001). For the
DWI modality, MDA levels were overall slightly higher,
and one variable, FA of the right anterior limb of the internal
capsule, stood out with an MDA of 0.0054 that was ‡3 times
higher than for other DWI variables. Only 72 DWI variables
had positive MDAs, suggesting that all others were nonin-
formative. For the fcMRI modality, MDAs were generally
higher, with all top 100 variables in a range from 0.0049
to 0.0152. The top four variables, with MDA >0.01, in-
volved visual ROIs. Three were connections with ROIs in
the default mode network, and one was a connection within
the visual network. Visual and default mode networks also
predominated among the top 100 features, with 57.5% of
all ROIs participating in these connections (Supplementary
Fig. S2).

After combining the top 100 variables from each modality
(300 top variables) and applying the CRF algorithm, 93 of
the 100 most informative features belonged to the fcMRI
modality (Fig. 1A). The accuracy of this run was at 88.2%,
with 89.1% sensitivity and 87.2% specificity (Fig. 2).

Analysis 2

In this analysis, a smaller number of variables were selected
from each modality and the criterion applied was a prediction
accuracy of >67% when CRF was performed separately in each

FIG. 1. Pie chart showing mo-
dality distribution of the top 100
variables from analysis 1 (A) and
analysis 3a (B).
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modality. CRF results for dimension reduction are shown for
each modality in Supplementary Figure S3. For the anatomical
data set, the highest accuracy rate of 69.9% was achieved with
19 variables as well as 3 variables. The highest accuracy rate
for the DTI data set was at 71.0% with three variables. The
fcMRI data set reached peak accuracy of 93.5% with 424 fea-
tures. In all 3 modalities, the top 19 variables satisfied the cri-
terion of a minimum of 67% accuracy.

CRF combining the top 19 variables from each modality
yielded overall similar results to analysis 1. The accuracy
for these 57 variables was 92.5%, with 97.8% sensitivity
and 87.2% specificity (Fig. 2). The 19 most informative var-
iables with the highest MDAs belonged to the fcMRI modal-
ity, again predominated by connections with participation of
visual and default mode regions, which accounted for 65.8%
of all connectivity participations (Supplementary Figs. S4
and S5). Only a single DWI variable (FA of the right anterior
limb of the internal capsule) had an MDA >0.001.

Analysis 3

This analysis followed the same steps as the first and sec-
ond analyses but implemented the Harvard-Oxford ROIs to
reduce the very large number of fcMRI variables. Anatomi-
cal and DWI variables and their MDAs were identical to
those in analyses 1–2. In analysis 3a, the pattern for the
top 100 fcMRI variables differed, however, with cingulo-
opercular, sensorimotor hand, auditory, dorsal attention,
and visual networks accounting for 64% of ROI participa-
tions (Supplementary Fig. S6A, B). Results also showed
that 87% of the most informative features belonged to the
fcMRI modality (Fig. 1B). The accuracy of this run was at
82.8%, with 85.1% sensitivity and 80.4% specificity (Fig. 2).

In analysis 3b, which combined the top 19 variables from
each modality, the accuracy, sensitivity, and specificity
rates for the CRF run within the fcMRI modality were gener-
ally lower than those in analysis 2. The highest accuracy rate
achieved here was at 83.9% with seven variables (sensitivity
82.6%, specificity 85.1%; Supplementary Fig. S7). The top
19 fcMRI variables again fulfilled the 67% accuracy criterion.
CRF results for the top 19 variables from each modality com-
bined showed a general pattern consistent with analysis 2.
The accuracy for this run was slightly lower at 79.6%, with
sensitivity at 83.0% and specificity at 76.1% (Fig. 2).
Among the 19 top variables with MDA >0.002, there were
18 from the fcMRI modality, predominated by connections
in the sensorimotor hand, auditory, and cingulo-opercular re-
gions accounting for 52% of ROI participations (Supplemen-
tary Fig. S8), and only a single DWI variable (again FA of the
right anterior limb of internal capsule). Six more variables
had MDA >0.001, five of which were anatomical and one
fcMRI (Supplementary Fig. S9).

Analysis 4

In the final analysis, which consisted of 1 million iterations
using 100 randomly chosen variables per modality combined,
2530 sets of 300 variables survived the 0.4 OOB error rate cut-
off. These sets were further analyzed, and the mean MDAs for
each modality were calculated: 4.35e-4 for fcMRI, 2.84e-4
for DWI, and 2.71e-4 for aMRI. The difference in MDAs

FIG. 2. Accuracy, sensitivity, and
specificity rates for each analysis.

FIG. 3. Box plot from analysis 4. The dots above each mo-
dality represent the outliers, which have higher MDA values
when compared with the other two modalities. The mean
MDA values for fcMRI, DWI, and aMRI are 4.35e-4,
2.84e-4, and 2.71e-4, respectively. The Kruskal–Wallis test
showed differences between modalities at p < 0.001. Three
pairwise Wilcoxon rank sum tests between modalities were
also all p < 0.001. aMRI, anatomical magnetic resonance im-
aging; DWI, diffusion weighted imaging; fcMRI, functional
connectivity MRI; MDA, mean decrease in accuracy.
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between the modalities was significant ( p < 0.001). Outliers in
the box plot in Figure 3 show the wide range of MDAs for the
fcMRI modality compared with the DWI and anatomical mo-
dalities, with many variables in the fcMRI modality attaining
higher MDAs than any from the other two modalities.

Discussion

A growing number of studies have applied ML techniques
for diagnostic classification of ASDs, using different func-
tional and anatomical types of imaging data with varying
level of success. However, there has been no systematic in-
vestigation assessing whether different imaging modalities
are equally informative in this process. In four comparative
analyses that included fcMRI, aMRI, and DWI data, we con-
sistently found that fcMRI variables performed at superior
levels compared with the other modalities.

Features supporting diagnostic classification

While not the focus of the current study, some region- and
network-specific findings from the different CRF analyses
are worth noting. When using the ROI scheme from the
study by Power and colleagues (2011), visual and default
mode networks stood out among fcMRI features that overall
topped features from other modalities in MDA, with >57% of
ROI participations among the 100 most informative fcMRI
features (as detected in analysis 1). A similar pattern was
seen in analysis 2 that included only the top 19 fcMRI fea-
tures, with *66% participation from visual and default
mode ROIs. Prominence of fcMRI variables of the default
mode network has been noted in some previous diagnostic
classification studies using multisite consortium data (Abra-
ham et al., 2017; Nielsen et al., 2013), whereas connectivity
of visual ROIs has been highlighted by few ML studies
(Chen et al., 2015). However, prominence of visual features
is not unexpected given extensive evidence of atypical visual
processing (Dakin and Frith, 2005) and atypical task-related
neural activity of visual cortices in ASDs (Samson et al.,
2012). In analyses 3 and 4 using the less granular Harvard-
Oxford ROI scheme (Desikan et al., 2006), visual and default
mode networks appeared less informative, with higher per-
centages of top ROI participations for cingulo-opercular,
somatosensory/motor hand, auditory, and dorsal attention re-
gions. These differences illustrate how ML findings may dif-
fer depending on the selected ROI scheme, even when the
exact same data set is used.

Among aMRI and DWI variables, a few stood out as rel-
atively informative. These were white matter hypointensities
and cortical thickness of the right parahippocampal gyrus
from aMRI, and FA in the right anterior limb of the internal
capsule from DWI. However, MDAs were generally low for
these two MRI modalities and did not reach levels seen for
fcMRI variables mentioned above.

Functional variables are more informative
than anatomical variables

All analyses consistently indicated that fcMRI variables
were more informative for diagnostic prediction than ana-
tomical variables from aMRI and DWI. This would not be
expected from the literature, with good prediction accuracies
in some early aMRI studies (Ecker et al., 2010a) and more

modest prediction rates in some fcMRI studies (Nielsen
et al., 2013). However, the literature does not permit direct
comparison across studies that use data from different co-
horts and apply different analysis techniques. In contrast,
our findings using the same ML technique (CRF) in the iden-
tical sample of ASD and TD participants for each imaging
modality robustly indicated superiority of the fcMRI modal-
ity for the specific purpose of diagnostic prediction.

One caveat relates to the almost unavoidable fact that
fcMRI matrices generate much larger numbers of features
than aMRI and DWI methods. We addressed this potential
bias in multiple ways. In analysis 2, we strictly limited the
number of variables, by selecting only the top 19 variables
per modality for which CRF achieved a minimum accuracy
of 67% when performed separately in each modality. Strik-
ingly, when these 57 variables were combined into multi-
modal CRF, the 19 most informative variables (with top
MDA) exclusively belonged to the fcMRI modality. In a sec-
ond attempt, we reduced the number of fcMRI variables by
using an ROI scheme with fewer but larger regions (i.e.,
by reducing the granularity of fcMRI measurements). The
pattern of findings remained similar, with an overwhelming
majority (‡87%) of the most informative features being
fcMRI variables. However, even in this analysis, bias may
not have been completely removed because the reduced
number of initial fcMRI variables was still much higher
than the number of aMRI and DWI variables. We therefore
performed a fourth analysis that was fully protected from
this confound, by randomly selecting 100 variables from
each modality and running CRF numerous times on different
randomizations. The resulting pattern was similar, with
fcMRI variables reaching significantly higher mean MDA
than variables from the other modalities. This finding may
be considered particularly striking, as arguably analysis 4
was biased in favor of aMRI and DWI, given that each
CRF run randomly included <2% of potentially informative
fcMRI variables, but >25% of such variables in aMRI and
DWI modalities.

Differential relations between imaging
modalities and diagnosis

The very robust differences indicating superiority of fcMRI
over aMRI and DWI in diagnostic prediction were unex-
pected. However, when considering the differential nature
of functional versus anatomical data, they are interpretable.
Diagnostic procedures in ASDs are exclusively behavioral
(American Psychiatric Association, 2013). While research
diagnostic instruments include information about behavioral
history, starting with the first years of life (Rutter et al., 2003),
the primary research diagnostic instrument, the ADOS-2 (Lord
et al., 2012), exclusively focuses on observations of a child’s
current behavior. It can be assumed that fcMRI and matrices
of BOLD correlations that indirectly reflect neuronal activity
fluctuations during an MRI scan are comparatively close in re-
lation to current behavioral state, whereas anatomical brain
variables probably reflect developmental history to a greater
extent. This implies that fcMRI measures may be more closely
related to diagnostic measures, which is exactly what our an-
alyses suggest.

Caveats should be considered. First, functional connectiv-
ity detected in resting-state fMRI is considered ‘‘intrinsic’’
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(Van Dijk et al., 2010) and therefore thought to demonstrate
the architecture of specialized brain networks. Specifically,
intrinsic functional connectivity (iFC) has been attributed
to history of coactivation and Hebbian principles of plastic-
ity (Gordon et al., 2016; Lewis et al., 2009). However, it is
also understood that the ‘‘resting state’’ during which
fMRI data are acquired is cognitively demanding, rich, and
variable (Buckner et al., 2013) and that BOLD signal corre-
lations are likely affected by current state or by dynamic
changes in current state [as seen in novel implementations
of dynamic fcMRI in ASDs (Falahpour et al., 2016; Rashid
et al., 2018)]. While iFC therefore probably reflects a mix
of current online cognitive activity and history of coactiva-
tion, the latter may be mostly recent history, as suggested
by findings of rapidly changing iFC patterns after brief peri-
ods of learning (Lewis et al., 2009). This is consistent with a
relatively close relation to behavioral profiles that are the
basis of diagnostic procedures.

Second, brain anatomy undergoes change throughout life
and some of these changes reflect plasticity in response to en-
vironmental interactions. It is therefore too simple to attri-
bute neuroanatomy entirely to early developmental history.
For example, the recent finding of atypically increased gyri-
fication in the vicinity of the—prenatally emerging—Sylvian
fissure in children and adolescents with ASDs (Kohli et al.,
2019) may contain traces of very early growth anomalies
in ASDs, but cortical morphology will likely be affected
by plastic changes relating to behavior and environmental in-
teraction later in life. However, the unequal contribution to
diagnostic prediction observed in the current study is fully
compatible with a relative difference between functional
and anatomical measurements, with fcMRI reflecting current
behavioral states and dynamics more closely (and therefore
being more directly linked to diagnostic measurements),
but aMRI and DWI reflecting neurodevelopmental history
more predominantly. The latter, speculatively, would sug-
gest that neuroanatomical data may be more informative of
etiological subtypes of the disorder that vary in developmen-
tal history, consistent with the notion of (anatomical) neuro-
imaging data providing ‘‘intermediate phenotypes’’ (Rasetti
and Weinberger, 2011). It is furthermore possible that greater
informative value of functional than anatomical features ob-
served in our study may be age-specific and that anatomical
variables may be more predictive early in life. This is sup-
ported by Hazlett and colleagues (2017) who found that cor-
tical surface area in 6- to 12-month-old high-risk infants was
strongly predictive of subsequent diagnosis of ASD.

Granularity

As mentioned above, the number of initial features (before
feature selection) differed greatly between fcMRI versus
aMRI and DWI. While we took multiple measures to limit
any comparative bias related to these differences, the prob-
lem remains that granularity cannot be easily compared or
equated across modalities. For example, a given ROI, such
as a Freesurfer parcel, may generate a number of variables
in aMRI (volume, surface area, cortical thickness, gyrifica-
tion), whereas in fcMRI many more variables will be gener-
ated based on BOLD correlations (iFC) with each of the
other ROIs in the selected ROI scheme, typically in the hun-
dreds. However, this much larger number of features does

not actually indicate higher granularity in fcMRI because
the identical ROI scheme is used in both modalities. The
question of what may be optimal granularity (i.e., the one
generating most informative features) was not the focus of
our study, but slightly higher accuracies in analyses 1–2
than analyses 3a–b suggest that for fcMRI, higher granularity
of the ROI scheme from the study by Power and colleagues
(2011) was superior to the lower granularity of an alternative
scheme (Desikan et al., 2006). Generally, it can be assumed
that there will be trade-offs between reduced informative
value due to signal averaging (very low granularity; e.g., cor-
tical thickness of an entire hemisphere) on the one hand, and
due to noisy measurements (very high granularity, e.g.,
BOLD time series correlations between single voxels) on
the other. Calibration of optimal granularity likely depends
on data quality and acquisition protocols and will differ be-
tween MRI (and other imaging) modalities.

Limitations

The comparisons performed in this study required high-
quality data in all three imaging modalities in each partici-
pant, which resulted in limited sample size compared with
some previous single-modality diagnostic classification stud-
ies. In view of the known heterogeneity of ASDs (Lombardo
et al., 2019), cohort effects in small samples cannot be ruled
out. Specifically, the requirement of low-motion data limited
participation largely to the high-functioning segment of the
autism spectrum. It remains possible that brain features dis-
tinctive of low-functioning ASD, or of ASD variants not cap-
tured in our moderate sample, differ from the ones detected
in our study (Gabrielsen et al., 2018; Reiter et al., 2019) and
that informative contributions from various MRI modalities
also differ. Finally, while we performed multiple compara-
tive analyses, they all relied on CRF for classification. It can-
not be ruled out that our findings were (to some extent)
algorithm-specific.

Conclusions

Our findings suggest that neuroimaging modalities vary in
their informative value for ML diagnostic classification of
ASD. Specifically, resting-state functional connectivities
were found to be overall more informative than anatomical
measures from aMRI and DWI for classification of children
and adolescents with ASD versus matched TD cohorts.
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