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Genetically engineered T cells for cancer immunotherapy
Dan Li1, Xue Li1, Wei-Lin Zhou1, Yong Huang1, Xiao Liang1,2, Lin Jiang1, Xiao Yang1, Jie Sun3,4, Zonghai Li5,6, Wei-Dong Han7 and
Wei Wang 1

T cells in the immune system protect the human body from infection by pathogens and clear mutant cells through specific
recognition by T cell receptors (TCRs). Cancer immunotherapy, by relying on this basic recognition method, boosts the antitumor
efficacy of T cells by unleashing the inhibition of immune checkpoints and expands adaptive immunity by facilitating the adoptive
transfer of genetically engineered T cells. T cells genetically equipped with chimeric antigen receptors (CARs) or TCRs have shown
remarkable effectiveness in treating some hematological malignancies, although the efficacy of engineered T cells in treating solid
tumors is far from satisfactory. In this review, we summarize the development of genetically engineered T cells, outline the most
recent studies investigating genetically engineered T cells for cancer immunotherapy, and discuss strategies for improving the
performance of these T cells in fighting cancers.

Signal Transduction and Targeted Therapy            (2019) 4:35 ; https://doi.org/10.1038/s41392-019-0070-9

INTRODUCTION
T cells play central roles in cell-mediated adaptive immunity. Since
researchers identified the molecular evidence of T cell receptors
(TCRs) in the 1980s1,2, the recognition of antigens by TCRs has
been heavily investigated, and the molecular mechanisms
governing this process have been elucidated3,4, laying the
foundation for cancer immunotherapy.
Cancer immunotherapy exploits the body’s own immune system

to fight against cancer. This therapy was designated as an annual
scientific breakthrough in 2013 by Science magazine and has
exhibited promising antitumor efficacy in recent years5–7. Cancer
immunotherapies are categorized as immune checkpoint inhibitors
(ICIs), adoptive cell therapies (ACTs), and tumor vaccines8,9. Numerous
patients with advanced tumors have benefited from cancer
immunotherapy, and some have achieved complete remission.
ACT has long been used to treat cancers and other diseases. The

adoptive transfer of T lymphocytes expanded ex vivo has shown
limited antitumor efficacy, as these T lymphocytes lack specificity
against tumor cells. To enhance the efficacy of ACT, the infusion of
tumor-infiltrating lymphocytes (TILs) with specificity against the
tumor cells in patients with preconditioning regimens substan-
tially improved the efficacy of the treatment10–13. After cloning the
TCR gene of the TIL, it is possible to endow T cells with defined
specificity by transferring the cloned TCR gene14,15. T cells
engineered by viral vectors to express the TCR gene with defined
specificity have shown considerable benefit for the treatment of
cancers16,17, although there are many limitations of TCR-
engineered T (TCR-T) cells, including HLA restriction, side effects,

and the lack of a sufficiently broad TCR gene repertoire with
defined specificity18,19. Chimeric antigen receptor-modified T
(CAR-T) cells, which are genetically engineered to express CAR
molecules targeting surface antigens on tumor cells and other cells,
can overcome some of the limitations of TCR-T cells20,21. Since the
first demonstration of cytotoxicity to target-bearing cells18,20–23, CAR-
T cells have been extensively investigated in preclinical and clinical
studies and have exhibited dramatic efficacy in treating hematolo-
gical malignancies24–28, although moderate effects have been
obtained for the treatment of solid tumors29–31.
In this review, we summarize the recent investigations of

genetically engineered T cells, mostly focusing on CAR construct
optimization, clinical efficacy, and strategies to overcome resis-
tance and other limitations, as well as the outlook for future
applications of genetically engineered T cells to cancer therapy.

RATIONALE FOR THE EMERGENCE OF GENETICALLY
ENGINEERED T CELLS
T cells gain autoimmune tolerance after the positive selection of
thymocytes32 and play pivotal roles in adaptive immunity33. T cells
can provide protective immunity through TCR recognition of
foreign antigenic peptides presented by antigen-presenting cells
(APCs)34,35, by which T cells might combat tumor cells35,36. The
adoptive transfer of T cells was first investigated in the treatment
of localized and disseminated lymphoma, and tumors regressed
after the infusion of T cells in a syngeneic mouse model37;
subsequently, studies have investigated the clinical applications of
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T cells and other immune cells to fight cancers and other diseases.
In fact, T cells infused for the treatment of cancers have been
manipulated ex vivo by using different strategies: e.g., LAKs
(lymphokine-activated killers) are T cells that proliferate after
induction with interleukin (IL)-2. To enhance the specificity of
transferred T cells, investigators have attempted to activate and
induce proliferation in tumor-specific T cells by using dendritic
cells exposed to tumor cell lysates38–40, although only moderate
clinical benefits have been obtained in these clinical trials41–43. For
the treatment of hematological malignancies, the transfer of
allogeneic T cells is an important strategy to induce tumor
elimination44, but it damaged normal tissue and visceral organs in
recipients, resulting in graft-versus-host disease (GVHD)45,46. The
prevention of GVHD by T cell depletion or host-specific allogenic T
cell elimination has been proven to be effective and to improve
long-time survival47–49.
Well-tested ex vivo expansion strategies50,51 warrant sufficient

production of the isolated T cells for clinical applications, while the
antitumor efficacy of adoptive transfer LAKs and cytokine-induced
killer cells is moderate, mainly due to a lack of sufficient effector
T cells specifically targeting tumor cells52–54. TILs are effector
T cells that leave the blood and infiltrate into tumor tissue to
attack tumor cells. TILs theoretically load TCRs specific to tumor
antigens, and it has been found that TILs expanded ex vivo have
an antitumor efficacy that is enhanced 50–100-fold compared
with that of IL-2 alone55. Pioneering clinical trials initiated by
Rosenberg and colleagues using expanded TILs for the treatment
of melanoma and other tumors demonstrated that the adoptive
transfer of autologous TILs is efficacious in regressing primary
tumor cells and reducing metastasis56. After decades of
research43–47, the adoptive transfer of TILs has been demonstrated
to be one of the most important cancer immunotherapies for the
treatment of melanoma and several other tumors10.
However, the many hurdles facing the use of TILs limit the

antitumor capacity of TIL-based immunotherapy. TILs directly
recognize antigens presented on the surface of tumor cells in the
form of major histocompatibility complex (MHC)–peptide com-
plexes57,58. Because tumor-associated antigen (TAA) is also
expressed on self-tissue, immune tolerance occurs when using
TILs exposed to p-MHCs derived from TAAs, resulting in
unresponsive T cells59. In addition, tumor cells can escape
immune surveillance for several reasons, including the down-
regulation of MHC molecules and autoantigens, leading to
immunosuppression and weak immunogenicity60–62. In addition,
the TILs from a considerable proportion of patients cannot be
obtained or expanded enough for infusion, which promotes the
engineering of T cells by transducing TCR genes with known
specificity to tumor antigens.
TCR-T cells showed strong tumor-killing ability in murine

models and mediated the regression of tumors in clinical
trials14,17,63, demonstrating that the specificity of T cells can be
redirected against the indicated antigens to mediate immunity to
cancer. However, the immunity of TILs or TCR-T cell-based cancer
immunotherapy is MHC-restricted, since the recognition of MHC-
presented antigens by naive or transduced TCRs is the underlying
molecular mechanism. In the 1980s, investigators pioneered a
method of redirecting the specificity of T cells by introducing
genes encoding artificial TCR-like molecules composed of single-
chain variable fragments (scFv) of antibodies, spacers, transmem-
brane domains, and intracellular domains20,21, known as CARs.
Unlike TCR, CAR recognizes surface antigens on target cells via the
scFv, and CAR-T cells thus elicit cytotoxicity towards target cells in
an MHC-independent manner, which broadens the application of
genetically engineered T cells. Many gene transfer tools have been
exploited for the engineering of T cells, including retroviral
vectors64, liposomes65, electroporation66, and other gene-editing
strategies67–69. The safety and antitumor capacity of gene-
engineered T cells have been demonstrated31,70–72, making

genetically modified T cell-based cancer immunotherapy a
promising treatment regimen for hematological and solid tumors.

GENETICALLY ENGINEERED T CELLS FOR TREATING
HEMATOLOGICAL MALIGNANCIES
Use of CAR-T cells for treating hematological malignancies
After the development of CARs, CAR-T cell-based immunotherapy
was utilized in the treatment of lymphoma, leukemia, myeloma,
and other hematological malignancies (Table 1)21,73. Currently, it is
well accepted that CAR-T therapy is efficacious in the treatment of
hematological malignancies and exhibits controllable and toler-
able toxicity.
Among the CAR-T cells used for treating hematological cancers,

CD19 CAR-T cells are the most prevalent, and hundreds of clinical
trials using CD19 CAR-T cells are underway. CD19 CAR-T cells,
which target conservatively and extensively expressed CD19 in B-
cell lymphomas or leukemias74–76, have shown promising out-
comes in several trials for treating relapsed, refractory B cell (R/R)
cancers28,77–79, leading the U.S. Food and Drug Administration
(FDA) to approve the first CAR-T cell product, tisagenlecleucel
(Kymriah or CTL019), for the treatment of acute lymphoblastic
leukemia (ALL) in children and adults80. The mostly recently
updated data showed that, in a trial of CD19 CAR-T therapy in
which 75 evaluable patients participated in the study, 81% of
them achieved 3-month overall remission and 76% achieved 12-
month overall survival (OS; the median OS was 19 months)81.
Furthermore, CTL019 has been tested in R/R chronic lymphocytic
leukemia (CLL; 17 evaluable patients; overall response rate (ORR)
was 53%, complete response (CR) rate was 35%)82, follicular
lymphoma (14 evaluable patients, ORR was 79%, CR was 71% after
6 months)83, multiple myeloma (MM) (10 patients, 1 with cytokine
release syndrome (CRS) and 2 with longer progression-free
survival)84. In addition to CTL019, another product, known as
axicabtagene ciloleucel, exhibited robust efficacy in treating R/R
diffuse large B cell lymphoma (DLBCL). Phase II trials demon-
strated an ORR of 82%, with a CR rate of 40% at a median follow-
up of 15.2 months26. JCAR017, a well-regarded product produced
by Juno Therapeutics, resulted in a dramatic ORR of 75% and a 6-
month CR of 37% in 68 R/R DLBCL patients85. Overall, CD19 CAR-T
therapy showed encouraging therapeutic effects and safety,
illustrating that CD19 CAR-T has advantages for the treatment of
hematological malignancies, especially B cell malignancies84.
Despite the curative efficacies of CD19 CAR-T cells, their side
effects, resulting in normal B cell dysplasia, lethal CRS, and
neurotoxicity, warrant further study79,84,86,87. In addition, relapse
after CR post-CD19 CAR-T infusion is another concern for users of
this therapy. Several mechanisms have been uncovered that were
involved in relapse, including CD19 loss, CD19 antigen masking,
and trogocytosis88,89. CD22, an alternative surface marker
expressed by B cell leukemia and lymphoma cells, can be targeted
by CAR-T therapy. The sequential infusion of CD22 CAR-T cells
post-CD19 CAR-T therapy can lead to the remission of cancer that
relapsed after CD19 CAR-T therapy90. In fact, previous studies
demonstrated the antitumor capacity of CD22 CAR-T therapy91,92,
and earlier clinical studies of CD22 CAR-T cells in ALL were
published in 201890. Compared with CD19 CAR-T cells, CD22 CAR-
T cells showed comparable antileukemia cytotoxicity90. Mean-
while, there is no evidence for neurological toxicity and seizures
resulting from CD22 CAR-T therapy, which has been observed in
CD19 CAR-T therapy90,93. To maximize the benefits of CD19 and
CD22 CAR-T therapy for hematological malignancies, the sequen-
tial or simultaneous combination of the two different CAR-T
products should be further studied.
CD20 is a classic target for lymphoma treatment. The targeting

of CD20 by rituximab is efficacious for the treatment of non-
Hodgkin’s lymphoma (NHL). Efforts have been made to use CAR-T
cells targeting CD20 to treat lymphoma. Although the level of

Genetically engineered T cells for cancer immunotherapy
Li et al.

2

Signal Transduction and Targeted Therapy            (2019) 4:35 



Ta
bl
e
1.

A
p
p
lic
at
io
n
o
f
en

g
in
ee

re
d
T
ce
lls

in
cl
in
ic
al

tr
ia
ls
fo
r
tr
ea
ti
n
g
h
em

at
o
lo
g
ic
al

m
al
ig
n
an

ci
es

Ty
p
e
o
f
th
e
ar
m

Ta
rg
et
/c
o
n
st
ru
ct

Ph
as
e

N
o.

o
f
p
at
ie
n
ts
/d
is
ea
se

Ef
fi
ca
cy

R
ef
er
en

ce

C
A
R
-T

th
er
ap

y

Ti
sa
g
en

le
cl
eu

ce
l,
C
TL
01

9
C
D
19

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

Ph
as
e
II

75
,R

R
-A
LL

ch
ild

re
n
an

d
yo

u
n
g
ad

u
lt
s

O
R
81

%
(3

m
o
n
th
s)

O
S
76

%
(1
2
m
o
n
th
s)

81

Ti
sa
g
en

le
cl
eu

ce
l,
C
TL
01

9
C
D
19

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

Ph
as
e
II

17
,R

/R
C
LL

O
R
R
,5

3%
;C

R
,3

5%
82

Ti
sa
g
en

le
cl
eu

ce
l,
C
TL
01

9
C
D
19

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

C
as
e
se
ri
es

14
,F

L
O
R
R
,7

9%
;C

R
,7

1%
83

Ti
sa
g
en

le
cl
eu

ce
l,
C
TL
01

9
C
D
19

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

Ph
as
e
I
af
te
r
A
SC

T
10

,M
M

C
R
S,

10
%
;l
o
n
g
er

p
ro
g
re
ss
io
n
-f
re
e
su
rv
iv
al

20
%

84

JC
A
R
01

7
C
D
19

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

Ph
as
e
II

68
,R

/R
D
LB

C
L

O
R
R
75

%
;C

R
R
37

%
85

A
xi
ca
b
ta
g
en

e
ci
lo
le
u
ce
,
K
TE

-C
19

C
D
19

-(
C
D
28

)-
(C
D
3-
ze
ta
)

Ph
as
e
II

11
1,

R
/R

D
LB

C
L

O
R
R
,8

2%
;C

R
,4

0%
26

C
D
20

C
A
R
-T

C
D
19

-(
C
D
3-
ze
ta
)

Ph
as
e
I

7,
FL

an
d
M
C
L

PR
,1

4.
2%

;C
R
,2

8.
5%

16

C
D
20

C
A
R
-T

C
D
20

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

Ph
as
e
II

11
,R

/R
N
H
L,

p
ri
m
ar
ily

D
LB

C
L

O
R
R
82

%
;C

R
R
55

%
95

C
D
22

-C
A
R
T

C
D
22

-(
4-
1B

B)
-(
C
D
3-
ze
ta
)

Ph
as
e
I

21
,R

R
-A
LL

ch
ild

re
n
an

d
yo

u
n
g
ad

u
lt
s

O
R
R
,5

3%
90

b
b
21

21
B
C
M
A
C
A
R
-T

Ph
as
e
I

20
,R

/R
-M

M
O
R
R
89

%
;R

R
10

0%
10

6

LC
A
R
-B
38

M
B
C
M
A
C
A
R
-T

Ph
as
e
I

19
,R

/R
-M

M
O
R
R
10

0%
;3

2%
M
R
D
-n
eg

at
iv
e
C
R
,a

n
d
32

%
n
C
R

84

κ
o
r
λ
lig

h
t
ch

ai
n

κ-
d
ir
ec
te
d
C
A
R

Ph
as
e
I

9,
N
H
L/
C
LL

PR
11

%
11

8

TC
R
-T

th
er
ap

y

N
Y
-E
SO

-1
-L
A
G
E-
1

A
n
ti
g
en

s
N
Y
-E
SO

-1
an

d
LA

G
E-

Ph
as
e
I/
II
(w

it
h
A
SC

T
)

20
,M

M
70

%
C
R
o
r
n
C
R

70

W
T1

TC
R
-T

A
n
ti
g
en

W
T1

Ph
as
e
I/
II
(w

it
h
)

12
,A

M
L

66
%

C
R

38
7

B
is
p
ec
ifi
c
an

ti
b
o
d
ie
s

B
lin

at
u
m
o
m
ab

C
D
19

-C
D
3

Ph
as
e
II

21
,R

R
-D
LB

C
L

O
R
R
43

%
;C

R
R
19

%
14

8

N
at
u
ra
l
ki
lle
r
ce
ll
th
er
ap

y

C
A
R
-N
K

C
d
19

-(
N
K
-9
2)

R
eg

is
te
re
d
cl
in
ic
al

tr
ia
ls

C
D
19

-p
o
si
ti
ve

B
ce
ll
m
al
ig
n
an

ci
es

U
n
p
u
b
lis
h
ed

16
3

C
A
R
-N
K

C
d
33

-(
N
K
-9
2)

R
eg

is
te
re
d
cl
in
ic
al

tr
ia
ls

A
M
L

U
n
p
u
b
lis
h
ed

16
3

C
A
R
-N
K

C
d
7-
(N
K
-9
2)

R
eg

is
te
re
d
cl
in
ic
al

tr
ia
ls

C
D
7-
p
o
si
ti
ve

le
u
ke
m
ia

o
r
ly
m
p
h
o
m
a

U
n
p
u
b
lis
h
ed

16
3

C
A
R
-N
K

C
D
19

-(
co

rd
b
lo
o
d
)

R
eg

is
te
re
d
cl
in
ic
al

tr
ia
ls

C
D
19

-p
o
si
ti
ve

le
u
ke
m
ia

o
r
ly
m
p
h
o
m
a

U
n
p
u
b
lis
h
ed

16
3

Genetically engineered T cells for cancer immunotherapy
Li et al.

3

Signal Transduction and Targeted Therapy            (2019) 4:35 



CD20 is not comparable to that of CD19, CD20 is also frequently
expressed in lymphoid malignancies and B cell acute lymphocytic
leukemia (B-ALL)91,92,94. CD20 CAR-T cells have been evaluated for
efficacy and safety, and preclinical investigations have demon-
strated similar anti-lymphoma activity compared to CD22 CAR-T
cell therapy91. In a clinical trial of seven patients with follicular or
mantle cell lymphomas treated with first-generation CD20 CAR-T
therapy, three patients showed a positive response (one partial
response (PR), two CR)16. In a clinical trial for the treatment of R/R
NHL, primarily DLBCL, >80% of patients showed an objective
response95. These studies have proven that CD20 CAR-T therapy is
efficacious with minimal toxicity, but its poor persistence might be
an obstacle to sustained antitumor efficacy for first-generation
CAR-T cells. Second-generation CD20 CAR-T cells may lead to
improved persistence by adding a costimulatory domain (such as
4-1BB, CD28 or a dual costimulatory molecule)96. Clinical data for
second-generation CAR-T cells targeting CD20 have shown their
robust antitumor capacity and minimal toxicity for the treatment
of CD20-expressing lymphoma96–98. In leukemia and lymphoma,
CD19, CD22, and CD20 have different expressional hierarchies in
tumor cells. However, a head-to-head comparison of the
antitumor efficacy of CAR-T cells targeting different antigens is
needed to determine whether the selection of the antigen affects
the clinical efficacy of CAR-T cells.
MM is another hematological malignancy that is derived from

plasma cells. MM is one of the most studied hematological cancers
that CAR-T therapy targets. MM cells were found to express
ultralow levels of CD1924,99, and CD19 CAR-T therapy for treating
MM resulted in a durable CR >1 year, despite the absence of CD19
expression post-CD19 CAR-T cell infusion24. B cell mature antigen
(BCMA) belongs to the tumor necrosis factor receptor family100–102

and is specifically expressed on MM cells, plasma cells, and partial
memory B cells100,103–105, making BCMA an ideal marker for
targeting by CAR-T cells. Two BCMA CAR-T cell products (bb2121
and LCAR-B38M) were subject to clinical trials for the treatment of
MM. The data from the bb2121 phase I dose-escalation trial
showed that the CR rate reached 71% among the 21 patients
treated106. LCAR-B38M treatment in 57 recruited patients pro-
duced an ORR of 88% and a CR of 74%107. These initial efforts
using BCMA CAR-T cells for MM treatment indicated that more
evidence of safety and efficacy is needed. Other targets, such as
CD38, CS-1, and CD138, are targeted by CAR-T cells for the
treatment of MM. Monoclonal antibodies against CD38 and CS-1
have been approved by the FDA for the treatment of MM.
Indatuximab ravtansine, a monoclonal antibody (mAb) against
CD138 conjugated with maytansinoid, has been developed for
MM treatment. However, CAR-T cells recognizing MM targets need
to be meticulously manipulated, especially because of the side
effects caused by “on-target, off-tumor” toxicity108–111.
Receptor tyrosine kinase-like orphan receptor 1 (ROR1) is

abnormally expressed on malignant B cells and at lower levels
on normal cells and tissue110,112–115. Although CAR-T cells
recognizing ROR1 elicited strong cytotoxicity in tumor cells,
toxicity in normal cells expressing low levels of ROR1 was
detected92,112,116, and further evidence of safety and efficacy are
needed prior to the application of ROR1 CAR-T cells. In human B-
cells, the immunoglobulin-κ (Ig κ) and Ig λ light chains are
expressed at a certain ratio, which ranges from 4:1 to 0.5:1. Light-
chain CAR-T cells can recognize cells histologically and do not
target 20–80% of normal B cells and plasma cells110,117. Ten NHL/
MM/CLL patients were treated with κ-redirected CAR-T cells in a
clinical trial. Among the five patients with relapsed NHL, two
achieved complete remission (after two and three infusions), one
had a PR, and two progressed. Three MM patients showed stable
disease, and the two CLL patients progressed before or shortly
after the 6-week evaluation118. CD30, a biomarker targeted by the
brentuximab vedotin mAb, is expressed on all Hodgkin’s
lymphomas (HLs) and a portion of NHLs. CAR-T cells recognizing

CD30 showed antitumor capability in preclinical and clinical
studies86,119,120. CAR-T cells specifically recognizing other targets,
including CD123 (the IL-3 receptor α chain)121–123, CD33124,125,
CD44v6, and Lewis Y126 antigen, were subjected to preclinical and
clinical investigation.

Use of TCR-engineered T (TCR-T) cells for treating hematological
malignancies
The application of TCR-T cells as a novel adoptive immunother-
apy127,128 has shown encouraging results in the treatment of
several advanced cancers127,129. TCR-T cells were able to detect
intracellular antigens more sensitively via the MHC system130.
Clinical investigations using TCR-T cells for the treatment of
metastatic melanoma, synovial sarcoma, and colorectal cancer
have achieved significant success17,70,131–134. TCR-T cells recogniz-
ing New York esophageal squamous cell carcinoma (NY-ESO-1 or
CTAG1A) have been used to treat patients with advanced MM and
have resulted in durable CR135. In a clinical trial, 80% of patients
with MM (20 in total) who received NY-ESO-1 TCR-T cell therapy
achieved objective responses without severe toxicity. Although
TCR-T cell therapy presents new therapeutic opportunities for MM
patients and other tumor patients70,136–138, safety should be of
primary concern for other targets139,140, especially when the TCRs
used for antigen recognition are modified141.

Bispecific antibodies for treating hematological malignancies
Bispecific T cell engagers (BiTE) are engineered mAbs consisting of
two scFvs with affinity for CD3 and tumor antigens142. BiTE shares
many similarities with CAR-T cells and exhibits remarkable efficacy
as a cancer therapy. The promising efficacy of BiTEs in the
treatment of hematological malignancies has been demonstrated
in clinical trials143,144. Blinatumomab (or MT103), which is specific
for CD3 and CD19 and was the first BiTE approved by the FDA, has
been used in several trials to treat lymphoma, ALL, and MM145–147.
Its promising performance, as shown by the clinical data
(especially in R/R B-ALL), has made it known as an “off-the-shelf”
product that is easy to utilize compared with CD19 CAR-T cells148.
However, adverse events usually accompany the administration of
blinatumomab. The most common side effects are neurotoxicity
and CRS149–154. Moreover, the half-life of BiTE is shorter, resulting
in a more complicated treatment process. CD20/CD3 BiTEs
(TBTA05 and CD20Bi) have been evaluated in clinical trials145.
CD3/BCMA and CD3/CD38 BiTEs have completed preclinical
evaluation103,155,156. CD3 linked with CD123 and CD33 BiTEs has
been evaluated in clinical trials for AML patients145,157. In the near
future, BiTEs targeting different antigens expressed by hematolo-
gical malignancies may provide alternatives for patients, and the
comparison of BiTE with CAR-T cells in the treatment of the same
targets will improve our understanding of the treatment of cancer
by immunotherapy.

Use of genetically engineered natural killer (NK) cells for treating
hematological malignancies
NK cells are mainly derived from bone marrow CD34 lympho-
cytes158,159. NK cells recognize and elicit rapid responses against
virus-infected cells and tumor cells and serve as important innate
effector cells160–162. NK cell-based cancer immunotherapy, includ-
ing the adoptive transfer of NK cells combined with NK cells and
mAbs (such as ICIs), can be used to induce antibody-specific
cytotoxicity, and genetically engineered NK cells can be used to
induce antitumor effects. Compared with CAR-T cells, CAR-NK cells
mainly produce interferon (IFN)-γ and granulocyte macrophages
colony-stimulating factor (GM-CSF), thereby reducing the poten-
tial CRS163,164. NK cells have a shorter survival time than CAR-T
cells, and the incidence of side effects is further reduced, although
it is likely that the antitumor efficacy is decreased165.
Natural killer T cells (NKTs) are a group of special T cell subsets

that express both T cell surface markers and NK cell surface
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markers. Although NKTs in the body account for only 1/1000 of
the total number of immune cells, the antitumor activity of NKTs is
robust, but the reason for this is not fully understood. Preclinical
data suggest that NKTs express the surface markers of both NK
cells and CD8 T cells and produce more cell killing enzymes that
kill tumor cells166. Evidence of the role of NKT cells in tumor
immune surveillance and the antitumor potential of ligand-
activated NKT cells have been demonstrated in a mouse model,
increasing the enthusiasm for conducting further antitumor
potential investigations161,167,168.
Studies have investigated the engineering of NKT cells to

improve their antitumor potential. Hecezy et al. demonstrated that
NKT cells modified by CARs with specificity for GD2 showed
specific toxicity against GD2-positive tumor cells, increases in
in vivo survival, and potent antitumor activity in a mouse model of
a solid tumor163. GD2 CAR-NKT cell therapy is now being tested in
clinical trials to determine its safety and efficacy for treating
neuroblastoma (NCT03294954). NKT cells were also engineered for
treating lymphoma. Tian et al. documented that CD62L is crucial
for the antitumor activity of CAR-NKT cells169. CD62L is the
receptor of sulfated sialyl Lewis X antigen and functions in
peripheral lymph node homing. It has been demonstrated that
CD62L-positive but not CD62L-negative CD19 CAR-NKT cells
exhibit prolonged in vivo persistence and superior anti-
lymphoma activity169. It is hoped that CD62L-positive CD19 CAR-
NKT cells can be tested for safety and antitumor potential to
provide alternative engineered immune cells for treating hema-
tological malignancies. All of these therapies are summarized in
Table 1.

USE OF GENETICALLY ENGINEERED T CELLS FOR TREATING
SOLID TUMORS
Genetically engineered T cells have long been employed to treat
solid tumors17,30,170. The clinical efficacy of this type of treatment
is far from satisfactory compared with that achieved in treating
hematological malignancies24,171–173. Considerable research has
been conducted in an attempt to enhance the antitumor activities
of CAR-T and TCR-T cells, and different strategies aiming to
determine the efficacy and safety of CAR-T therapy are being
tested in clinical trials for the treatment of cancers, such as breast
cancer, sarcoma, and neuroblastoma (Table 2). The first clinical
application of CAR-T therapy for cancer treatment was the use of
CAR-T cells recognizing carbonic anhydrase IX (CAIX) for the
treatment of metastatic renal cell carcinoma, which showed
moderate antitumor activity30. Other results of clinical trials that
used genetically engineered T cells to treat solid tumors have
been barely comparable to those achieved with CAR-T therapy for
leukemia and lymphoma174.

The most commonly used targets for CAR-T therapy are surface
antigens, such as carcinoembryonic antigen (CEA) for colorectal
adenocarcinoma175,176, fibroblast activation protein for malignant
pleural mesothelioma177, diganglioside GD2 for neuroblastoma178,
glioblastoma179, melanoma180, and osteosarcoma181, human
epidermal growth factor receptor 2 (HER2) for HER2-positive
sarcoma182, mesothelin for pancreatic cancer183, IL-13 receptor α
(IL-13Rα) for glioma184, and mutant αvβ6 integrin for pancreatic
tumors185. TCR-engineered T cells always target the p-HLA
complex. In addition, the p-HLA complex can also be recognized
by CAR-T cells whose scFv for binding was derived from a TCR-like
antibody186. For these clinical trials, some outcomes have been
published. Pule et al. generated EBV-specific T cells to recognize
GD2 and infused these GD2 CAR-T cells into patients to treat
neuroblastoma187. It was found that virus-specific GD2 CAR-T cells
persisted and exhibited moderate anti-neuroblastoma activity.
HER2 is thought to be an ideal target for cancer therapy, and
many strategies have targeted HER2 to successfully treat breast
cancer, gastric cancer, and other tumors. In 2010, Morgan et al.
reported that the infusion of HER2 CAR-T cells to treat metastatic
colon cancer caused severe adverse effects, likely due to the large
number of third-generation CAR-T cells used and “on-target, off-
tumor” toxicity188. The meticulous redesign of the clinical
strategies used, including the splitting of the HER2 CAR-T cells
infusion, the use of a second-generation CAR construct with
different scFvs, and a reduction in the total number of CAR-T cells,
effectively improved safety while maintaining antitumor effi-
cacy182,189. Epidermal growth factor receptor (EGFR) is widely
expressed in normal epithelial tissue, but a mutant EGFR variant,
which is a biomarker of lung cancer and breast cancer, can be
targeted by CAR-T cells. It was reported that EGFR CAR-T cells used
for treating 11 non-small cell lung cancer patients showed efficacy
in 2 patients with PRs and 5 with stable disease190. CEA CAR-T cells
used for liver cancer treatment also showed moderate antitumor
efficacy with minimal toxicity191.
The reason for the moderate clinical efficacy of earlier CAR-T

cells used for the treatment of solid tumors is multifactorial. Unlike
hematological malignancies, solid tumors present many obstacles
to CAR-T cells resulting from short-term persistence or insufficient
infiltration. As a fundamental prerequisite for therapeutic efficacy,
CAR-T cells need to be trafficked to the tumor lesion. Once they
accumulate in the vicinity, they must efficiently infiltrate into the
tumor. After migrating into the solid tumor lesion, CAR-T cells
must overcome hostile immunosuppressive elements to elicit
specific cytotoxicity192, as shown in Fig. 1.

T cell trafficking to tumor sites
Efforts to enhance CAR-T cell trafficking have been made.
Investigators have modified CAR T cells with chemokine receptors

Table 2. Published clinical studies using CAR-T cells for treating solid tumors

Targeted antigen Disease Vector CAR generation Sponsor NCT identifier Reference

FRa Ovarian cancer Retrovirus First National Cancer Institute NA 29

Mesothelin Pancreatic cancer mRNA Second University of Pennsylvania NA 388

c-MET Breast cancer mRNA Second University of Pennsylvania NCT01837602 389

EGFRvIII Glioblastoma Lentiviral Second University of Pennsylvania NCT02209376 390

CEACAM5 CRC Retrovirus First The University of Manchester NCT01212887 391

CEA CRC Lentivirus Second Third Military Medical University NCT02349724 175

HER2 Glioblastoma Second Baylor College of Medicine NCT01109095 189

GD2 Neuroblastoma Retrovirus First Baylor College of Medicine NCT00085930 392

CD133 HCC, CRC, pancreatic cancer Lentivirus Second Chinese PLA General Hospital NCT02541370 393–395

NA not available
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that specifically bind chemokines produced by tumors, aiming to
improve the homing of CAR-T cells to tumor sites. It has been
demonstrated that enhanced CCR2b expression in mesothelin
CAR-T cells and GD2 CAR-T cells leads to improved antitumor
effects in malignant pleural mesothelioma and neuroblastoma
due to the increased migration of CAR-T cells to tumor
lesions193,194. In addition to CCR2 expression, the transgenic
coexpression of CCR4 improved the homing of CD30 CAR-T cells
to CD30+ HL that secreted CCL17 (the ligand for CCR4) and
thereby improved the anti-lymphoma effects195.
Intravenous infusion is currently considered the standard

method for adoptive cell therapy. Therefore, CAR-T cells must
migrate to the area where solid tumors are present. One strategy
to improve T cell trafficking is the local administration of CAR-T
cells to tumor sites, including intratumoral (NCT02587689),
intracranial (NCT00730613), pleural (NCT02414269), and hepatic
artery (NCT01373047) delivery. In a preclinical model, Adusumillii
et al.196 evaluated two routes of administration for mesothelin-
targeted T cells using M28z CARs and demonstrated that the
intrapleurally administration of CAR-T cells required 30-fold fewer
M28z T cells to induce long-term complete remission compared to
systemically infused CAR-T cells. Intrapleural administration
resulted in enhanced antitumor efficacy and functional T cell
persistence for 200 days, while intravenously delivered CAR-T cells
did not achieve comparable activation, tumor eradication, or
persistence196. The central nervous system is an immune-
privileged site secondary to the blood–brain barrier (BBB). It is
difficult for intravenously infused CAR-T cells to traffic to brain
tumors. The local delivery of T cells via methods such as
intracranial infusion could circumvent the BBB and improve the
immunotherapy of brain tumors197. Preclinical and clinical studies
have confirmed the efficacy of locally delivered CAR-T cells in
treating primary and metastatic brain cancers31,198–200.

Immunosuppressive microenvironment
In solid tumors, CAR-T cells face a hostile tumor microenvironment
(TME), even though CAR-T cells are able to migrate to tumor sites.
Solid tumors are usually infiltrated by an abundance of immune-
suppressor cells, including M2 tumor-associated macrophages,
myeloid-derived suppressor cells (MDSCs), and regulatory T cells
(Tregs) and B cells, which protect malignant cells from the
antitumor activity of the immune system201–203. In addition,
immunosuppressive cytokines and inhibitory immune checkpoints

play a crucial role in tumor pathogenesis and metastasis and limit
the therapeutic potential of cancer immunotherapies204,205.
Preclinical investigations have demonstrated that the incor-

poration of costimulatory molecules, such as CD28, into CARs may
help engineered CAR-T cells overcome the immunosuppressive
TME mediated by Treg cells206–208. It has been recently reported
that engineered CAR-T cells with inducible IL-18 tip the balance
within the immune cell landscape toward the Th1 acute-phase
response, thereby reducing the number of immunosuppressive
cells, such as Tregs and CD206+ macrophage cells, and resulting
in an augmented immune attack against large established tumors.
Notably, this effect was achieved in fully immune-competent mice
with advanced pancreatic adenocarcinoma209. Depleting MDSCs
can also boost T cell responses. A study showed that the
administration of GD2 CAR-T cells in combination with MDSC
depletion led to significant antitumor efficacy in a xenograft
sarcoma model, while CAR-T cells alone elicited minimal antitumor
activity210. In addition, Noman et al.211 demonstrated that
programmed death ligand 1 (PD-L1) blockade prevented T cell
suppression by MDSCs. It was also reported that the blockade of
PD-L1+ MDSCs and Tregs in the TME enhanced CEA CAR-T cell
antitumor capability212. Overall, the findings of these studies
indicated that immunosuppression was mediated by suppressor
cells and supported the rationale of cell preconditioning to
enhance the antitumor activity of CAR-T cells.
Various immunosuppressive cytokines, such as transforming

growth factor (TGF)-β and IL-10, are involved in the inhibition of
engineered T cell-based cancer immunotherapy203,213,214. In a
recent study, investigators engineered prostate-specific mem-
brane antigen CAR-T cells to coexpress a dominant-negative TGF-
β receptor and observed increased proliferation, enhanced
cytokine secretion, resistance to exhaustion, long-term in vivo
persistence, and the induction of tumor eradication by CAR-T cells
in aggressive human prostate cancer215. Then a phase I clinical
trial was initiated to assess CAR-T cells coexpressing TGF-βRII in
patients with relapsed and refractory metastatic prostate cancer
(NCT03089203). In addition, engineered CAR-T cells with the
enhanced secretion of cytokines, known as TRUCKs (T cells
redirected for universal cytokine killing), have been investi-
gated216–218. CAR-T cells targeting MUC16 with IL-12 secretion
have eradicated ovarian cancers in a preclinical trial. Engineered
CAR-T cells with autocrine IL-12 expression exhibited improved
antitumor activity by promoting CD8+ T cell function and
potentially circumventing the inhibitory TME219. MUC16 TRUCKs
are currently being evaluated in a clinical trial for treating solid
tumors (NCT02498912)219. The local delivery of the chemokine
RANTES (regulated and normal T cell expressed and secreted) and
the cytokine IL-15 by an oncolytic virus strikingly increased the
persistence of anti-GD2 CAR-T cells and enhanced the survival of
established neuroblastoma cells mice220. We generated CAR-T
cells specific for human vascular endothelial growth factor
receptor 1 (VEGFR-1) and T cells that genetically expressed IL-15,
and the VEGFR-1-specific CAR-T cells delayed tumor growth and
formation and suppressed pulmonary metastasis in a xenograft
tumor model221. Indeed, numerous studies have demonstrated
that γ-chain (γc) family cytokines could be used to enhance the
immunity of CAR-T cells. IL-2, IL-4, IL-7, IL-15, and IL-21 have been
shown to mitigate the effects of immunosuppressive factors in the
TME and produced remarkable enhancement of CAR-T efficacy221–
229.
T cells have also been demonstrated to express coinhibitory

receptors, termed markers of T cell exhaustion, to reduce the
antitumor activities of CAR-T cells. In recent years, PD-1 has been
studied as a potential target to promote CAR-T cell efficacy230.
Strategies to manipulate PD-1 expression on CAR-T cells include
the coadministration of a PD-1/PD-L1 blocking antibody, the
genetic removal of PD-1 from T cells and the secretion of
autocrine molecules to induce PD-1/PD-L1 blockade by CAR-T

Fig. 1 Immunosuppressive microenvironment in solid tumors.
MDSC myeloid-derived suppressor cell, Treg regulatory T cell, TAM
tumor-associated macrophage, TAF tumor-associated fibroblast
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cells. Cherkassky et al. demonstrated that PD-1/PD-L1 blockade
restored the antitumor activity of CD28 CAR-T cells in an
orthotopic pleural mesothelioma mouse model, mechanistically
confirming the role of the PD-1/PD-L1 axis in CAR-T cell
exhaustion231. Ren et al. genetically depleted PD-1 in prostate
stem cell antigen (PSCA) CAR-T cells by using the CRISPR/Cas9
gene-editing system and demonstrated their enhanced antitumor
efficacy, both in vitro and in vivo, in a murine prostate cancer
model232. Furthermore, several clinical trials of CAR-T cells
expressing PD-1 antibody for the treatment of solid tumors are
underway (NCT03030001, NCT02873390, NCT03179007,
NCT03182816, NCT03182803, NCT03615313). Additionally, a clin-
ical trial (NCT03399448) sponsored by University of Pennsylvania is
evaluating the antitumor efficacy of NY-ESO-1-specific TCR-T cells
with the elimination of PD-1 and endogenous TCR by the CRISPR/
Cas9 gene-editing system for the treatment of MM, melanoma,
and other tumors. It should be noted that systemic checkpoint
blockade diseases, such as pneumonitis, colitis, hepatitis, and
other adverse events, have occurred in many patients after PD-1
blockade treatment. In a PD-1 monotherapy clinical trial, Suzanne
et al. observed grade 3 or 4 drug-related adverse events in 14% of
patients, and 3 patients died from pulmonary toxicity out of a total
of 296 patients233. Therefore, side effects should be considered
when combining CAR-T cells with PD-1/PD-L1 blockade therapy.
However, when PD-1 blockade was combined with CAR-T cells, no
damage was observed in normal tissues, while the enhancement
of the anti-breast cancer activity of CAR-T cells was maintained234.
CAR-T cells secreting anti-PD-1 ScFv also produced minimal side
effects235. The reduced side effects might be ascribed to the
restricted secretion of PD-1 blockade antibodies in areas of CAR-T
distribution or the selective elimination of PD-1 specifically on
CAR-T cells. It is expected that the combination of CAR-T therapy
with anti-PD-1 therapy will increase the efficacy of cancer
immunotherapy.

EVOLUTION OF GENETICALLY ENGINEERED T CELLS
The first clinical application of CAR-T cells was for the treatment of
metastatic renal cell carcinoma by the infusion of CAR-T cells
recognizing CAIX236. CAIX CAR-T cells successfully targeted CAIX-
expressing tumor cells but also recognized CAIX-expressing
normal tissues, resulting in so-called “on-target, off-tumor” toxicity
and grade 2-4 enzyme disturbances236. The antitumor efficacy of
CAIX CAR-T was moderate, mainly due to the construction of a
CAR with an intracellular CD3ζmotif, which failed to induce robust
in vivo antitumor effects after engaging with tumor cells236,237. To
obtain ideal antitumor efficacy and prevent severe adverse effects,
the CAR construct was optimized. The CAR molecule consists of
four parts: the extracellular scFv, the transmembrane domain, the
costimulatory domain and the CD3ζ signal domain, which are
intracellular238.

Binding domain
Each part of the CAR construct can be modified to improve the
biological function of CAR-T cells. The scFv or other molecule used
for the binding domain exerts pivotal effects on the targeting
function of CAR-T cells and can be further optimized239,240. This
approach may employ human scFvs for CAR construct design to
improve the long-term survival of CAR-T cells, whereas a potential
human anti-mouse antibody reaction may eliminate CAR-T cells
that use a murine scFv for binding and lead to poor persistence. In
recent years, efforts have been made to replace scFvs with
nanobodies derived from camelids241, and preclinical studies have
shown that nanobody-based CAR-T cells showed improved
flexibility in antigen recognition and achieved comparable efficacy
when treating different tumors242,243. CAR-T cells attack cells
expressing the CAR-recognized antigens, which are always TAAs.
TAAs are also expressed on normal tissues at lower levels

compared with those of tumors. To maximally mitigate “on-target,
off-tumor” toxicity, the affinity of the scFv in the CAR construct is
meticulously tuned to selectively recognize tumor cells having
higher levels of TAAs while sparing normal tissues with low levels
of antigen244,245. CAR-T cells always recognize the antigens on the
surfaces of the target cells. The TCR-like antibody specifically binds
the p-HLA resembling the TCR, since it binds neither the
presented peptide nor the HLA molecule alone. CAR-T cells that
use TCR-like scFvs for binding can recognize intracellular
antigens246. CAR-T cells with TCR-like scFvs recognizing alpha
fetoprotein have shown robust tumor-inhibiting effects in the
treatment of liver cancer186. Indeed, some other molecules have
been used for binding, e.g., ligands or cytokines binding to a
specific receptor, which are antigens that the targeted cells can
recognize247,248.
Antigens for TCR-T cells have been derived from melanoma

antigens, such as GP100, MART1249, NY-ESO-1250, MAGE family
members251, and WT1252, and the clinical application of TCR-T cell
therapy has achieved substantial efficacy in the treatment of
melanoma17. Similar to CAR-T therapy, the TME often inhibits the
efficacy of TCR-T cell therapy. Preconditioning strategies, including
lymphodepletion by nonmyeloablative chemotherapy or intensive
myeloablative chemoradiotherapy, have been demonstrated to
improve the antitumor efficacy of TILs253. Preconditioning
chemotherapy with cyclophosphamide plus fludarabine has
shown promise in improving the efficacy of TCR-T and CAR-T cell
therapy26,83. The affinity of TCRs are significantly associated with
TCR-T cell efficacy. Affinity optimization produced improved
tumor-killing ability ex vivo. However, the modification of affinity
must be meticulously implemented, since improper modification
can lead to cross-reactions and result in lethal adverse
effects141,254,255.

Intracellular domain
Distinct from the extracellular binding domain, the intracellular
domain of CAR results in signaling transduction initiated by the
binding of the extracellular domain to the antigen. Recently, the
evolution of CAR-T cells has focused on the costimulatory
intracellular domain and resulted in the substantial enhancement
of antitumor efficacy. First-generation CAR-T cells, which contain a
CAR construct with only CD3ζ in the intracellular domain, showed
limited antitumor efficacy in clinical trials16,256, mainly due to the
lack of costimulatory molecules that are essential for T cell
responses to antigens257,258. In fact, the intracellular signal
transduction domain always includes the indispensable CD3ζ
chain, which contains immunoreceptor tyrosine-based activation
motifs (ITAMs) that function in signal transduction259, and one or
more intracellular costimulatory molecules, such as CD28, 4-1BB
(CD137), or CD27, to transmit activation signals180,260–270. In terms
of the intracellular signal domain, CARs have evolved from the first
to the fourth generation. The intracellular signal transduction
domain of first-generation CARs consisted of ITAMs from the CD3ζ
chain of the TCR. It has been demonstrated that first generation of
CAR-T cells persist in the recipient without long-term survival and
robust proliferation29,256. Then costimulatory signal molecules,
including CD28, CD137, CD27, and OX40, were integrated into CAR
constructs to enhance the persistence, proliferation, and cytokine
secretion of T cells271–274. Second-generation CAR-T cells, bearing
one costimulatory domain and CD3ζ, have achieved remarkable
clinical efficacy in treating B-ALL275–277, although the optimal
costimulatory molecules for signaling transduction in CAR
constructs remain to be determined. The third-generation CAR
construct includes CD3ζ and two costimulatory molecules from
among CD28, 4-1BB, and OX40, further improving the proliferation
and survival of CAR-T cells after infusion8,91,278,279. Fourth-
generation CAR-T cells are TRUCKs, and TRUCKs contain CAR
molecules and a CAR-inducible cytokine (IL-12), which can deposit
cytokines in the targeted tumor area and recruit a second wave of

Genetically engineered T cells for cancer immunotherapy
Li et al.

7

Signal Transduction and Targeted Therapy            (2019) 4:35 



immune cells, such as macrophages and NK cells217,280,281.
Currently, second- and third-generation CAR-T cells are mainly
used for clinical applications.
Although many intracellular domains in costimulatory mole-

cules can improve the tumor-killing activities of CAR-T cells, CD28
and 4-1BB intracellular domains are the most commonly used
costimulatory domains, and CAR-T cells with either CD28 or the 4-
1BB intracellular domain have shown dramatic antitumor cap-
ability and tolerable toxicity in clinical trials28,271,272,275. When
analyzing the mostly recently updated CAR-T clinical trials (342 in
total; 156 CAR constructs are available) worldwide at https://
clinicaltrials.gov, it was found that most CAR constructs used in
the CAR-T clinical trials are second-generation CAR constructs.
Twenty clinical trials are using the third-generation CAR construct,
and five are using fourth-generation CAR constructs, into which
additional elements, such as an inducible caspase-9 gene (iCas9)
that can lead to self-destruction by apoptosis, were integrated
(Fig. 2a). Among the clinical trials using a second-generation CAR
construct, 4-1BB is more prevalent in the CAR construct. A total of
101 clinical trials (64.7%) utilized the 4-1BB costimulatory
molecule, and 30 trials used CAR constructs with the CD28
intracellular signaling domain (19.2%). Among the clinical trials
using third-generation CAR-T cells, approximately half of the trials
(14) used the CD28-4-1BB CAR construct. Other constructs,
including CD28-OX40, CD28-4-1BB-CD27, NKG2D-DAP10, CD28-
TLR2, or iMyD88/CD40, were used in the CAR-T cells (Fig. 2b).
Among CAR-T cells using these different intracellular constructs,

a comparison of CAR-T cells using CD28 or 4-1BB as the
costimulatory molecule has been made, showing that CD28 and
4-1BB CAR-T cells vary in function and effectiveness261,270,272,282–
286. CD28ζ and 4-1BBζ CARs show increased secretion of cytokines,
including IFN-γ, IL-2, TNF-α, and GM-CSF, compared to first-
generation CARs150,276,277,287–290. CAR T cells incorporating the 4-
1BB costimulatory domain are more persistent and are likely to be
more resistant to exhaustion than those incorporating CD28261,282.
The incorporation of 4-1BB in the CAR construct may endow
T cells with long-lasting survival and more central memory
compartments than that of CD28286,291,292. 4-1BBζ CARs affect
downstream signaling pathways through TNF receptor-associated
factor 2 (TRAF2), while CD28ζ CARs affect signaling through
nuclear factor (NF)-κB, AKT, extracellular signal–regulated kinase,

NF of activated T cells, and Bcl-XL
260,293–298. In clinical trials, CD28ζ

CAR and 4-1BBζ CAR-T cells showed similar antitumor activities
and remission rates27,275. Preclinical studies have shown that third-
generation CAR-T cells exhibit improved antitumor effects
compared with second-generation CAR-T cells299,300. Ramos
et al.301 designed a clinical trial in which second- (CD28ζ) and
third-generation (28BBζ) CD19 CAR-T cells were simultaneously
infused into patients, and the third-generation CAR-T cells showed
superior expansion and longer persistence than the second-
generation CAR-T cells, suggesting the improved antitumor
efficacy of the third-generation CAR-T cells compared to the
second-generation CAR-T cells. Haso et al.302 reported that
second-generation CAR-T cell immunotherapy was superior to
third-generation CAR-T therapy with an anti-CD22 CAR in B-ALL, in
contrast to the results of Ramos et al.’s research301. In fact, CAR
functionality is not solely determined by the cytoplasmic signal
domains, as other structural features may affect its overall
function. CAR function varies depending on the expression level
of the antigen on the target cells and the CAR in the T cells, the
affinity of the CAR for the antigen, and signal pathway
transduction by the CAR. To further determine the optimal choice
of CAR-T for cancer patients, more clinical evidence is needed. For
instance, a clinical trial (NCT01853631) is underway to compare
the use of second- and third-generation CD19 CAR-T cells for the
treatment of hematological malignancies, which will provide
particular value for selection of second- and third-generation CAR-
T cells.
CAR-T cells bearing costimulatory molecules other than CD28 or

4-1BB have been heavily investigated to determine their
advantages, and some of these CAR-T cells are being tested in
clinical trials for the treatment of cancers. CAR-T cells targeting
CD33 with OX40 or CD28 costimulatory intracellular domains have
shown similar effects to those with the 4-1BBζ construct in terms
of T cell proliferation and cytokine secretion303. Third-generation
GD2-specific CAR-T cells with OX40 and CD28 intracellular
costimulatory domains were assessed (NCT02107963,
NCT01822652, NCT01953900). ICOSζ CAR-T cells have increased
phosphoinositide-3 kinase activation and IFN-γ production and
secrete increased amounts of IL-17A, IL-17F, and IL-22 compared
to 4-1BBζ CAR-T cells and express CD161, but their antitumor
effects were not greater than those of CD28ζ and 4-1BBζ303–305

Fig. 2 Intracellular costimulatory domain of a CAR construct used in CAR-T cells tested in clinical trials. The data were obtained from https://
clinicaltrials.gov, which was accessed on January 30, 2019. a Diagram of clinical trials of CAR-T cells from different generations. There are 342
registered trials categorized as CAR-T cell trials (second generation: 133, third generation: 20, fourth generation: 5, NA, not available). b
Diagram of clinical trials of CAR-T cells using different costimulatory molecules. A total of 156 available CAR constructs with different
costimulatory molecules were specifically indicated, and a pie diagram is presented that shows the percentages of trials using cells with
different costimulatory domains (4-1BB: 64.7%, CD28: 19.2%, CD28+4-1BB: 9%, CD28+OX40: 2%, CD28+TLR2: 0.6%, CD28+4-1BB+CD27: 2%,
CD27: 0.6%, iMyD88/CD40: 0.6%, NKG2D and DAP10: 1.2%)
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cells. CAR-T cells using a third-generation CAR construct contain-
ing inducible T cell co-stimulator and a 4-1BB intracellular
costimulatory domain were demonstrated to have robust
antitumor efficacy in solid tumor models compared with
second-generation CAR-T cells having a 4-1BB domain275,306,307.
Adding CD27 to the second-generation CAR construct increased T
cell expansion, BCL-XL upregulation, and IFN-γ production, and the
resulting cells showed comparable in vivo efficacy compared with
CD28ζ and 4-1BBζ CAR-T cells308. In addition, clinical data
demonstrated that CD28-CD27-CD3ζ CAR-T cells were safe when
infused to treat leukemia262,308. The intracellular domain of
NKG2D, either individually or in combination with CD28/4-1BB
domains, enhanced many properties of CAR-T cells, including the
secretion of IFN-γ, TNF-α, and GM-CSF, and improved antitumor
efficacy in vivo309–313. CAR-T cells containing a MyD88/CD40-
based inducible costimulatory molecule promoted T cell prolifera-
tion and cytokine production267. A clinical trial (NCT02744287)
exploited MyD88/CD40 CAR-T cells to target PSCA for the
treatment of prostate adenocarcinoma and other cancers. Toll-
like receptors (TLRs) and cytokine receptors can stimulate T cells to
proliferate and produce inflammatory cytokines. The TLR2 and
IL15Rα intracellular domains were also incorporated into the CAR
construct, and the CAR-T cells were able to induce T cell
expansion, cytokine production, and antitumor activity
in vivo266,268. A CAR-T cell bearing the TLR-2 costimulatory domain
was tested in a clinical trial to treat leukemia (NCT02822326). It is
well accepted that second- or third-generation CAR constructs
containing CD28 or 4-1BB intracellular costimulatory domains
improved the persistence and survival of CAR-T cells. To overcome
the insufficient persistence of TCR-T cells314, the addition of the
CD28 or 4-1BB intracellular region was used to improve the tumor-
killing capacity and long-term survival315.
Similar to CARs in CAR-T cells, the structures of TCRs in TCR-T

cells have been optimized. TCR-T cells recognize tumor antigens
depending on the HLA molecule used316,317. TCRs, which are
composed of transgenic α chains and β chains, must bind to CD3
molecules. In genetically modified TCR-T cells, transgenic α or β
chains can be mismatched with endogenous TCR α or β
chains318,319. To minimize these mismatches, investigators intro-
duced cysteine residues into the C-terminal domains of α and β
chains and utilized the disulfide bond that formed between the
cysteine residues to facilitate the assembly of the transgenic TCR α
and β chains320,321. Other strategies have also been employed to
prevent mispairing, such as mutating the C-terminal domains of
the transgenic α and β chain to promote correct binding322. In
addition, endogenous TCRs can be knocked out, which eliminates
issues caused by TCR mispairing323,324. Indeed, endogenous TCRs
also interfere with the function of CAR-T cells. When encountering
p-HLA, the downstream signaling pathway initiated by CAR
binding with the antigen was inhibited325. Thus endeavors have
been made to replace the endogenous TCR gene with the CAR
gene by a gene-editing tool to eliminate the interference due to
TCRs, ensure uniform CAR expression, and increase antitumor
potency68,326. In addition to removing TCRs, using a gene-editing
tool to remove molecules governing immunological rejection,
such as the β-2 microglobulin of HLA and other immune
resistance factors, generated universal CAR-T cells with promising
capacity for the treatment of hematological and solid tumors327–
329, but more clinical evidence is needed to demonstrate the
safety and efficacy of universal CAR-T cells330.

Infusion strategy
The infusion strategy is important for the efficacy and safety of
genetically engineered T cells. The intravenous infusion of CD19
CAR-T cell therapy has achieved success in targeting CD19+ B cell
lymphoma24,77,83, and other CAR-T cells have targeted CD20,
CD30, CD33, or BCMA for the treatment of hematological
malignancies via intravenous infusion23. CAR-T cells were also

intravenously infused in pilot trials for treating solid tumors. Their
efficacy was restricted in the treatment of solid tumors331; it was
found that intravenously infused CAR-T cells accumulated in the
lung, liver, and kidney29, and only a small proportion of the
infused cells homed in to the tumor site. The local delivery of CAR-
T cells is thus encouraging. Multiple intracranial infusions of
IL13Rα CAR-T cells, by enhancing infiltration and persistence,
resulted in glioblastoma regression31. Recently, Smith et al.
produced a novel cell biopolymer device, in which CAR-T cells
proliferated robustly, and transplanted the device with CAR-T cells
directly into tumor tissue, significantly improving CAR-T cell
trafficking and infiltration332.

OTHER CHALLENGES FOR ENGINEERED T THERAPY
Genetically engineered T cells have benefited patients in the
treatment of tumors, but other obstacles beyond the issues
discussed above have challenged the application of genetically
modified T cells, even in the treatment of hematological
malignancies28,77,81,213,271,333–337.

Failure of CAR-T cell generation
Although the total number of CAR-T cells used for infusion is small
(108–109), the failure to produce sufficient engineered T cells has
been observed, which challenges the pharmaceutics of this
therapy. Many factors can result in the failure of CAR-T production.
Cancer patients generally undergo chemotherapy and other
regimens, leading to lymphopenia, which affects the quality and
quantity of harvested T cells. Leukapheresis improves the quality
and purity of T cells, but poor expansion of CAR-T cells after
engineering impedes the generation of sufficient numbers of
modified T cells. T cells with different phenotypes exert distinct
functions. Previous studies demonstrated that CAR-T cells with a
central memory T cell phenotype (CD8+CD45RA−CD45RO+CCR7
+) are closely related to antitumor activity225,338–340. In addition to
the central memory phenotype, the CD4+/CD8+ ratio and the
differential expression of other molecules in the infused T cells
might affect the antitumor capability of CAR-T therapy341,342.
Therefore, obtaining enough CAR-T cells for cancer immunother-
apy means not only generating a sufficient number of T cells but
also producing a defined phenotype and a specified ratio of
subsets within the modified T cells.
There are many cell culture strategies used for the production of

CAR-T cells. Magnetic beads coated with CD3/CD28 antibodies are
often combined with cytokines, such as IL-2, IL-7, and IL-15, for the
activation and expansion of CAR-T cells225,343,344. Artificial APCs
are also used to greatly expand and generate antigen-specific
CAR-T cells345. CD4- and CD8-positive cells can be enriched for
producing CAR-T cells, and a defined ratio of CD4 and CD8 cells
can ultimately be ensured341. In addition to differences in the
expansion protocol, CAR-T cells with different intracellular
costimulatory domains in their CAR constructs exhibited different
expansion and phenotype properties263,286,304,307,308,346,347. The
lengths of the CAR extracellular spacers used are critical to CAR-T
cell therapy348. It is likely that formulating CAR-T cells with a
defined composition of different subsets can enhance the
uniformity of CAR-T products, which could be used in further
investigations to draw more definitive conclusions.

Relapse after CAR-T therapy
Although CD19-targeted CAR-T cells achieved dramatic antitumor
efficacy in treating hematological malignancies27,275,341,349,350, a
considerable number of patients with CR have relapsed after CAR-
T therapy. Although the mechanism of relapse has not been fully
elucidated, antigen loss and poor CAR-T persistence are thought
to contribute to the relapse of disease.
Tumors in a small proportion of pediatric and adult responders

relapsed after treatment with CD19 CAR-T cells because of CD19
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deletion and CD19 tumor cell growth81,351,352, which results from
acquired resistance to CAR-T therapy due to antigen
escape90,353,354. To prevent the recurrence of the tumor, broader
immune activation is required to elicit a second wave of immunity
in addition to CAR-T cell therapy355. Recently, other novel
mechanisms accounting for the relapse of hematological malig-
nancies after CD19 CAR-T cell therapy have been reported. CD19
molecules on tumor cells transduced with CAR vectors can be
masked by CAR molecules, leading to their escape from attack by
CAR-T cells and the recurrence of malignancy88. A target antigen
recognized by CAR-T cells on the tumor cells can even be
removed by CAR-T cells through trogocytosis, resulting in a
reduction in the antigen and fratricide between CAR-T cells89.
Another obstacle is the poor persistence of CAR-T cells. The
efficacy of CAR-T cell therapy is closely related to the in vivo
expansion and survival of cells356. Many strategies discussed
above, including the optimization of the CAR construct and
preconditioning and infusion strategies, can prolong the survival
of CAR-T cells and enhance their antitumor efficacy.

Side effects
CAR-T cells target the antigen expressed on the surface of tumor
cells. This antigen is generally expressed on normal cells and not
exclusively on tumor cells. CAR-T cells attack normal tissues when
clearing tumor cells, resulting in side effects in normal tissues,
which are called “on-target, off-tumor” side effects. Clinical studies
in which CAR-T cells infused for cancer therapy have recognized
HER2188, CAIX357, CD19358,359, and mesothelin360 have shown
damage to normal tissues. Many strategies have been developed
for enhancing the safety of CAR-T cell therapy, such as the
targeting of other antigens, such as CD1a, in place of CD19361,
equipping CAR-T cells with safety switches by introducing suicide
genes362–365, expressing a split CAR molecule366, constructing
inhibitory CAR constructs367 or dual antigen-activated CAR-T cells
to recognize tumor cells more specifically368, and tuning the
affinity of the scFv used for the CAR construction244,245,369 to
minimize the incidence of severe adverse effects. In addition, the
local injection of CAR-T cells can also reduce off-target effects,
since the CAR-T cells are regionally restricted212. Further research
may seek to improve the safety of CAR-T cells, especially regarding
the selection of the CAR-recognized antigen, the development of
controllable CAR-T cells, and the optimization of infusion
strategies.
Among the side effects of CAR-T cells, CRS is the most common

adverse effect. CRS resulting from CD19 CAR-T cell therapy is
tolerable if properly treated26,27,83,370. CRS is induced by the robust
activation of the immune system during CAR-T cell therapy,
triggering the release of a large number of cytokines, including IL-
6, IL-10, IFN-y, TNF-α, GM-CSF, and other cytokines, and causing
severe adverse effects371,372. The severity of the CRS-related side
effects is closely related to the amounts of released cytokines373,
tumor burden374,375, and the structure of the CAR272. mAbs
against IL-6Ra (tocilizumab or sarilumab) are used for the
treatment of CRS in addition to the use of corticosteroids to
inhibit inflammatory reactions152. The blockade of IL-1β376 or TNF-
α152 is another strategy used to treat CRS in addition to IL-6, but
the benefits for patients are yet to be documented. GM-CSF-
knockout CAR-T cells resulted in minimal incidence of CRS
compared with GM-CSF-intact CAR-T cells372, indicating the
pivotal role of CAR-T-derived GM-CSF in the occurrence of CRS.
In addition to CRS, varying degrees of neurotoxicity have

occurred as a result of the clinical application of CAR-T cell therapy
for treating hematological tumors377–379. Indeed, neurotoxicity is
always closely related to CRS. Mild neurotoxicity is transient and
reversible. The appearance of acute and severe neurotoxicity is
usually accompanied by severe CRS symptoms due to the
increased permeability of the blood–brain barrier. Although the
mechanism of the incidence of neurotoxicity is largely unknown,

many clues have indicated that inflammatory cytokines affect the
function of the blood–brain barrier and endothelial cells,
contributing to neurotoxicity380,381. In nonhuman primates, CAR-
T cell-mediated neurotoxicity was also confirmed to be associated
with pro-inflammatory CSF cytokines and pan-T-cell encephali-
tis382. For the treatment of neurotoxicity caused by CAR-T cell
therapy, a regimen should be prescribed that is dependent on the
severity. Anti-IL-6 therapy can reverse side effects at the early
stage. For the treatment of late-stage neurotoxicity, corticoster-
oids are recommended. Patients with nonconvulsive and con-
vulsive status epilepticus should be managed with
benzodiazepines and additional antiepileptics383,384.
TCR-T cells target HLA-presented antigens on tumor cells. The

potential side effects of TCR-T cell therapy are decreased
compared to those of CAR-T cell therapy385. However, safety
concerns should be paid more attention when the affinity or other
characteristics of the TCR are modified. TCR-T cells with enhanced
affinity always improve the recognition of the HLA-presented
antigens, but side effects usually accompany this. In a pilot study
using affinity-enhanced TCR-T therapy for the treatment of
melanoma and other cancers, two of the nine patients died of
leukoencephalopathy after treatment with MAGE-3 high-affinity
TCR-T cells because of off-target toxicity386. In another clinical trial
for the treatment of melanoma and myeloma, two patients died of
cardiotoxicity after MAGE-3-specific, affinity-enhanced TCR-T cell
therapy, mainly due to cross-reaction with the titin peptide, which
is expressed in heart tissue141. Therefore, meticulous investigation
of affinity-enhanced TCR-T therapy is needed before it can provide
clinical benefit to cancer patients.

OUTLOOK
Among cancer immunotherapies, CAR-T cell therapy has shown
robust antitumor efficacy for the treatment of hematological
malignancies. Upon the approval of CAR-T cell therapy for the
treatment of leukemia and lymphoma, more patients will be able
to benefit from this new therapy, but side effects, relapses after
CR, and long-term monitoring should be of concern. CAR-T cell
therapy for solid tumors is far from satisfactory. Endeavors should
be made to overcome immunosuppression mediated by the
microenvironment of solid tumors. TCR-T cells and other
genetically engineered immune cells have produced effective
immunity during cancer treatment in preclinical and clinical trials,
and efforts should be made to enroll more patients to obtain the
benefits of TCR-T therapy. It is hoped that another breakthrough in
gene-engineered-T cell therapy for tumors is coming soon.
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