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Significance: Spinal cord injury (SCI) is a neurological disorder that resulted
from destroyed long axis of spinal cord, affecting thousands of people every
year. With the occurrence of SCI, the lesions can form cystic cavities and
produce glial scar, myelin inhibitor, and inflammation that negatively impact
repair of spinal cord. Therefore, SCI remains a difficult problem to overcome
with present therapeutics. This review of cell therapeutics in SCI provides a
systematic review of combinatory therapeutics of SCI and helps the realization
of regeneration of spinal cord in the future.
Recent Advances: With major breakthroughs in neurobiology in recent years,
present therapeutic strategies for SCI mainly aim at nerve regeneration or
neuroprotection. For nerve regeneration, the application approaches are tissue
engineering and cell transplantation, while drug therapeutics is applied for
neuroprotection. Cell therapeutics is a new approach that treats SCI by cell
transplantation. Cell therapeutics possesses advantages of neuroprotection,
immune regulation, axonal regeneration, neuron relay formation, and re-
myelination.
Critical Issues: Neurons cannot regenerate at the site of injury. Therefore, it is
essential to find a repair strategy for remyelination, axon regeneration, and
functional recovery. Cell therapeutics is emerging as the most promising ap-
proach for treating SCI.
Future Directions: The future application of SCI therapy in clinical practice
may require a combination of multiple strategies. A comprehensive treatment
of injury of spinal cord is the focus of the present research. With the combi-
nation of different cell therapy strategies, future experiments will achieve
more dramatic success in spinal cord repair.

Keywords: spinal cord injury, regeneration, anatomical structure, cell thera-
peutics, neurotrophic factors

SCOPE AND SIGNIFICANCE

Cell therapeutics is emerging as
the most promising approach for
treating spinal cord injury (SCI).
This review summarizes cell thera-
peutics with respect to challenges in
regeneration, cell types, and related
neurotrophic factors. The work de-

scribed here will contribute to im-
proving multifaceted combination of
strategies for SCI regeneration in
clinical application.

TRANSLATIONAL RELEVANCE

The mechanism of cell therapeu-
tics is widely defined as the direct or
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indirect interaction between transplanted cells and
host cells, which changes the local microenviron-
ment and thereby affects the histological or func-
tional results after SCI. By now, many
experimental repair strategies developed by dif-
ferent research groups have focused on promoting
axonal growth for various cell transplants by im-
proving the inhospitable central nervous system
(CNS) environment.

CLININAL RELEVANCE

Traumatic SCIs are generally caused by exter-
nal trauma such as car accidents, falls, and violent
acts, which can cause disability or even mortality,
as well as loss of sensory and motor function. In the
past, treatment of SCI was generally palliative
such as preventing damage from worsening, treat-
ing complications, and guiding patients to deal with
their disabilities. Fortunately, with major break-
throughs in neurobiology in recent years, more ef-
fective interventions were invented such as cell
therapeutics, which will provide new approaches to
accelerate functional recovery after SCI.

DISCUSSION OF FINDINGS
AND RELEVANT LITERATURE
Anatomical structure of spinal cords

Spinal cord originates at the medulla of the
bottom of brain and reaches the first lumbar ver-

tebra through occipital foramen. In the center of
spinal cord, there is a gray area with a butterfly
shape, which is called gray matter.1 The gray
matter is composed of numerous neuronal cell
bodies, dendrites, a few myelinated and unmy-
elinated axons, glial cells, and capillaries.2 White
matter surrounds the central gray matter, con-
sisting of oligodendrocytes, astrocytes, and micro-
glia (Fig. 1). Oligodendrocyte precursor cells
(OPCs) are distributed throughout the white and
gray matter. Oligodendrocytes are distributed in
the CNS. They are located near the cell body of
neurons and around nerve fibers, and their pro-
truding ends expand into a flat membrane and
wrap the axons of neurons to form an insulating
myelin sheath structure. At the same time, it can
assist the efficient transmission of bioelectrical
signals and maintain and protect the normal
functions of neurons.1 While astrocytes are related
to the blood/brain barrier that separates the CNS
from proteins and cells in the blood.1 Microglia play
vital roles in synaptic pruning and remodeling,
removing debris from both developmental and
damaged cells.3,4 The axons are surrounded by a
myelin sheath formed by Schwann cells (SCs), and
the outer layer is surrounded by the endone-
urium. Next, the individual axons converge to form
fascicles. Finally, the individual nerve fascicles
are surrounded by the epineurium of a loose fi-
brocollagenous tissue component, which combines
to form the nerve trunk.5

Figure 1. Schematic representation of the spinal cord. Reproduced with permission from Assinck et al.125
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SCI animal models and application limitations
Choosing an animal SCI model is a very impor-

tant step for spinal cord repair experiment. Rats
and mice are the first choice of SCI animal models
because they are inexpensive and easy to pre-
serve.6,7 Although a primate SCI model is closer to
humans, its use is limited due to ethical issues. At
present, the most commonly used SCI models are
contusion, compression, hemisection, and transec-
tion models.

A contusion model is generated by striking an
exposed spinal cord with a heavy fall, which is
normally achieved by an impactor consisting of an
animal restraint device and a computer. By ad-
justing the height, impulse, velocity, power, and
weight, the degree of damage can be easily con-
trolled.8 Specific segments of spinal cord can be
selected to replicate the contusion model in differ-
ent degrees and different parts of spinal cord. The
model retains the integrity of the dura, and it is
close to the pathophysiological characteristics and
changing rules of human SCI. Infinite Horizon
impactor is the most commonly used instrument
for creating spinal cord contusion at present. It can
quickly strike the exposed spinal cord with a
stainless steel impactor at the tip and then imme-
diately retract.9 It does not cause crush injury due
to the short stay of the impactor in the spinal cord.
However, compared with the crosscut model, it is
difficult to distinguish the tissue at the original site
from the regenerated tissue in the contusion model
after repair. In addition, due to the influence of
many factors (such as animal size, fixed body po-
sition, and spinal cord exposure), the injury degree
of experimental animals is not consistent, leading
to differences among individuals.

The compression model simulates SCI caused by
space-occupying lesions in the spinal canal, which
can be created by using balloons, tweezers, arterial
clamps, heavy weights, or other materials.10,11

Similar to the injury model caused by impactor, the
compression model can be produced in the spinal
cord in different parts and degrees by adjusting
compression position, compression time, and in-
tensity. The pathophysiological process of acute
compression injury model is similar to that of the
spinal cord impingement model, with diffuse
hemorrhagic necrosis and edema in the early stage
and cyst and glial scar in the later stage. Similar to
the contusion model, it is difficult to distinguish the
regenerated tissue from the original tissue.

The hemisection model is formed by cutting the
left or right part of spinal cord. Since one side of the
spinal cord is undamaged, the bladder and bowel
functions are preserved. Moreover, the postopera-

tive care of the animals is easy and the survival
rate is high, which are suitable for studying the
axon sprouting at the junction between the injured
side and the uninjured side of the spinal cord.8 The
back hemisection seriously affects the stability,
speed, and accuracy of the crawling process of an-
imals.8 Due to the nonuniformity of the hemisec-
tion, the injury models of animals are different. In
addition, it is difficult to determine whether axons
at the injured site regenerate from the hemisection
or sprouting at the unresected site.

The method of cutting the entire spinal cord with
a sharp instrument with the dura cut completely is
called the transection model.12 The transection
model reflects the regeneration of axons in SCI,
because the axons are completely separated at the
injury site and there is no remaining axon. There-
fore, the regeneration of axons can be evaluated at
the injury site. The transection model completely
destroys the axon fibers and the connected neurons
in the spinal cord, leading to paralysis and serious
complications, and postoperative animal mortality
is higher. Compared with other models, postoper-
ative nursing is more challenging. For example,
complications in the canine model of complete
spinal cord transection include deep vein throm-
bosis, pressure ulcers, muscle spasms, osteopo-
rosis, urinary tract infections, and respiratory
complications.13

In summary, different SCI models have different
advantages and disadvantages regarding different
experimental purposes. The contusion and com-
pression models are closely related to the patho-
physiology of patients with SCI in clinical practice,
while the hemisection and transection are more
valuable for the study of spinal axonal regenera-
tion. Therefore, to make the animal model more
valuable, the primate model of spinal cord tran-
section is the best research program.

Challenges in SCI regeneration
The occurrence of SCI will lead to cystic cavity

and glial scar.14 Cells at the initial stage of injury
swell and the damaged cells secrete toxins,15 pro-
moting necrosis of the damaged cells and resulting
in formation of cystic cavity surrounded by glial
scar.16 Moreover, the inhibitory molecules and in-
flammation generated after injury also inhibit re-
generation of spinal cords.17

Cystic cavity formation. After initial injury of
spinal cord and the followed necrosis, a fluid-filled
cavity develops, which can limit axon regeneration
and cell migration.18 Several studies demonstrated
that cystic cavity could extend to other undamaged
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spinal segments around the injury, resulting in cell
death and loss of function of undamaged spinal
segments. Moreover, formation of cystic cavity gen-
erates a physical barrier to restrict neurotrophic
factor infiltration and inhibit signal transduction.
Cell transplantation was expected to reduce cystic
cavity formation, restore the signal in the spinal
cord, and facilitate axon regeneration.19,20

Glial scars and chondroitin sulfate proteogly-
can. Many of the limiting factors associated with
glial scar are closely related to the extracellular
matrix (ECM) of chondroitin sulfate proteoglycan
(CSPG) produced by mature reactive astrocytes.21

At the early stage of injury, the glial scar is nec-
essary to prevent spreading of damage to sur-
rounding tissue and spare the delicate surrounding
tissue.22 Meanwhile, the glial scar constitutes a
physical and molecular barrier at the lesion site,
which forms a major impediment to axonal regen-
eration.23 At present, the most common strategy
for laboratory degradation of CSPG is using an
enzyme called chondroitinase ABC (ChABC). This
enzyme attenuates CSPG inhibitory activity by
cleaving CSPG glycosaminoglycan chains, and
thereby benefits regeneration of axon and recovery
of locomotor and proprioceptive behaviors.24,25

Myelin inhibitors. Three major myelin-derived
inhibitors have been identified in reports, neurite
outgrowth inhibitor (Nogo), myelin-associated
glycoprotein (MAG), and oligodendrocyte myelin
glycoprotein (OMgp). All the inhibitors possess
potential inhibitory activity on neurite outgrowth
in vitro.26–28 Nogo, a membrane protein mainly
expressed by oligodendrocytes, has negative effects
with growth inhibition and growth cone collapse by
binding to receptors on the membrane of neu-
rons.29 MAG, a myelin-related protein expressed
by oligodendrocytes, is the first protein found to
inhibit the outgrowth of neurites in vitro.28 OMgp
is expressed around the axons of oligodendrocyte-
like glia in the CNS, which can inhibit neurite
outgrowth.26 Although they do not share the same
sequence homology, the three classic myelin-
associated inhibitors transmit signals via the
common receptor, the Nogo receptor (NgR), mean-
ing that these inhibitors play important roles in
retracing growth cones and restricting axon re-
generation.26,30

Inflammation. An obvious inflammatory re-
sponse following SCI was confirmed, and microglia
and macrophages were found to play important
roles in inflammation.31 In fact, microglial cells are

unique immune cells in the CNS and act as sensors
for disruption of homeostasis in CNS. Their acute
activation has a protective role focusing on elimi-
nation of damaging factors. However, chronic and
uncontrolled activation leads to sustained release
of proinflammatory cytokines and neurotoxic mol-
ecules in the surrounding environment, which can
contribute to neurotoxic consequences.31 Further-
more, as different phenotype macrophages impact
differently, macrophages can be divided into two
types according to the phenotype, with proin-
flammatory effect of M1 and anti-inflammatory
effect of M2.32,33 Unfortunately, M1 macrophage-
mediated proinflammatory effect was reported to
be predominant in SCI rat and mouse models.33

This suggests that the timing of inflammatory
changes and the subsequent related reactions play
decisive roles in the recovery or deterioration of the
condition.

Cell therapeutics
Cell therapies hold the potential for neuro-

protection as well as neuroregeneration in the
context of SCI. Importantly, however, with mul-
tiple targets and stimuli-responsive functions,
cells have been used to regulate inflammatory re-
sponses, provide nutritional support, form scaf-
folding, axon remyelin, replace cells, and enhance
plasticity (Fig. 2).34 Exploiting this potential
mechanism, a variety of cells from several different
tissue sources have been investigated for treating
SCI (Table 1).

Therapy using SCs. SCs are located in the pe-
ripheral nervous system (PNS). They are arranged
in strings and wrap the axons of the peripheral
nerve fibers one by one. In the medullated nerve
fibers, the SCs form the myelin sheath and the
myelin sheath forming cells of the PNS.35 SCs have
the longest transplant history of any type of cell
used in SCI therapy and are widely recognized in
the field of SCI therapy as the most promising
transplant donor for the regeneration of spinal cord
axons.36 In part, it is because SCs can produce
several beneficial factors, such as increased trophic
factors, ECM, and cell adhesion molecules.37

Transplantation of SCs provides neuroprotec-
tion and can reduce cyst and glial scar formation,
promote axonal regeneration and myelinization,
and effectively improve functional outcome
(Fig. 3).38,39 However, no significant change in
functional recovery was found in transplantation
with SCs alone. The SCs were transplanted to the
SCI site alone and the therapeutic effect was not
satisfactory due to their low survival rate.40
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Necrosis and apoptosis of transplanted SCs oc-
curred mainly in early stage, which can be attrib-
uted to harmful local microenvironment, hypoxic
levels, M1-mediated inflammatory effects, and cell-
mediated immune responses.41 Some combinato-
rial strategies were invented to overcome these
deficiencies. For example, Moradi et al. demon-
strated that the use of BD PuraMatrix peptide
hydrogel combined with SCs can be used as a
scaffold to promote the proliferation of SCs and
reduce the number of astrocytes in the T10 seg-
ment of rat spinal cord after moderate compression
injury, thereby limiting the formation of glial scar
and promoting the recovery of motor function.42

Combined with neurotrophic factors and ChABC,
transplantation of SCs showed more significant
repair effects on SCI.43–45 Studies have also tested
the use of genetically modified SCs to secrete bi-
functional neurotrophin and ChABC and were
transplanted into a moderate thoracic spinal cord
contusion injured rats. As shown in the Glial Scars
and Chondroitin Sulfate Proteoglycan section,
ChABC-modified SCs inhibit the activity of CSPG,
which facilitates myelination of axons and in-
creases the number of spinal intrinsic axons in the
graft and surrounding host tissue.19

Therapy using olfactory ensheathing cells. The
transplantation of olfactory ensheathing cells
(OECs) is considered to be one of the most prom-
ising approaches for enhancing axon regeneration

and functional recovery after SCI. OECs can be
obtained by nasal biopsies from the olfactory mu-
cosa and olfactory bulb.46,47 Furthermore, OECs
hold great potential to create a positive microen-
vironment for axon regeneration, regulating glial
scar formation and axon remyelination, re-
constructing neural tissue, and counteracting dif-
fusion of inhibitory factors released by axons of
dead neurons in vitro.48

Many experimental studies have revealed that
after implantation of OECs in the injury model,
the postoperative motor function and respiratory
function of the rats receiving OECs recover more
significantly compared with the control group
(Fig. 4).49,50 After implantation of OECs in a
completely transverse rat model with sciatic
nerve injury, Radtke et al. were able to demon-
strate that OEC grafts provided nutritional sup-
port and bridged lesion sites, allowing axon
regeneration and myelin to improve functional
prognosis.47 In addition, after SCI, fibroblasts
and CSPG invaded the site of injury and form
glial scar, which had the side effects of obstruct-
ing axon regeneration and cell infiltration. In
contrast to SCs, OECs can penetrate this barrier
and promote spinal cord regeneration and func-
tional recovery.51 Although numerous studies
have reported that OECs help improve neurolog-
ical function, treatment methods remain incon-
sistent, and this variability may stem from
different olfactory cell populations before trans-

Table 1. Examples of existing cell tissue engineering studies

Cells Source Species SCI model Cotransplant material Relevant mechanism

SCs Sciatic nerve Rat CS is a lateral hemisection of
the spinal cord

Alginate hydrogel scaffold and
BDNF

Neuroprotection axon growth
remyelin38

OECs Olfactory bulb Rat T9 spinal cord is completely
transected

Olfactory sheath cytokines Neuroprotection axon growth,
functional connectivity48,49

M2 macrophages Mice Mice T12 spinal cord impingement
injury

NSC Decreased myelin-related
glycoprotein increased
angiogenesis and promoted
axon regeneration6,55

Fibroblasts Catkin Cat T11/T12 spinal cord is
completely transected

BDNF and NT-3 Neuroprotection secretes
extracellular matrix, promotes
axon growth, and
resheathing60

NSCs Rat brain Rat T8/T9 complete transection of
spinal cord

Bifunctional scaffold combing
collagen and EGFR antibody

Promotes neuronal
differentiation and remyelin7

ESCs Embryo Rat C4/C5 spinal cord radiation
injury

The oligodendrocytes are
differentiated

Axons regenerate and myelin76

BMSCs Bone marrow of femur
and tibia in rats

Rat T9–T10 spinal cord hemisection Crosslinked hydrogel scaffold
with hyaluronic acid and
adipate dihydrazide

Neuroprotection, immune
regulation, axon
regeneration79

iPSCs Genetic modification of human fetal
lung fibroblasts

Rat Spinal cord T8–T9 compression
injury

— Promote axon regeneration,
angiogenesis, and motor
function recovery11

BDNF, brain-derived neurotrophic factor; BMSC, bone marrow mesenchymal stem cell; ESCs, embryonic stem cells; iPSC, induced pluripotent stem cell;
NSC, neural stem cell; NT-3, neurotrophin-3; OECs, olfactory ensheathing cells; SCs, Schwann cells; SCI, spinal cord injury.
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plantation to the damaged site. Therefore, a
method of identifying and purifying OECs is
needed first in clinic, and then transplanted
therapy can be carried out.52 These studies will
help prepare for the clinical use of OEC trans-
plantation and make it reliable in the treatment
of SCI.

Therapy using activated macrophage. The im-
mune system can not only protect body’s tissue from
damage but also promote the rehabilitation of al-
ready damaged tissues. Furthermore, several studies
have demonstrated that inflammatory responses can
have both proinflammatory and anti-inflammatory
components.53 The proinflammatory phenotype is
involved in fighting with infection, removing dead
and dying cells, and repairing wounds. The anti-
inflammatory phenotype is associated with the nat-

ural breakdown of the early inflammatory response
and recovering the tissue to a normal state.54

Research carried out by Kristina A. Kigerl has
shown that adequately activated macrophages can
have a positive effect on SCI.33 For example,
transplantation of M2 macrophages could support
neuroprotection and regeneration in different ani-
mal models.32,55 It has been shown that transplan-
tation of macrophages can decrease myelin-related
glycoprotein, and promote axon regeneration and
myelination.6,56,57 Another study has demonstrated
that neural stem/precursor cell transplantation
led to a decrease in the proportion of classical M1
macrophages and promoted the rehabilitation of
the injured cord (Fig. 5).55 To study the effect of
macrophages on globoid cell leukodystrophy
(GLD), the Yoichi Kondo laboratory obtained
the macrophage-deficient twitcher mouse model

Figure 3. Lesion paradigm and experimental procedures. (A) Unilateral spinal cord resection of 1.5–2 mm was performed at the level of C5 in rats. Schwann
cell-seeded alginate hydrogel was transplanted to the lesion site. Under the control of tetracycline regulatory promoter, caudally injected AAV5 expressing
BDNF. Studies have demonstrated a significant increase in the number of regenerating axons and myelination. (A1) Cross-sectional and (A2) longitudinal view
of the capillary lumen. (B) Spinal cord hemisection lesion (arrowhead); (C) alginate scaffold for SCs (white arrow); (D) AAV5 (*) or SCs were injected into the
caudal spinal cord (black arrow). Reproduced with permission from Liu et al.38 BDNF, brain-derived neurotrophic factor; SCs, Schwann cells.
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through crossbred, and the experimental results
showed that the overall effect of macrophages
in GLD was to prolong the life span of mice and
alleviate neurological symptoms by promoting
myelination.57

Therapy using fibroblast. Fibroblasts are the
cells that make up connective tissue and secrete
ECM molecules. These cells are not difficult to ob-
tain and can easily expand in culturing, making
them attractive for use in cell therapy.58 However,
besides glial scar, the scar after SCI can also be a
fibrotic scar. Fibrotic scar is mainly caused by ex-
cessive deposition of ECM molecules secreted by
fibroblasts, which plays the same role in inhibiting
axon growth. However, compared with glial scar,
fibrotic scar has no strong inhibition on axons.59

Fibroblasts presently used in the laboratory are
modified or combined with other therapeutic
strategies.

Studies found that the neurotrophin brain-derived
neurotrophic factor (BDNF) and neurotrophin-3
(NT-3) secreted by modified autologous fibroblasts
could promote recovery of stepping, oligodendrocyte
proliferation, and axon myelination in the SCI cat
(Fig. 6).60 Furthermore, transplantation of Wnt-

containing alginate scaffolds secreting fibroblasts
was considered to promote axonal regeneration and
functional recovery after SCI.61 On the contrary,
through in vitro gene therapy, BDNF, nerve growth
factor (NGF), and NT-3 were delivered to the early
injured spinal cord by modified fibroblasts, which
proved to be effective in inducing axon regeneration,
filling the diseased cavity, and restoring spinal cord
function in adult rats.62,63 Transplanted fibroblasts
secrete cytokines that alter neurite recognition of
NG2 glycoprotein inhibitor components following
SCI, suggesting that they can also facilitate axon re-
generation even in glial scar areas that are widely
expressed in CSPG.62

Therapeutics using stem cells
Therapy using neural stem cells. Neural stem
cells (NSCs) are pluripotent progenitors or stem
cells that have the ability to self-renew and can be
isolated from the subventricular zone of hippo-
campus of brain or the central canal of the spinal
cord.64 Most importantly, NSCs facilitated recov-
ery of spinal cords with the ability to differentiate
into neurons and oligodendrocytes and to replace
the lost cells within the lesion site.65 NSC was able
to secrete a variety of neurotrophic molecules that

Figure 4. OEG transplantation at he transection site. (A) A spinal cord form a media-untrained rat: large transparent cavitation appears in the injury site. (B)

A second media-untrained rat: much less cavitation is apparent in the lesion site. (C) An OEG-trained rat: pronounced cavitation disappears in the injury site.
(D) Immunohistochemical staining of GFAP: the black area and the gray in drawing represent the GFAP-positive tissue and the GFAP-negtive transection site,
respectively. Reproduced with permission from Kubasak et al.49
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inhibit cell death, as well as promote axon regen-
eration and remyelination. In addition, NSCs can
also reduce lesion volume, inhibit scar tissue for-
mation, elicit anti-inflammatory effects, and im-
prove electrophysiological and motor functional
recovery.64–66

Due to the microenvironment after SCI, NSCs at
the injury site mainly tend to differentiate into
glial cells, suggesting that NSCs may need to be
predifferentiated before implantation (Fig. 7).7

Neuronal restricted precursors (NRP) and glial
restricted precursors (GRP) differentiated from
spinal cord or NSCs were transplanted into rats
with C4 spinal cord lateral funiculus injuries. Un-
like NSCs, NRP and GRP could be differentiated
into desired lineage, such as neurons and oligo-
dendrocytes. Experiment results showed that the
mixed lineage-restricted precursor cells filled the
cavity, differentiated into mature CNS cells, and
repaired the damaged sites.67 The NSCs expres-
sing green fluorescent protein were combined with

fibrin matrix containing growth factor mixture and
transplanted to the injury site of complete spinal
cord transection in rats, and the results showed
that NSCs differentiated into many kinds of cells,
including neurons, and the axons formed rich
synapses with host cells after large growth, which
promoted the formation of electrophysiological relays
and led to the recovery of motor function in rats.68

Alternatively, the rationale behind the use of NSC-
conditioned medium in SCI treatments focuses on
reducing the expression of inflammatory cytokines in
M1 macrophages and damaged spinal cord tissues,
as well as reducing systematic inflammation.65

Therapy using embryonic stem cells
Embryonic stem cells (ESCs) are pluripotent

cells that can differentiate into many cell types and
have the capacity of continuous self-renewing.69

Indeed, it was demonstrated that ESCs are capable
of differentiating into specific neural lineage, in-
cluding neurons, oligodendrocytes, and astrocytes,

Figure 5. (A) Quantification of transplanted fGFP+ NPCs in vivo at either 1 or 7 weeks post transplantation (wpt). *P £ 0.05. Representative axial images of the
GFP staining for stereological quantifications at 1 (B) or 7 (C) weeks after NPC transplantation. (D) Image of an ‘atypical perivascular niche’. (E) Image of GFP
(green) NPCs contacting F4/80+ macrophages via connexin43+ cellular junctions (red; arrowheads). (F) 3D reconstruction of the confocal Z-stack in (E). The
magnified inset shows structural junctional connexin43 pattern (red; arrowheads). (G) In a perivascular spinal cord area GFP (green) NPCs and B220+ putative
B lymphocytes (blue) not establishing connexin43+ (red) mediated junctional coupling. Reproduced with permission from Cusimano et al.55
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both in vitro and in vivo.70,71 After transplantation,
these stem cell-derived populations can replenish
lost cell types, provide trophic support for axon
regeneration, remyelinate surviving axons, and
deliver immunomodulatory, anti-inhibitory factors
to form relay circuits that contribute to functional
recovery.72–74

Xie et al. predifferentiated mouse ESCs (mESCs)
in neural progenitors by adding retinoic acid to
embryoid body cultured for 4 days. Their results
demonstrated that the combination of electrospun
fiber scaffolds and mESCs of predifferentiated
neural progenitor cells not only promoted neuronal
differentiation but also limited the glial scar for-
mation and guided the neurite outgrowth.69,70 Iwai
et al. transplanted ESC-derived neural stem/pro-
genitor cells (ESC-NS/PCs) into the marmoset SCI
C5 Contusive model, and implanted 14 days after
the injury. Implantation of ESC-NS/PCs led to
tissue retention at the site of injury, regeneration
of corticospinal tract (CST) fibers, axonal re-
generation, and angiogenesis compared with the
control group. The combination of cells resulted
in functional recovery without tumorigenicity.75

Furthermore, others have demonstrated that
myelinating OPCs derived from mESCs and
transplanted into a mouse SCI model gave signifi-
cantly enhanced remyelination and functional re-
covery (Fig. 8).76 Interestingly, in the model of
cervical SCI in nude mice, after treatment with
human ESC-derived OPCs, the cystic cavity at the
injury site was significantly reduced and the re-
tention of myelinated axons was increased.77

Therapy using bone marrow mesenchymal
stem cells

Most of bone marrow mesenchymal stem cells
(BMSCs) used in preclinical experiments are ob-
tained from humans or rodents. They are widely
used because they are easy to extract, culture, and
can be used for autologous transplantation.78 Most
importantly, BMSCs have been shown to reduce
inhibitory scar tissue/cavity formation, preserve
axons, increase myelin sparing, and ultimately
lead to anatomical and functional recovery of SCI
animal models (Fig. 9).78–80 In addition, BMSCs
can also promote transformation of macrophages
from the M1 proinflammatory phenotype to M2
anti-inflammatory phenotype, and reduce acute
inflammatory response in SCI, and thereby pro-
mote functional recovery.78

Scaffolds with BMSCs secreting neurotrophic
factors are used to address the problems of acute
and secondary injury, including neuronal defi-
ciency, axonal breakage, glial scar barrier, and
inflammatory responses.80 NT-3 gene-modified
BMSCs were reported to inhibit glial scar forma-
tion, improve the microenvironment in injured
spinal cord, promote nerve regeneration, and in-
crease locomotor function recovery.81 A pair of
studies from Zhao et al.’s laboratory reported the
use of genetically modified BMSCs expressing ce-
rebral dopamine neurotrophic factor (CDNF) to
treat SCI at T10 in rats. The CDNF-expressing
cells have a strong anti-inflammatory effect at the
lesion site compared with normal BMSCs. By in-
hibiting the neuroinflammatory response after
SCI, the production of proinflammatory cytokines
PGE2 and IL-1b can be reduced, thereby promote
motor function and nerve recovery of the injured
spinal cord.82 Moreover, the ability of exosomes
derived from bone MSCs (BMSCs-Exos) possesses
robust proangiogenic properties, which makes it an
attractive agent to study improved functional be-
havioral recovery effects after traumatic SCI.
BMSC-Exo treatment inhibits inflammation, re-
duces neuronal cell apoptosis, suppresses glial scar
formation, attenuates lesion size, and promotes
axonal regeneration.83

Figure 6. The spinal cord was completely severed creating a 3–5-mm-
long pocket formed by the dura mater and bordered at the rostral and
caudal edges of the cut spinal cord. The rostral end of the lesion site, about
1 mm from the edge of the lesions tissue, was injected with a micro-ruby
tracer and the caudal end with micro-emerald. Reproduced with permission
from Krupka et al.60
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Therapy using induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) are

reprogrammed somatic cells in mouse or human
fibroblasts by transplanting SOX2, OCT3/4, tu-
mor suppressor Krüppel-like factor 4 (KLF4),

proto-oncogene c-MYC, and other genes, which
may become a preferred cell source for SCI
treatment in human patients because there are
no ethical issues involved.84–86 Moreover, iPSCs
possess the ability to differentiate into neural

Figure 7. (A) (1) The macroscopic image of collagen scaffold. (2) The SEM image of scaffold. (3) The schematic diagram of the construction of recombinant
protein. (4) SDS-PAGE analysis of Nat-EGFR-Fab and CBD-EGFR-Fab. (B) The experiment process of capturing and retaining NSCs by the dual functional
scaffold in vitro. (C) (1) Image of neurospheres. (2) Image of the neurosphere immunostained with nestin. (3) Nestin and EGFR double staining showing the
neurosphere. (D) Analysis of the number of nestin positive cells at the two scaffolds. **p < 0.01. Reproduced with permission from Xu et al.7 NSC, neural stem cell.
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precursor cells, oligodendrocytes, astrocytes,
neural crest cells, neurons, and mesenchymal
stem cells.87 These cells can promote axon re-
generation, bridge disease cavities, and generate
functional recovery by replacing missing cells
or regulating the microenvironment at the site of
injury (Fig. 10).11,88,89

Some researchers showed that implanted iPS-
derived oligodendrocyte progenitors into the rat
model of spinal cord moderate contusion showed
reduced cavity formation, scarring, and microglial
proliferation compared with the control group.20

Furthermore, NSCs derived from iPSCs were re-
ported to exhibit capacity for remyelination and
significantly improved neurobehavioral function in
laminectomy models of mice spinal cord.89 One
study showed that human-iPSC-derived neuro-
spheres (hiPSCs-NSs) were implanted into the
spinal cord of nonobese diabetic-severe combined
immunodeficient injury site 9 days after T10 con-
tusive in mice and promoted functional recovery
by differentiating into neurons, oligodendrocytes,
and astrocytes. Subsequent studies showed that
hiPSCs-NSs secreted neurotrophic factors, pro-

Figure 8. (A) LFB/H&E staining images of normal spinal cord. Enlargement of framed area in (a) for observation of immunostaining. (B) Image of mESCs
colonies on mouse embryonic fibroblast. (C) Image of Oct4/Sox2 immunostaining of mESCs. (D) Image of Olig2+-GFP+ spheres at day 12. (E) Image of Olig2
immunostaining in GFP+ spheres. (F) The percentage of GFP+ cells determined by FACS at day 12. Images of NG2 (G) and PDGFRa (H) immunostaining in GFP+
-OPCs at day 14. (I) Image of the GFP+-oligodendrocyte immunostained with MBP. (J) Quantification and comparison of the number of cells expressed NG2,
PDGFRa and O4. Reproduced with permission from Sun et al.76
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moted axon regeneration, angiogenesis, myelina-
tion, and reconstructed neural pathways at the site
of injury, and no tumor formation was observed for
a long time.90 Importantly, however, there are
limitations to iPSCs, such as genetic/epigenetic
abnormalities and tumor formation due to artificial
induction genes, which need to be addressed before
they can be used clinically.91

Nerve regeneration factors
for cell therapeutics

The neurotrophic factor has been taken into ac-
count as the main or supplementary mechanism of
many transplanted cells and can still play a neu-
roprotective role after the death of transplanted
cells.92,93 Alternatively, the expression of neuro-
trophic factors by transplantation through cell
modification, or neurotrophic factors produced by
the response of the injured site to transplant cells,
helps enhance the functional benefits of cell trans-
plantation.94 See Table 2 and Fig. 11 for neurotrophic
factors on SCI therapy and signaling pathway.

Nerve growth factor. NGF was demonstrated to
have many characteristics, such as broad applica-
tion prospect in the treatment of SCI. Never-
theless, NGF also has disadvantages, such as
unstable physicochemical properties, and its abil-
ity to cross the blood/spinal cord barrier is low.95

Some studies demonstrated that NGF played an
important role in the survival and maturation of

developing neurons in PNS, and NGF was reported
to change glial phenotype, enhance the survival of
neurons, and promote axonal regeneration.95,96 In
addition, NGF has limitations, and the expression
of NGF in the spinal cord induces nociceptive
axons, resulting in hyperalgesia that can lead to se-
vere pain.95 A recent study reported that lentiviral-
mediated aquaporin-4 inhibition can increase the
expression of NGF and ultimately led to motor im-
provements of SCI rats.97 Furthermore, it is also a
promising strategy to combine delivery of NGF genes
or NGF with cell transplantation to injury site to
achieve long-term expression of NGF.

Brain-derived neurotrophic factor. BDNF has
the functions of axon regeneration, neurogenesis,
remyelin, neuroprotection, adaptive synaptic
plasticity, and synaptic transmission in various
groups of neurons after SCI.98,99 Studies have
demonstrated that delivery of BDNF and NT-3
genes into SCI promoted axonal growth at local
sites and significantly reduced the axotomy-
induced atrophy of large pyramidal neurons at the
remote effects.100 Further studies in rodent models
suggest that BDNF-secreting MSCs will further
promote functional recovery after SCI.38,101,102

However, several studies have shown that corti-
cal regions increase the survival of spinal motor
neurons but do not promote the growth of CST
axons.103

Figure 9. The spinal cord was transected to make 1.5 mm gaps in rat T9–10 segment. Peptide-modified scaffold is developed based on hyaluronic acid and an
adhesive peptide PPFLMLLKGSTR to promote the adhesive growth of BMSCs. The implantation of BMSC-embedded scaffold can not only significantly promote
the integration of nerve tissue and the regeneration of neurons but also inhibit the formation of glial scar and the spread of inflammatory cells. Reproduced with
permission from Li et al.79 BMSC, bone marrow mesenchymal stem cell.
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Figure 10. iPS-NP survival and migration after transplantation at 17 weeks. Image of infiltrated by endogenous cells and cell elements positive for NF200
(A, C), GFAP (L and L1–higher magnification of L) and CGRP (M and M1–higher magnification of M). Image of differentiation transplanted cell into GFAP-
positive astrocytes (L1, the white dashed line on L1 showing GFAP-negative human cells that have a neuron-like morphology), NF70- and NF200-positive
neurons and mature neurons positive for calbindin (D-F and F1–higher magnification of F), TH-5 (G-I and H1, I1), serotonin (J) and ChAT (K). Reproduced with
permission from Romanyuk et al.11 iPSC, induced pluripotent stem cell; NPs, neural precursors.
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Neurotrophin-3. A promising tool is NT-3, and
its expression in the developing spinal cord motor
neurons has increased significantly. However, NT-3
is more challenging to identify because of its lower
protein abundance.104 Furthermore, NT-3 facili-
tates survival of neurons and improves peripheral

nerve regeneration.105,106 Alternatively, transplan-
tation of NT-3 expressing cells to the site of injury
showed that CST grew over short distances.107 An-
other advantage of using NT-3 is that it circumvents
the target area associated with pain, so it does not
cause side effects such as pain or spasticity.

Table 2. Effect of nutrition factors on spinal cord injury therapy

Nutritional factor Effect Adjustment Source

NEG Promotes neuronal survival, growth, and
axonal regeneration

Widely expressed throughout the body, high
expression of SCI

First found in mouse sarcomas95,123

BDNF Axonal growth that promotes neuronal
survival

Wide expression throughout the body First discovered in the pig brain102

NT-3 Promotes the survival of sympathetic and
sensory neurons

Widely distributed in the body Cell gene regulation can be secreted123

CNTF Promotes neuronal survival, growing, and
sprouting

High expression of SCI First discovered in the ciliary ganglia of
chicken embryonic eye tissue110,111

FGF Inducing angiogenesis at the injury site Wide expression throughout the body Secreted by the pituitary and
hypothalamus115

GDNF Maintaining neuronal survival, reduces the
production of glial scars

Wide expression of the nervous system SC secretion117,124

CNTF, ciliary neurotrophic factor; FGF, fibroblast growth factor; GDNF, glial cell-derived neurotrophic factor.

Figure 11. Neurotrophic factor signaling pathway. NGF has a high affinity with TrkA and facilitates differentiation and survival of neurons.126 BDNF has a high
affinity with TrkB and enhances axonal growth and survival of neurons.102,127 NT-3 has a high affinity with TrkC and promotes the survival of neurons.126 CNTF
signals, via the JAK/STAT pathway, have been widely and successfully used to facilitate the regeneration of retinal ganglion cell axons in adult rats.128 FGF
signals through the PI3K/AKT pathway and stimulates proliferation, angiogenesis, and survival of neurons.129 GDNF can send signals through RET-independent
or RET-dependent pathways. The latter can promote neuronal differentiation, survival, and migration.124,130 CNTF, ciliary neurotrophic factor; FGF, fibroblast
growth factor; GDNF, glial cell-derived neurotrophic factor; JAK/STAT, Janus kinase/signal transducers and activators of transcription; NGF, nerve growth
factor; NT-3, neurotrophin-3; PI3K/AKT, phosphoinositide 3 kinase/serine–threonine kinase; TrkA, tropomyosin receptor kinase A; TrkB, tropomyosin receptor
kinase B; TrkC, tropomyosin receptor kinase C.
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Ciliary neurotrophic factor. It was demon-
strated that transplantation of ciliary neurotrophic
factor (CNTF) in mouse models has a neuropro-
tective and reparative effect in the central and
PNSs.108 Furthermore, CNTF can improve the
survival rate of neurons after development and
axonal fracture.109 In addition, several studies
have demonstrated that CNTF combined with
multiple cell therapies is more effective than using
CNTF alone.100,111 Although the treatment of
damaged neurons by CNTF may require the in-
volvement of other cell types, this cytokine is not
completely unaffected in cultured SCs. OPC
transplantation combined with CNTF expression
can promote myelination and functional recovery
after traumatic SCI.112

Fibroblast growth factor. Fibroblast growth
factor (FGF) has a presence throughout the devel-
opment of central and PNSs.113 FGF is expressed
in both astrocytes and neurons and is involved in
stimulating axon regeneration, promoting vascu-
larization, exerting anti-inflammatory functions of
inflammatory cells, and neuroprotection.114 Le’s
laboratory seeded basic FGF into collagen/gelatin
sponge scaffolds before implanting them into in-
activated skin and accelerated angiogenesis was
observed.115

Glial cell-derived neurotrophic factor. Glial cell-
derived neurotrophic factor (GDNF), a member of
the transforming growth factor family, is crucial
for motor neurons, dopaminergic neurons, and pe-
ripheral neurons.116 NGF plays an important part
in sensory neurons. It increases the number of
sprouting neurons and reduces lesion size at the
injury site during inflammation. In addition, it also
facilitates axonal regeneration in the central and
PNSs after SCI.116,117 Furthermore, research
groups have fabricated silk fibroin/alginates/
GDNF scaffolds seeded with human umbilical cord
mesenchymal stem cells to engineer neural tissue.
It was reported to significantly enhance neuron
survival and increase the number of surviving
neurons.117

CONCLUSIONS AND FUTURE DIRECTIONS

(1) Cell therapeutics is a very promising ap-
proach to treat nerve regeneration, which
has become a hot topic of extensive re-
search. Cells play a role in the replacement
of lost neurons and glial cells, secretion of
neurotrophic factors and anti-inflammatory
cytokines, stimulation of tissue retention

and angiogenesis, reconstruction of neural
pathways, filling the lesions of the cystic
cavity, and stimulating axonal regeneration
and remyelination at various levels, from
molecules to tissues.

(2) There are noteworthy differences between
similar cells depending on the species, age,
culture conditions and delivery patterns of
the donor. On the contrary, with regard to
the timing of the intervention, almost all the
studies about transplantation were con-
ducted in subacute and acute conditions,
while chronic treatment was rare. The late
transplant time point would help to reduce
the number of subjects required for clinical
trials, as their outcome trajectory was more
predictable.

(3) Each transplant candidate has a specific
risk in the translation process. The forma-
tion of tumors is a major risk that can be
assessed over a long period of time through
transplantation to large animals with lon-
ger life spans. Another risk of transplanta-
tion is an increased chance of infection. In
cervical spine injury after SCI, systemic
immune function is significantly reduced
and patients may have severe immunosup-
pression.118,119 Therefore, cell therapy
should be thoroughly investigated to ensure
that there is no increase in the likelihood of
tumors and infections.

(4) Rehabilitation is generally assessed through
rodent models of SCI before it is applied to
clinical practice. However, most of the ex-
perimental data are based on mild or mod-
erate chest injury models, the severity of
which is still far from adequate compared
with clinical patients. The most promising
strategy is the study with primate models,
because the species’ spinal cord is the closest
to the human spinal cord in terms of size
and function, and the mechanism of SCI is
more similar to that of humans.120

(5) The future application of SCI therapy in
clinical practice may include the combina-
tion of multiple strategies. The compre-
hensive treatment of injury of spinal cord
is the focus of the present research. For
example, two or more cells can be trans-
planted at the same time as treatment for
SCI. One of these cells secretes nutritional
factors that can provide nutritional sup-
port for another cell. In addition to cells,
drug delivery, gene therapy, and biomate-
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rials can also help promote re-
generation after SCI.121,122 With
the combination of different cell
therapy strategies, future experi-
ments will achieve more dramatic
success in spinal cord repair.
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TAKE-HOME MESSAGES

� Great progress has been made in cell-based therapies for SCI, which
results in impaired sensory and motor function below the injury level
through initial and secondary injury.

� There have been numerous articles in recent years on experimental cell
therapy for SCI, involving SCs, olfactory ensheathing cells, activated
macrophages, fibroblasts, NSCs, embryonic stem cells, BMSCs, and
iPSCs.

� Challenges after SCI include cystic cavities, glial scar, myelin inhibitor,
and inflammation.

� SCs can produce a variety of neurotrophic factors and reduce cyst and
glial scar formation.

� OECs obtained from olfactory mucosa and olfactory bulb can regulate
glial scar formation, axon remyelination, and nerve tissue reconstruction.

� Macrophages are classified into the classic M1 type with proin-
flammatory effect and the M2 type with anti-inflammatory effect.

� NSCs can differentiate into neurons, astrocytes, and oligodendrocytes.

� iPSCs are cell types obtained by reprogramming a combination of four
transcription factors (SOX2, OCT3/4, KLF4, and c-MYC) into mouse or
human fibroblasts using viral vectors.

� Multiple neurotrophic factors, such as NGF, BDNF, NT-3, CNTF, FGF, and
GDNF, enhance the functional benefits of SCI cell transplantation.
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Abbreviations and Acronyms

BDNF ¼ brain-derived neurotrophic
factor

BMSCs ¼ bone marrow mesenchymal
stem cells

CDNF ¼ cerebral dopamine neurotrophic
factor

ChABC ¼ chondroitinase ABC
CNS ¼ central nervous system

CNTF ¼ ciliary neurotrophic factor
CSPG ¼ chondroitin sulfate proteoglycan

CST ¼ corticospinal tract
ECM ¼ extracellular matrix

ESC-NS/PCs ¼ ESC-derived neural
stem/progenitor cells

ESCs ¼ embryonic stem cells
FGF ¼ fibroblast growth factor

GDNF ¼ glial cell-derived neurotrophic
factor

GLD ¼ globoid cell leukodystrophy
GRP ¼ glial restricted precursors

iPSCs ¼ induced pluripotent stem cells
JAK/STAT ¼ Janus kinase/signal

transducers and activators
of transcription

KLF4 ¼ Kruppel-like factor 4
MAG ¼ myelin-associated glycoprotein

mESCs ¼ mouse ESCs
NGF ¼ nerve growth factor

Nogo ¼ neurite outgrowth inhibitor

NPs ¼ neural precursors
NRP ¼ neuronal restricted precursors

NSCs ¼ neural stem cells
NT-3 ¼ neurotrophin-3
OECs ¼ olfactory ensheathing cells

OMgp ¼ oligodendrocyte myelin
glycoprotein

OPCs ¼ oligodendrocyte precursor cells
PI3K/AKT ¼ phosphoinositide 3 kinase/

serine–threonine kinase
PNS ¼ peripheral nervous system
SCI ¼ spinal cord injury
SCs ¼ Schwann cells

TrkA ¼ tropomyosin receptor kinase A
TrkB ¼ tropomyosin receptor kinase B
TrkC ¼ tropomyosin receptor kinase C
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