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Abstract

Introduction

The first line of treatment for people with Diabetes mellitus is metformin. However, over the

course of the disease metformin may fail to achieve appropriate glycemic control, and a sec-

ond-line therapy may become necessary. In this paper we introduce Tangle, a time span-

guided neural attention model that can accurately and timely predict the upcoming need for

a second-line diabetes therapy from administrative data in the Australian adult population.

The method is suitable for designing automatic therapy review recommendations for

patients and their providers without the need to collect clinical measures.

Data

We analyzed seven years of de-identified records (2008-2014) of the 10% publicly available

linked sample of Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme

(PBS) electronic databases of Australia.

Methods

By design, Tangle inherits the representational power of pre-trained word embedding,

such as GloVe, to encode sequences of claims with the related MBS codes. Moreover,

the proposed attention mechanism natively exploits the information hidden in the time span

between two successive claims (measured in number of days). We compared the proposed

method against state-of-the-art sequence classification methods.

Results

Tangle outperforms state-of-the-art recurrent neural networks, including attention-based

models. In particular, when the proposed time span-guided attention strategy is coupled

with pre-trained embedding methods, the model performance reaches an Area Under the
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ROC Curve of 90%, an improvement of almost 10 percentage points over an attentionless

recurrent architecture.

Implementation

Tangle is implemented in Python using Keras and it is hosted on GitHub at https://github.

com/samuelefiorini/tangle.

Introduction

Diabetes mellitus (DM) affects around 1.2 million of Australians aged 2 years and over. In the

last two decades, the prevalence of the disease almost doubled, reaching 5.1% of the population

in 2015 (Source Australian Government—Department of Health: https://bit.ly/2Njqidp, last

visited on January 2019). In the same year, 85% of the Australians with DM reported a Type 2

diagnosis (T2DM). This type of disease is particularly worrisome as it is the leading cause of

more than half of the diabetes-related deaths of 2015 [1]. In order to reach glycemic control

in T2DM subjects, all the major wordlwide diabetes associations recommend dietary changes

and physical exercise along with administration of metformin, if needed [2]. When metformin

is not sufficient anymore, second-line medications should be added [3]. Failing to do so will

lead to worsening conditions and therefore it is important to identify those patients who

should be targeted for therapy change, so they can be monitored closely.

Thanks to recent advances in the field of machine learning it is becoming possible to design

algorithms that exploit medical records to predict and identify those patients who may benefit

from specific interventions [4].

In this paper we describe a predictive algorithm that, given the administrative medical rec-

ords history of patients with DM, estimates the likelihood that they will need second-line med-

ication in the next future. This method can be used as a tool to design an automatic system for

patients and/or their providers, that notifies them when a change in therapy might be worth

considering. From a machine learning point of view this means that the model is a classifier

trained on labeled sequences of medical events, where the binary labels identify subjects that

added a second-line medication.

The medical events we consider in this paper are any of the events reported for administra-

tive purposes in the Medicare Benefits Schedule (MBS), that records the utilization of primary

care services such as visits to GPs and specialists, diagnostic and pathology testing as well as

therapeutics procedures. Using actual clinical records seems an appealing, albeit more com-

plex, option and might result in better predictions. However, we have not considered it

because an integrated system of health records has not been implemented yet at national level.

MBS records, instead, are not only routinely collected at federal level for administrative pur-

poses, but are also, to some extent, available for data analysis.

Background

In this paper we focus on learning a classification function for sequences, i.e. ordered lists of

events, that are encoded by symbolic values [5]. A major challenge with this type of data con-

sists in mapping them to a numerical representation suitable to train a classification model.

Standard vector representations, adopted for instance in natural language processing, can be

either dense (i.e. most of the elements are different from zero) or sparse (i.e. with only few non-

zero elements). A popular sparse representation method for symbolic elements, or categorical
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features, is called One-Hot-Encoding (OHE) and it consists in directly mapping each symbolic

element to a unique binary vector [6]. Although frequently used, this representation acts at a

local level and it is therefore necessary to adopt some feature aggregation policy to achieve a

global representation of a given input sequence. Another sparse representation strategy is mul-

tidimensional Bag-of-words (BOW), where each dimension represents the number of occur-

rences of a given n-gram in the sequence [7].

Nowadays, word embeddings are the most popular dense representation for sequence learn-

ing problems. In this approach, to each element wi of the sequence s (i.e. word of the docu-

ment) it is associated a real-valued dense vector xi 2 X . The semantic vector space X is

designed to have “interesting” properties: e.g. neighboring vectors may correspond to words

having similar meaning or sharing similar contexts. The two most popular word embeddings

models proposed in literature are called Word2Vec [8] and Global Vectors for Word Repre-

sentation (GloVe) [9].

Once a suitable encoding strategy is defined, a machine learning problem can be posed. In

this context, standard sequence classification models can be linear, e.g. Logistic Regression

(LR) and Support Vector Machines [10], or nonlinear, e.g. Random Forests [11] and Boosting

[12]. These approaches are usually less computationally expensive than deep learning tech-

niques, and they can also be used in combination with feature selection schemes to promote

interpretability of the results [13]. However, this class of techniques suffer from a major draw-

back: i.e. their predictive performance is heavily influenced by the discriminative power of the

adopted sequence representation.

In the recent past, deep learning methods showed remarkable performance in solving complex

prediction tasks, such as visual object and speech recognition, image captioning, drug-discovery,

etc [14]. In the plethora of deep learning models, Recurrent Neural-Networks (RNN) [14] is the

class of architectures specifically designed to work with sequential inputs. They consecutively pro-

cess each element keeping a hidden state vector that can memorize information on the past his-

tory. Although designed to learn long-term dependencies, empirical evidence show that vanilla

RNN fail in this task. On the other hand, Long Short-Term Memory (LSTM) networks [15], a

particular class of RNN, are specifically designed to solve this issue. LSTMs have special memory

cells that can work as information accumulator together with a system of input, output and forget

gates. These networks empirically showed that they can deal well with both short and long-time

relationship among the elements of input sequences. RNN, and deep learning models in general,

can also easily inherit the representational power of pre-trained word embeddings, heavily

increasing their classification performance [6]. A schematic representation of how RNN-based

models can be used to solve a sequence classification task is presented in Fig 1.

Two major shortcomings of these architectures are that: (i) they need to be trained on large

data sets, hence requiring high computational time and (ii) when applied in health care-related

settings the learned representations hardly align with prior (medical) knowledge [16]. For a

comprehensive overview of the most widely adopted deep learning models see [14] and refer-

ences therein.

Throughout this paper, real-valued variables are indicated with lowercase letters (e.g. a),

one-dimensional vectors with lowercase bold letters (e.g. a) and matrices, or tensors, with capi-

tal letters (e.g. A). To avoid clutter, sample subscripts are omitted where not strictly needed.

Neural attention mechanism

Neural attention [18] is a recently proposed strategy to promote interpretability and to

improve prediction performance of deep learning methods for document classification [19],

machine translation [18] or prediction from sequential Electronic Health Record (EHR)
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Fig 1. LSTM for sequence classification. A visual representation of a simple bidirectional LSTM for sequences

classification. This architecture is used in this work for the sake of comparison, and it is referred to as baseline. In this

work we adopted LSTM recurrent cells, in order to exploit their ability to learn long-time relationship in the

sequences. However, similar architectures can be devised with vanilla RNN, Gated Recurrent Units (GRU) [17] or

other types of temporal architectures.

https://doi.org/10.1371/journal.pone.0211844.g001
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[16, 20, 21]. The intuition behind such attention mechanism is that elements in the sequence

have different relevance for the prediction task and that modeling their interactions helps to

find the most relevant patterns.

Neural attention mechanism can be seen as a strategy to find weights (α) that can emphasize

events occurring at some point in the sequence, with the final aim to improve the prediction

performance. A possible adopted solution to find such weights is via Multi-Layer Perceptron

(MLP) [18, 19, 21]. We can summarize the attention mechanism in the next three steps.

ut ¼ tanhðhtWt þ bÞ ð1Þ

at ¼
expðuT

t waÞ
PT

t¼1
expðuT

t waÞ
ð2Þ

c ¼
XT

t¼1

atht ð3Þ

Vectors ht 2 R
H

(for t 2 [1, T]) are a sequence of hidden representations obtained by a recur-

rent architecture from an input sequence of events, such as health service claims or visits.

These representations are fed to a one-layer MLP with hyperbolic tangent activation to obtain

ut 2 R
U

, a hidden representation of ht (Eq 1). Then, a relevance measure of each element in

the sequence (αt) is estimated with a Softmax-activated layer (Eq 2). The weight matrix Wt 2

RH�U
and the weight vector wa 2 R

U
are jointly learned in the training process. Finally, a con-

text vector c can be estimated by computing a weighted sum of the hidden representations ht,

with weights αt (Eq 3). The context vector can then be further transformed by deeper layers, in

order to better approximate the target label [19, 20]. A schematic representation of the atten-

tion mechanism is summarized in Fig 2.

The use of neural attention models for health-related predictions is extensively explored in

literature. In [21] the authors introduce Dipole, a bidirectional recurrent architecture that

exploits neural attention to perform sequential EHR forecasting. Differently, in [16] the

authors propose GRAM, a graph-based neural attention model that exploits medical ontologies

to guide the α-estimation step. Whereas, in [20] the authors introduce RETAIN, a neural

attention model for prediction from sequential EHR. RETAIN is probably the most relevant

work for our purposes. Such model uses two attention levels which separately learn two atten-

tion weights vectors that are eventually combined to obtain the context vector. This model

achieves good performance when used to predict future diagnosis of heart failure. Although, as

the authors claim, it is not capable of exploiting the information hidden in the timestamps of

each element of the sequence, which are simply concatenated to each visit embedding (See

RETAIN supplemental material [20]).

Data

We analyzed seven years of de-identified records (2008-2014) of the 10% publicly available

linked sample of Medicare Benefits Schedule (MBS) and Pharmaceutical Benefits Scheme

(PBS) electronic databases of Australia [22]. MBS-PBS 10% sample data set keeps track of

Medicare services subsidized by the Australian government providing information on about

2.1 millions of Australians, who are representative of the full population [23]. The two data

sets are linked, meaning that it is possible to track over time the same individual across MBS

and PBS claims. MBS-PBS 10% data set also keeps track of other information such as patients’

gender, state of residence and year of birth. PBS data consist of pharmacy transactions for all
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scripts of drugs of the PBS schedule which are dispensed to individuals holding a Medicare

card. In PBS, DM controlling drugs are identified by 90 item codes grouped in two categories:

insulin and analogues and blood glucose lowering drugs, excl. insulins, the latter including met-

formins. A difficulty that arises when using this data set to extract MBS claims trajectories for a

given subject is a rule called episode coning. According to it, only the items corresponding to

the three most expensive pathologies in an episode of care can be contextually claimed and,

therefore, can be extracted from the data set. The rule does not apply to pathology tests

requested for hospitalized patients or ordered by specialists.

Methods

This section provides a detailed definition of the experimental designed followed for the analy-

sis of MBS-PBS 10% data set, as well as an accurate description of model development, valida-

tion and comparison.

Fig 2. Neural attention model. A visual representation of the attention mechanism for sequences classification. When λ = 1 this corresponds to a standard

bidirectional attention model, whereas when λ 6¼ 1 the time span sequence τ1, . . ., τT can guide the model to focus on the most relevant elements of the sequence.

We call Tangle the case in which the value of λ is jointly learned during the training process. A blue dashed line highlights the timestamps attention guiding

mechanism.

https://doi.org/10.1371/journal.pone.0211844.g002
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Data preprocessing and representation

In this work, we used PBS data to extract the subject IDs corresponding to the population of

interest. We first identified all the subjects that make habitual use of DM-controlling pharma-

ceuticals such as: Insulins, Biguanides or Sulfonamides. From this cohort we identified, and

excluded, subjects with gestational diabetes. In order to focus on a stable group of individuals

with DM, we included in our analysis only subjects having a concessional card which is used at

least for the 75% of the observational years and, in such time interval, for at least 75% of their

annual PBS items claims.

Finally, we labeled with yi = 1 all the subjects that were at first using only Metformin to

manage their DM and successively were prescribed to a second-line therapy based on a differ-

ent drug. This includes both patients that stopped using Metformin at all and patients that

associated it with another drug. Conversely, we labeled with yi = 0 patients that, during the

observational time, did not change their Metformin-based DM control therapy. This led us to

an imbalanced data set with 26753 subjects which� 22% are positive.

For each subject in our cohort we used the MBS data set to extract the corresponding trajec-

tory of Medicare service claims, which can be represented as the following sequence of tuples

ðw1; t1Þ; . . . ; ðwT; tTÞ

where w 2 RV
and t 2 N. The vectors wt are V-dimensional OHE representations of MBS items

and the scalars τt represent the time span between two subsequent MBS items, measured in

number of days. In our data set, V = 2774 is the vocabulary size (i.e. the number of unique MBS

items) and T = 445 is the sequence length. For each sequence, wT corresponds to the last MBS

item before the therapy change. So the sequences can be considered right-aligned. Sequences

shorter than T are zero-padded at their beginning, to prevent samples from having inconsistent

representations. The first few entries of a prototypical MBS-time span sequence can look like

23 1 10990 0 23 13 . . .

where w1 = OHE(23), w2 = OHE(10990), w3 = OHE(23) while τ1 = 1, τ2 = 0 and τ3 = 13. The 10

most frequent MBS items of our data set are summarized in Table 1. Dealing with this kind of

data, we shall keep in mind that different MBS items may have almost identical meaning. For

instance, items 23 and 5020 both apply for general practitioner visits, but the second is dedicated

to after-hour attendances. This can be a confounding factor that we will address in the model

development process with the help of a pre-trained word embedding.

Table 1. Summary table of the most frequent MBS items (2.048.502 in total). Items with almost identical meaning

are grouped together.

% MBS items Short description

0.237 10990, 10991 Management of bulk-billed services

0.187 23, 36, 5020, 5040 General practitioner attendances

0.059 73928, 73929, 73938 Collection of one or more specimens

0.037 66503, 66506, 66512, 66515, 66509 Quantitation of substances in body fluids

0.035 74995 Bulk-billing incentive

0.023 65070 Haematology

0.014 10962, 10964 Podiatric or chiropratic health service

0.014 128, 116 Consultant physician attendances

0.014 66551 Quantitation of Hba1c

0.013 105, 108 Specialist attendances

https://doi.org/10.1371/journal.pone.0211844.t001
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In order to cope with class imbalance, we matched positive and negatives samples by AGE

(average on the observational time), GENDER, last PIN STATE and SEQUENCE LENGTH via Coarsened

Exact Matching (CEM) [24] (We used the R package cem Version 1.1.19). Matching is a non-

parametric causal inference method that aims at controlling the effect of potentially confound-

ing covariates in observational data. Via matching it is possible to prune samples such that the

remaining ones have improved balance between positive and negative classes. In particular,

CEM performs covariates coarsening and then creates strata of observations on which it per-

forms exact matching, i.e. matched samples are retained, while unmatched ones are pruned.

Table 2 is a summary table of the matched variables statistics before and after CEM matching.

Model description

Tangle is a two-inputs/one-output recurrent architecture which, given a set of MBS-time

span sequences, returns the corresponding class probability. A pictorial representation of the

model can be seen in Fig 2. In Tangle, the joint MBS-time span sequence is decoupled in

two homogeneous sequences wt (for t = 1, 3, 5, . . .) and τt (for t = 2, 4, 6, . . .) which are used

as separate inputs of the network. The vectors wt are V-dimensional OHE representations of

MBS items. At the first layer of the network these representations are projected on a E-dimen-

sional semantic space, as in Eq 4, where xt 2 R
E

and We 2 R
V�E

.

xt ¼ wtWe ð4Þ

The vocabulary size V is defined as the number of unique MBS items observed (plus a dummy
entry for the padding value), while the size of semantic space E is a free parameter of the

model. In this work we tested two options for the initialization of We: uniform random and

based on the popular word-embedding GloVe [9]. More details on this second choice will be

provided in the next section.

Hidden representations of the two input sequences, x1, . . ., xT and τ1, . . ., τT, are then

achieved by two bidirectional LSTM layers [15] (see Eq 5).

~hx1
; . . . ;~hxT

¼ LSTMðx1; . . . ; xTÞ

~

hxT
; . . . ;

~

hx1
¼ LSTMðxT; . . . ; x1Þ

Hx ¼ ½
~hx1
; . . . ;~hxT

;

~

hxT
; . . . ;

~

hx1
�

~ht1 ; . . . ;~htT ¼ LSTMðt1; . . . ; tTÞ

~

htT ; . . . ;

~

ht1 ¼ LSTMðtT; . . . ; t1Þ

Ht ¼ ½
~ht1 ; . . . ;~htT ;

~

htT ; . . . ;

~

ht1 �

ð5Þ

Table 2. Summary table of the extracted data set Pre and Post matching.

Pre Post
# Subjects 26753 11744

Label (% Class 1) 22.02 50.00

AGE (years) 66.15±14.99 66.35±11.49

GENDER (% Female) 55.83 49.22

SEQUENCE LENGTH (# MBS items) 430.05±364.90 347.86±275.31

PIN STATE % ACT+NSW 39.49 35.87

% VIC+TAS 26.15 28.73

% WA 8.67 8.65

% NT+SA 8.99 9.40

% QLD 16.70 17.35

https://doi.org/10.1371/journal.pone.0211844.t002
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Let Hx 2 R
T�2H

be the MBS bidirectional hidden representation, where H is the number of

LSTM units. Similarly, Ht 2 R
T�2H is the bidirectional hidden representation of the time span

sequence. For ease of notation, we define hxt
and htt , for t = 1, . . ., T as generic 2H-dimensional

vectors belonging to the matrices Hx and Hτ, respectively.

The time span-guided neural attention mechanism adopted in Tangle can be described

by the following steps.

uxt
¼ tanhðhxt

Wx þ bxÞ ð6Þ

utt ¼ tanhðhttWt þ btÞ ð7Þ

vt ¼ l uxt
þ ð1 � lÞ utt ð8Þ

αt ¼
expðvtWaÞ

PT
t¼1

expðvtWaÞ
ð9Þ

ωt ¼ hxt
� αt ð10Þ

Following the standard attention mechanism, uxt
and utt are hidden representations of the

sequences hxt
and htt (for t = 1, . . ., T). These two vectors are achieved by a one-layer MLP

having hyperbolic tangent activation (Eqs 6 and 7). Then, the two hidden representations are

merged together in a convex combination vt 2 R
U

(Eq 8), where the mixin parameter λ is

jointly learned at training time. This is the first novel contribution introduced by the proposed

attention mechanism, with respect to the state-of-the-art.

The sequence of vt is then used to obtain the weights αt 2 R
2H via Softmax-activated

one-layer MLP (Eq 9). Finally, the attention contribution to each input element ωt 2 R
2H

is

expressed as the element-wise product between MBS-sequence hidden representations and

the corresponding attention weights (Eq 10). Interestingly, in our case Wa 2 R
U�2H

, the weight

matrix of the Softmax layer, plays also the role of projecting the data back to a 2H-dimensional

space, compatible with LSTM hidden representations. So, each entry of the vectors hxt
and htt

(i.e. the output of each LSTM unit) is individually weighted. This is the second original contri-

bution introduced by the proposed attention mechanism with respect to state-of-the-art atten-

tion. While the same scalar weight is usually associated to each of the 2H entries of the hidden

representation ht, Tangle is more general as it estimates for each element in the sequence a

2H-dimensional attention weights vector.

The context vector �c 2 RE is eventually computed in two steps: first by multiplying along

the temporal dimension the contribution matrix

O
T
¼ ½ω1; . . . ;ωT�

T
2 R2H�T

with the input MBS-items sequence matrix

X ¼ ½x1; . . . ; xT� 2 R
T�E

and secondly by average-pooling the 2H hidden representations (Eq 11).

�c ¼
1

2H

X2H

j¼1

ðO
T
� XÞj ð11Þ

In the proposed architecture, the average context vector �c is fed as input to a two-layers fully
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connected MLP and trained with Dropout [25]. The first fully connected layer has Rectified

Linear Units (ReLu) activation [26], while the output probability is achieved by sigmoid σ(�)

(Eq 12).

ŷ ¼ s½ReLuð�cW0 þ b0ÞW1 þ b1 � ð12Þ

Tangle is trained minimizing the Cross-entropy loss (Eq 13), where y 2 {0, 1} is the binary

label associated with the two classes and N is the number of samples.

Lðy; ŷÞ ¼ �
1

N

XN

i¼1

y logðŷÞ þ ð1 � yÞ logð1 � ŷÞ½ � ð13Þ

Tangle is implemented in Python using Keras [27] and its source code is publicly avail-

able on GitHub at https://github.com/samuelefiorini/tangle.

Embedding weights initialization

As previously anticipated, we need to define a protocol to initialize the embedding matrix

We (see Eq 4), which is further optimized in the training phase. This matrix is used to project

each MBS item in a semantic space where neighboring points correspond to MBS claims with

similar meanings (see Table 1), hence working around the problem of synonym sequence

elements.

We first obtained a brief textual descriptions for all the 2774 MBS items by querying the

Australian Department of Health website: http://www.mbsonline.gov.au. Then, we cleaned

each text corpus from punctuation and stop words. We then split the resulting descriptions in

1-grams. For instance, the word list associated to item 66551 is the following.

[quantitation, glycated, haemoglobin, performed, management,
established, diabetes, item, subject, rule]

Then, we associated to each word of the list its corresponding E-dimensional glove.6B
embedding vector, which has 4 × 105 words and it is trained on Wikipedia 2014 + Gigaword 5
data sets [9]. As of today, glove.6B comes in four increasing dimensions: 50, 100, 200, 300.

In our experiments we used E = 50. Empirical evidences showed that larger embedding dimen-

sions did not significantly increase Tangle prediction performance. Finally, we averaged

all the single word representations, achieving an E-dimensional vector for each MBS item.

A pictorial representation of this procedure is depicted in Fig 3. To demonstrate the effective-

ness of our approach, we also tested Tangle with uniformly random initialized embedding

matrix We.

Model comparison and analysis

Performance of Tangle are evaluated against three different predictive solutions.

1. ℓ1-penalized LR (see Eq 14) fitted on a n-BOW representation, where n controls the number

of n-grams.

ŵ ¼ argmin
w2Rd

1

N

XN

i¼1

logð1þ e� yixTi wÞ þ g jwj1 ð14Þ

In this case, xi represents the n-BOW representation of the i-th patient and d, the

dimensionality of the LR weights (w), depends on the number of considered n-grams.
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2. Baseline attentionless recurrent model with bidirectional LSTM (see Fig 1).

3. State-of-the-art neural attention model with bidirectional LSTM (see Fig 2).

In order to present a fair model comparison, each tested recurrent model has the same

depth, and the only difference is the attention strategy used. Performance of the tested mod-

els are evaluated via 10-split Monte Carlo cross-validation [28]. We estimated mean (μ) and

standard deviation (σ) of prediction accuracy, sensitivity, specificity and Area Under the

Receiver Operating Characteristics Curve (ROC AUC) [29]. The same 10 Monte Carlo sam-

ple extraction are used for every model. In each of these Monte Carlo sampling, matched

data set (with N = 11744 samples) is split in two chunks, namely learning (60%) and test
(40%). The learning set is then further split in training (90%) and validation (10%). This is

led us to extract 6341 training, 705 validation and 4698 test samples for each Monte Carlo

split. Training sets are used to learn the weights of every model; whereas, validation sets are

used by recurrent methods to define the early stopping iteration, and by ℓ1-LR to optimize

the hyperparameter γ, which is chosen from a grid of 10 values spanning from 10−5 to 1

in logarithmic scale. Model predictive performance are then evaluated on each previously

unseen test samples.

Results

We tested three increasing values of n: [1, 2, 3]. Empirical evidence showed that n = 1 yields

the best performance, so results obtained with n 6¼ 1 are not reported. The grid-search schema

used to tune the regularization parameter γ of ℓ1-LR typically resulted in choosing ĝ � 10� 3.

Unpenalized LR was also tested, consistently achieving worse performance. Results of the

experiments are summarized in Table 3.

Focusing on recurrent methods, Tangle outperforms baseline and state-of-the art neural

attention architectures. Tangle results are also very stable across the tested Monte Carlo

cross-validation procedure, in fact the corresponding standard deviation is the smallest across

Fig 3. MBS item embedding. A schematic representation of our word embedding strategy to achieve meaningful representations of MBS items. Here, we consider

a 10-words textual representation of the MBS item no. 66551. To each word is associated the corresponding word-embedding, which, in this picture, is a

5-dimensional vector to guarantee readability. The final representation of the considered item is achieved by averaging.

https://doi.org/10.1371/journal.pone.0211844.g003
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almost every metric. It is interesting to notice how the proposed GloVe-based initialization

protocol of the embedding matrix (starred� rows in Table 3) consistently improves on every

recurrent model to achieve higher ROC AUC and better classification accuracy. Therefore,

we assume that the GloVe-based weight initialization ameliorates the issue of synonym MBS

items. Fig 4 shows the average ROC curve obtained by Tangle and ℓ1-LR that are top and

Table 3. Summary table comparing the performance of linear and recurrent models obtained after 10 Monte Carlo cross-validation iteration. �GloVe initialization

of the embedding weight matrix. Bold digits highlight best results.

ROC AUC Accuracy Sensitivity Specificity

μ σ μ σ μ σ μ σ
ℓ1-LR 1-BOW 0.82 4.9e-3 0.74 4.8e-3 0.67 1.5e-2 0.81 1.1e-2

Baseline 0.81 8.4e-3 0.74 7.7e-3 0.61 4.4e-2 0.86 4.0e-2

Attention 0.84 1.1e-2 0.76 1.2e-2 0.72 4.4e-2 0.80 5.0e-2

Tangle 0.87 7.8e-3 0.78 9.9e-3 0.71 2.6e-2 0.85 2.7e-2

Baseline� 0.84 9.0e-3 0.76 9.0e-3 0.67 5.8e-2 0.84 5.2e-2

Attention� 0.86 1.2e-2 0.77 1.1e-2 0.71 3.9e-2 0.83 3.9e-2

Tangle� 0.90 6.0e-3 0.82 8.4e-3 0.79 3.1e-2 0.86 3.3e-2

https://doi.org/10.1371/journal.pone.0211844.t003

Fig 4. Average ROC curves. ROC curves obtained averaging the 10 Monte Carlo cross-validation iterations for best and worst method: i.e. Tangle and ℓ1-LR

1-BOW respectively. Shaded area corresponds to ±3σ, where σ is the standard deviation. For ease of readability, only ROC curves corresponding to best and worst

performing models are shown.

https://doi.org/10.1371/journal.pone.0211844.g004
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worst performing models, respectively. An intuitive visualization of the discriminative power

of the representation achieved by Tangle can be seen in the 3D scatter plot of Fig 5 which

was obtained by estimating a 3-dimensional t-SNE embedding [30] on the final sample repre-

sentation learned by Tangle. The figure clearly shows that the learned features are able to

discriminate between the two classes, explaining the good performance shown in Table 3.

A visual representation of the attention contribution estimated by Tangle on the test set

can be seen in the Manhattan plot of Fig 6. The horizontal axis corresponds to the MBS items

sequence, while their average attention contribution �ot ¼
1

2H

P2H
j¼1
ωtj is on the vertical axis.

For ease of visualization only the last 250 MBS claims are represented. MBS-items with high

attention weight are defined as the ones having j�otj > o99, where ω99 corresponds to the 99-th

percentile of the j�otj distribution (for t = 1, . . ., T). From Fig 6 we can see that for both classes

high attention weights are more frequently falling on the last 13 MBS-items of the sequence,

which corresponds to the last 78 days (median value) before the second-line therapy transition.

Moreover, we can appreciate how the specific attention weight pattern is different between the

two classes.

Fig 5. t-SNE embedding. 3D scatter-plot of a random extraction of 500 samples projected on a low-dimensional embedding, estimated by t-SNE [30], from the

sample representation learned by Tangle. Samples belonging to the two classes, represented with green circles and red triangles, can be seen as slightly

overlapping clusters.

https://doi.org/10.1371/journal.pone.0211844.g005
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Discussion

The proposed model introduces two significant advances with respect to state-of-the-art recur-

rent models with attention. First, Tangle natively exploits time spans between two adjacent

elements to guide the model attention toward the most significant events in the sequence. Sec-

ondly, the model can inherit the representational power of pre-trained word embedding in

order to cope with the issue of potential synonym items in the data.

Our analysis confirms the predictive potential of recurrent models that use neural atten-

tion. We also showed that standard RNNs do not substantially outpeform simple linear mod-

els, while requiring significantly higher computational effort. On the other hand, adding the

attention mechanism makes the additional computational requirement worth it, since it

leads to improved performance. In addition, the proposed time span-guided attention strat-

egy leads to even better performance, especially if coupled with pre-trained embedding ini-

tialization of the weight matrix. Overall, thanks to the available software implementation

based on modern deep learning libraries, using Tangle does not require significant addi-

tional coding effort.

Another advantage of the attention mechanism is that it provides insights about which

portion of the sequence might be more important. For example, in our case we found that

Fig 6. Attention contribution. Manhattan plot of the attention contribution ω estimated by Tangle on the test set. As we can see, the model correctly focuses its

attention on the most recent claims, which have nonzero contributions. From this plot we can also appreciate the different representations learned for the two

classes.

https://doi.org/10.1371/journal.pone.0211844.g006
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the last 13 MBS claims, which take place in� 78 days, are the most relevant for the current

prediction task.

Overall, given that sensitivity and specificity of Tangle are at or above 80%, we claim that

this can be the basis of an automatic alert system for patients and providers. Clearly, before

Tangle can be used in practice one would have to understand at which point of the ROC

curve of Fig 4 one should operate. This would require a careful analysis of the relative costs of

false positives and false negative alert.

It is important to underline that there is nothing specific to DM or MBS-PBS data in

Tangle. The modeling strategy and the embedding method could be applied to any problem

of sequence classification, providing an easy-to-use method to represent and classify sequences

composed of discrete event codes. For example, one could apply this method to the analysis

of hospital data, where instead of MBS items one has ICD codes, or to more complex data sets,

such as the Electronic Health Record collection MIMIC-III [31], that contains clinical codes as

well as clinical measures and doctors’ notes.
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