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Abstract

How accurate do structures of the β2 adrenergic receptor (β2AR) need to be to effectively serve as 

platforms for docking-based virtual screening campaigns? To answer this research question, here 

we targeted through controlled virtual screening experiments 23 homology models of the β2AR 

endowed with different levels of structural accuracy. Subsequently, we studied the correlation 

between virtual screening performance and structural accuracy of the targeted models. Moreover, 

we studied the correlation between virtual screening performance and template/target receptor 

sequence identity. Our study demonstrates that docking-based virtual screening campaigns 

targeting homology models of the β2AR, in the majority of the cases, yielded results that exceeded 

random expectations in terms of area under the receiver operating characteristic curve (ROC 

AUC). Moreover, with the most effective scoring method, over one third and one quarter of the 

models yielded results that exceeded random expectation also in terms of enrichment factors (EF1, 

EF5, and EF10) and BEDROC (α = 160.9), respectively. Not surprisingly, we found a detectable 

linear correlation between virtual screening performance and structural accuracy of the ligand-

binding cavity. We also found a detectable linear correlation between virtual screening 

performance and structural accuracy of the second extracellular loop (EL2). Finally, our data 

indicate that, although there is no detectable linear correlation between virtual screening 

performance and template/β2AR sequence identity, models built on the basis of templates that 

show high sequence identity with the β2AR, especially within the ligand-biding cavity, performed 

consistently well. Conversely, models with lower sequence identity displayed performance levels 
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that ranged from very good to random, with no apparent correlation with the sequence identity 

itself.

Graphical Abstract

INTRODUCTION

G protein-coupled receptors (GPCRs) are highly sought-after targets for pharmaceutical 

intervention, due to their involvement in a wide range of physiological functions and 

pathological conditions. Their activity can be conveniently modulated through the 

administration of chemicals that, upon binding to the receptors, either stimulate their activity 

(agonists), lower their activity below the basal level (inverse agonists), or simply prevent 

their stimulation by natural ligands (neutral antagonists). Structurally, GPCRs are 

constituted by a single protein chain that spans the plasma membrane seven times with seven 

alpha helical transmembrane domains (TM1 to TM7, collectively TMs) connected by three 

intracellular loops (IL1 to IL3, collectively ILs) and three extracellular loops (EL1 to EL3, 

collectively ELs) (Figure 1). The N-terminus is located in the extracellular space, while the 

C-terminus is located in the cytosol.1–4

This work uses as a case study the β2 adrenergic receptor (β2AR), a prototypical GPCR for 

which a wealth of structural and pharmacological information is available. The β2AR 

belongs to the largest family of GPCRs, also known as class A or rhodopsin family. Agonists 

and blockers of the receptors have a variety of pharmacological applications, including the 

treatment of asthma (agonists) and high blood pressure (blockers), among others. For the 

β2AR, as well as for most receptors belonging to the rhodopsin family, the ligand-binding 

cavity (orthosteric cavity) is located at the extracellular opening of the TMs bundle. In 

particular, as shown in Figure 1, the orthosteric cavity of the β2AR is lined by residues 

located in the upper segments of TM3, TM5, TM6, and TM7 and the second extracellular 

loop (EL2).5–9

In light of the pharmaceutical relevance of GPCRs, many efforts have been devoted and 

continue to be devoted to the experimental solution of their three-dimensional structures.
10–14 At the time of this writing, a total of 321 structures have been solved for 62 unique 

GPCRs in complex with a variety of ligands or, in rare cases, in their unliganded state (for 

statistics and a table listing the GPCR structure deposited in the Protein Data Bank, see the 

GPCRdb website at https://gpcrdb.org/structure/statistics and https://gpcrdb.org/structure/).15

At the same time, to enable the use of the experimentally solved structures as tools to gather 

insights into the structural features of the entire GPCR family, which counts over 1,000 

members, efforts have been devoted to test the suitability of homology modeling for the 

construction of accurate models of the receptors for which experimental structures are not 

available. Prior to 2007, crystal structures had been published only for bovine rhodopsin. In 
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this context, rhodopsin-based models could be built and used for ligand-discovery purposes.
12, 16, 17 Nevertheless, there was no way to ultimately validate their accuracy in the absence 

of experimental structures of the modeled receptors that could serve as a reference. 

However, soon after the publication of the first crystal structures of the β2AR,7, 8 we 

published the first study that showed that models of this receptor endowed with a good level 

of accuracy could be built through rhodopsin-based homology modeling. In particular, our 

models showed a root mean square deviation (RMSD) of about 2 Å with respect to the 

backbone of the TMs of the reference β2AR structure.18, 19

As GPCR structural studies expanded, a number of blind assessments have been performed 

in concomitance with the solution of new GPCR structures, aimed at gauging the ability of 

molecular modelers to forecast the structures of specific GPCRs before their solution. 

Overall, these assessments, together with additional studies conducted by other investigators, 

highlighted that high accuracy can be achieved for models based on closely related 

templates, while only macroscopic folding could be predicted for models based on distant 

templates.20–26 Along these lines, in a recent paper, we conducted a systematic controlled 

homology modeling study by building models of the β2AR based on 23 different structural 

templates. This study highlighted a significant correlation between template/target receptor 

sequence identity and accuracy of the resulting models.27

How accurate do β2AR structures need to be to effectively serve as platforms for docking-

based virtual campaigns? To answer this research question, here we targeted through 

controlled docking-based virtual screening experiments the above-mentioned 23 homology 

models of the β2AR. Notably, these models are a good platform for our study, as they are 

endowed with different levels of structural accuracy as a consequence of the fact that they 

were built on the basis on different templates. The study began with the docking, at each of 

the 23 β2AR models, of a molecular dataset constituted by 25 blockers and 3000 decoys, i.e. 

molecules endowed with high molecular similarity with respect to the ligands. Subsequently, 

we evaluated the virtual screening performance in each of the docking runs and studied the 

correlation between said virtual screening performance and the structural accuracy of the 

targeted models, measured relatively to the entire structure, the ligand-binding cavity, or 

specific domains. Finally, given that we have previously demonstrated that there is a 

measurable correlation between structural accuracy and template/target receptor sequence 

identity, we evaluated the possible presence of a correlation between virtual screening 

performance and the sequence identity shared by the β2AR and the template receptors on 

which the models were based.

METHODOLOGY

Reference structure.

A crystal structure of the β2AR co-crystallized in its inactive state in complex with the 

inverse agonist carazolol (PDB ID: 2RH1)7, 8 was utilized as a reference structure to 

compare the performance of the models in docking-based virtual screening and to evaluate 

their structural accuracy, as detailed in the sections below. Several structures have been 

published for the β2AR, in complex with a number of agonists and blockers (https://

gpcrdb.org/structure/). As we previously described, we chose the 2RH1 structure as a 
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reference structure because it is the highest resolution (2.4 Å) structure of the β2AR solved 

in the inactive state.27

Homology models.

The homology models targeted by the docking-based virtual screening campaigns described 

in this report were previously published by us.27 The alignment of the seven TMs was 

performed through the structure-based alignment tool available at the GPCRdb website 

(http://gpcrdb.org/alignment/targetselection).15, 28 Extracellular and intracellular loops were 

aligned as described in our work.27

Sequence identity between β2AR and templates.

The percentages of sequence identity shared by the β2AR and the each of the 23 homology 

modeling templates were calculated through Modeller,29 by means of an “in-house” written 

Python script, on the basis of the sequence alignment previously published by us in the 

article in which we reported the construction of the models.27 Sequence identities were 

calculated comparing the amino acid sequence of the 2RH1 structure with that of each 

template receptor, excluding from the calculation the alignment positions containing gaps. 

Sequence identities were calculated with respect to the whole sequence, the seven TMs, as 

well as individual domains, including the ligand binding cavity. For sequence identity 

calculations (as well as RMSD calculations), the ligand-binding cavity of the β2AR was 

defined as the ensemble of residues located within 5 Å from the co-crystallized inverse 

agonist carazolol in the 2RH1 reference structure. Specifically, the ligand-binding cavity 

region comprised the following residues: Trp 109, Thr 110, Asp 113, Val 114, Val 117, Thr 

118, Phe 193, Thr 195, Tyr 199, Ala 200, Ser 203, Ser 204, Ser 207, Trp 286, Phe 289, Phe 

290, Asn 293, Tyr 308, and Asn 312, Tyr 316 (Figure 1). Further details regarding the 

definition of the other domains can be found in the article in which we reported the 

construction of the models.27

Root mean square deviation (RMSD) of the atomic coordinates between β2AR models and 
crystal structure.

The structural RMSD values between the 23 β2AR models and 2RH1 structure were 

previously published by us in the article in which we reported the construction of the 

models.27 In that article, we reported RMSD values relative to both the α carbons and all 

heavy atoms (including backbone and sidechains). The latter were used in this work. Briefly, 

as described, the RMSD measurements were performed through Modeller,29 by means of an 

“in-house” written Python script. RMSD values were calculated with respect to the whole 

sequence, the TMs, as well as individual domains, including the ligand binding cavity. Prior 

to the calculation of the RMSD values, the script performed a superposition of the α carbons 

of each homology model with the corresponding α carbons of the reference structure, 

excluding atom pairs with an RMSD of 5 Å or higher. The fitting procedure was repeated 

until there were no changes in the number of included atom pairs, prior to the final 

calculation of the RMSD values. The RMSD values relative to the ligand-binding cavity, 

which in the original article were obtained following the same procedure, here were 

recalculated after superposing exclusively the α carbons of the residues lining the binding 

cavity. See Sequence identity between β2AR and templates for the definition of the ligand 
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binding cavity. Further details regarding the definition of the other domains can be found in 

the article in which we reported the construction of the models.27

Preparation of the receptor structures for docking-based virtual screening.

The reference crystal structure and the 23 homology models of the β2AR were prepared for 

molecular docking with the Protein Preparation Wizard workflow, as implemented in the 

Schrödinger suite.30, 31 Through this workflow, we added hydrogen atoms, calculated the 

protonation state of ionizable groups at pH 7, and optimized the orientation of hydroxyl 

groups, as well as Asn, Gln, and His residues. Finally, the structures were subjected to a 

restrained minimization using the OPLS3 force field and the Impact molecular mechanics 

engine, allowing a maximum RMSD deviation of 0.30 Å for the heavy atoms.

Ligands.

The known β2AR ligands employed for the controlled docking-based virtual screening 

experiments consisted of a set of 25 known β2AR blockers (antagonists and inverse 

agonists). Specifically, these were the same blockers that we used in previous controlled 

virtual screening studies targeting the β2AR,32 namely: acebutolol, AH-3474A, alprenolol, 

bevantolol, bupranolol, carazolol, carvedilol, CGP-12177, cicloprolol, dichloroisoproterenol, 

ICI-118551, ICI-89406, labetalol, metopropol (H-87), (RSS)-Nadolol, (SRRR)-nebivolol, 

(SRRS)-nebivolol, NIP, pindolol, pronethalol, S-propranolol, R-propranolol, sotalol, timolol, 

xamoterol – note: to avoid an overrepresentation of nebivolol structures, here we included 

only the two nebivolol isomers endowed with the highest affinity for the β2AR, while is 

previous studies we docked a total of seven nebivolol isomers. Unless specified, for all 

blockers, the chiral carbon atom bearing the hydroxyl group was in the S chiral 

configuration. To treat ligands and decoys in the same way, the ligands were retrieved from 

the ZINC database (http://zinc.docking.org)33, 34 in their reference protonation state at pH 7. 

The ligands that were not in the ZINC database were sketched from the closest ZINC entry 

and subsequently minimized with the MacroModel engine and the OPLS3 forcefield as 

implemented in the Schrödinger suite.30

Decoys.

The decoys employed for the controlled docking-based virtual screening experiments 

consisted of a set of 3000 molecules showing high similarity with the blockers described 

above, identified through a fingerprint-based screening conducted with the CANVAS 

platform of the Schrödinger suite.30 First, MACCS fingerprints were calculated for each of 

the blockers as well as for about 8 million compounds from the ZINC database, in their 

reference protonation state at pH 7. Subsequently, through the canvasFPCombine function of 

CANVAS the individual fingerprints for the blockers were merged together into a single 

modal fingerprint.35 The above-mentioned 8 million compounds from the ZINC database 

were then scanned to identify the compounds closest to the blockers, by comparing the 

molecular fingerprint of each ZINC compound with the modal fingerprint representing the 

β2AR blockers. The 3000 ZINC compounds showing the highest Tanimoto coefficient with 

respect to the modal fingerprint were selected for use as decoys. The Tanimoto coefficients 

for the selected decoys ranged from to 0.67 to 0.59.
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Identification of internal cavities for ligand docking.

Internal cavities in the receptor structures and models were identified through the SiteMap 

tool of the Schrödinger suite,30, 36, 37 setting the search parameters as follows: grid spacing 

set at 1 Å, at least 15 points required per reported site; site maps cropped at 4.0 Å from 

nearest site point. Among all of the identified internal cavities, we selected for molecular 

docking the one comprised between the upper part of the TMs bundle and capped by the 

EL2 domain, which corresponds to the region to which orthosteric β2AR ligands bind.

Molecular docking.

Receptor grids were created for the 2RH1 crystal structure and the 23 models using the 

Receptor Grid Generation tool in the Glide application of the Schrödinger suite.30, 38–40 

Each cubic grid was centered on the internal cavity, as identified through SiteMap, for the 

structure in question and was given a size that would allow the docking of a ligand as big as 

the entire cavity. No scaling factors were applied to the Vander der Waals (vdW) radii of the 

receptor atoms. Molecular docking was then performed at the 2RH1 crystal structure and 

each of the 23 models using the Standard Precision (SP) scoring function (Glide SP), 

recording the top scoring pose for each ligand. Ligands and decoys were allowed full 

flexibility, while the receptors were held rigid. In addition, a scaling factor of 0.8 was 

applied to the atoms of ligands and decoys endowed with a partial charge lower than 0.15e. 
The Glide SP poses of the docked ligands and decoys were further subjected to rescoring 

with the Extra Precision (XP) scoring function. The rescoring was done with both the “score 

in place” method, which rescored the docking complexes without allowing a geometric 

optimization of the ligand pose (Glide SP/XP-score-in-place), as well as the “refine” 

method, which rescored the docking complexes after a geometric optimization of the ligand 

pose (Glide SP/XP-refine).

Receiver operating characteristic (ROC) analyses.

ROC analyses were performed with the R package “enrichvs”,41, 42 treating ligands as true 

positives and decoys as false positives. After plotting the true positive fraction on the y-axis 

and the false positive fraction on the x-axis, the area under the resulting curve was calculated 

(ROC AUC). For an ideal virtual screening that ranks all ligands higher than decoys, the 

ROC analysis will yield a rectangular curve passing through the upper left corner of the plot, 

and the ROC AUC will have a value of 1. A virtual screening that ranks all decoys higher 

than ligands, will yield a rectangular curve passing through the lower right corner of the plot 

with an ROC AUC of 0. A virtual screening that randomly ranks ligands and decoys will 

yield a diagonal curve with an ROC AUC of 0.5.

Boltzmann-enhanced discrimination of receiver operating characteristic (BEDROC) 
analyses.

BEDROC analyses were performed with the R package “enrichvs”,41, 42 treating ligands as 

true positives and decoys as false positives. BEDROC is a metric of virtual screening 

performance developed by Truchon et al., which emphasizes early recognition of ligands.43 

In BEDROC analysis, an α coefficient determines the weight put on early recognition, with 

higher values of α causing higher weight on early recognition. In our work, we used an α 
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coefficient of 160.9, which causes 80% of the BEDROC score to be determined by the top 

1% of the scored dataset.43, 44 Just as for ROC AUC, a virtual screening that ranks all 

ligands higher than decoys will yield a BEDROC value of 1, while a virtual screening that 

ranks all decoys higher than ligands will yield a BEDROC value of 0. The BEDROC value 

for a virtual screening that randomly ranks ligands and decoys depends on a variety of 

factors, including the α coefficient, the number of ligands, and the number of decoys. With 

our dataset of ligands and decoys and an α coefficient of 160.9, random ranking will yield a 

BEDROC value of 0.07.

Enrichment factors.

Enrichment factors within the top 1%, 5%, and 10% of the screened dataset (EF1, EF5, and 

EF10, respectively) were calculated with the R package “enrichvs”.41, 42 Essentially, EF 

values are obtained by taking the ratio of ligands over total number of compounds (ligands 

plus decoys) found within the selected percent of highest ranking compounds and dividing it 

by the same ratio calculated for the entire screened dataset. A virtual screening that ranks all 

ligands higher decoys will yield an EF1 of 100, an EF5 of 20, and an EF10 of 10. A virtual 

screening that ranks all decoys higher than ligands will yield EF values of 0. A virtual 

screening that randomly ranks ligands and decoys will yield EF values of 1.

Confidence intervals for virtual screening performance metrics.

For each virtual screening campaign 2000 iterations of bootstrap resampling of the rankings 

was performed through the R package “boot.” Based on the bootstrapping, 95% confidence 

intervals for each performance metric were subsequently calculated.41, 44, 45 Based on the 

calculated 95% confidence intervals, we considered a virtual screening result confidently 

above random expectation when the lower boundary of the 95% confidence interval 

exceeded the expectation for random ranking for the metric in question.

Plots, correlation analyses, calculations of mean and median values.

Linear regression analyses, calculation of the square of the correlation coefficients (R2), as 

well as calculations of mean and median values were performed with R. Plotting of the data 

was performed with Microsoft® Excel®, except for Supporting Information Figures S4 and 

S8, where it was performed with R.

RESULTS

Virtual screening targets.

The controlled docking-based virtual screening campaigns object of this work targeted 23 

homology models of the β2AR previously published by us, which were built using 23 

different receptor templates crystallographically solved in their inactive state.27 For 

comparison, our docking-based virtual screening campaigns also targeted a reference crystal 

structure of the β2AR crystallized in complex with the inverse agonist carazolol (PDB ID: 

2RH1).7, 8 Moreover, they also targeted the crystal structure of the dopamine D3 receptor 

(PDB ID: 3PBL),46 which, as illustrated below, is the template that yielded the best 

performing homology model.
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As shown in Supporting Information Table S1, our models are endowed with different 

degrees of structural similarity with respect to the 2RH1 reference structure. In particular, 

within the ligand-binding cavity, our models displayed RMSD values with respect to the 

reference crystal structure ranging from 0.82 Å, for the model based on the β1AR template, 

to 4.56 Å, for the model based on the P2Y12 template – RMSD values calculated for all 

heavy atoms, including backbone and sidechains. Moreover, our models are based on 

templates endowed with different degrees of sequence identity with respect to the β2AR. In 

particular, within the ligand-binding cavity, the templates on which our models are based 

displayed sequence identity values with respect to the β2AR ranging from 95%, for the 

β1AR template, to 5%, for the P2Y12, CXCR4, and bovine rhodopsin templates.

Decoys.

For none of the selected decoys, a biological activity at the β2AR has been recorded in the 

ChEMBL database (https://www.ebi.ac.uk/chembl/).47 This does not exclude the possibility 

that some of the decoys might be found active at the β2AR if experimentally tested. 

However, it is safe to assume that the majority of the decoys are bona fide devoid of β2AR 

activity and can therefore be considered false positives for the purposes of our controlled 

virtual screening campaigns.

Virtual screening performance.

Following each docking run, we gauged the virtual screening performance by calculating the 

area under the receiver operating characteristic curve (ROC AUC), the area under the 

Boltzmann-enhanced discrimination of receiver operating characteristic curve (BEDROC), 

with an α coefficient of 160.9, and the enrichment of ligands within the top scoring 1%, 5%, 

and 10% of the docked molecular dataset (EF1, EF5, and EF10) – see the Methodology 

section for more details on the calculations and the interpretation of the results. While the 

ROC AUC provides a measure of the general prioritization of ligands versus decoys (true 

positives versus false positives) across the entire screening, BEDROC and enrichment 

factors provide a measure of the prioritization of ligands versus decoys within the 

compounds that received the highest scores – as noted in the Methodology section, an α 
coefficient of 160.9 causes 80% of the BEDROC value to be determined by the top 1% of 

the scored dataset. Hence, given that the ultimate scope of real-life virtual screening 

campaigns is to select a number of top scoring compounds and subject them to experimental 

testing with the hope of finding as many active compounds as possible, BEDROC and EFs 

are particularly relevant indicators of virtual screening performance.

The results of our analysis of the performance of the virtual screening campaigns are 

summarized in Table 1 and Supporting Information Tables S2–S3. In particular, the data 

provided in Table 1 are relative to the ranking yielded by Glide SP docking followed by 

Glide XP rescoring with a geometric optimization of the ligand pose (Glide SP/XP-refine). 

Conversely, the data provided in the analogous Supporting Information Tables S2–S3 are 

relative to the rankings yielded by Glide SP docking without further rescoring (Glide SP) 

and Glide SP docking followed by Glide XP rescoring without a geometric optimization of 

the ligand pose (Glide SP/XP-score-in-place), respectively.
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The relative effectiveness of the three scoring methods used in this work can be gauged by 

comparing the mean and median values of the virtual performance metrics across all the 

β2AR models reported in the bottom rows of Table 1 and Supporting Information Tables S2–

S3 (to facilitate the comparison, a bar graph rendition of the data is provided in Supporting 

Information Figure S1). As the data reveals, Glide SP/XP-refine performed consistently 

better than Glide SP/XP-score-in-place and Glide SP without rescoring across all metrics. 

The only exception was noted for the ROC AUC, where Glide SP/XP-score-in-place 

performed slightly better than Glide SP/XP-refine.

As Table 1 illustrates, in terms of ROC AUC, the performance ranged from a maximum 

0.95, for the model based on the dopamine D3 receptor, to a minimum of 0.35, for the 

models based on the P2Y1 receptor. The model based on the β1AR ranked second in terms 

of performance, with an ROC AUC value of 0.90. The results followed a similar trend for 

BEDROC and enrichment factors, with the model based on the dopamine D3 receptor and 

the β1AR consistently performing better than the others, with the only exception of the 

model based on the CCR5 receptor, which outperformed the one based on the β1AR in terms 

of EF5. For comparison purposes, Table 1 includes also the virtual screening performance 

registered with the 2RH1 crystal structure of the β2AR, which, as mentioned, we used as a 

reference structure throughout the study. As the table illustrates, the two homology models 

that yielded the best performance results in virtual screening, i.e. the models based on the 

dopamine D3 receptor and β1AR, yielded results very close, and sometimes superior, to 

those yielded by the β2AR crystal structure for all of the metrics.

Finally, to gauge to which extent our homology models of the β2AR were more suited to 

distinguish β2AR ligands and decoys than the templates on which the models were based, 

we docked our dataset of β2AR ligands and decoys to the crystal structure of the dopamine 

D3 receptor, which is the template that yielded the overall best performing β2AR homology 

model. As the data shown in Table 2 indicate, the D3-based β2AR homology model 

consistently performed better than the D3 crystal structure itself in prioritizing β2AR ligands 

over decoys, for all the metrics and all the scoring methods.

Comparison with other datasets of ligands and decoys.

To gauge how the virtual screening performance registered with our dataset of ligands and 

decoys compared with those that would be obtained using alternative datasets of ligands and 

decoys, we docked at the β2AR crystal structure (PDB ID: 2RH1) alternative sets of β2AR 

ligands and decoys published by Weiss et al. (GPCR-Bench) and by Cavasotto et al. (GLL/

GDD).48, 49 The GPCR-Bench and GLL/GDD datasets are both characterized by a higher 

number of ligands with respect to our dataset. In particular, the GPCR-Bench and GLL/GDD 

datasets comprise 207 and 204 ligands, respectively, while ours comprises 25 ligands. The 

decoys/ligands ratios are 62 decoys per ligand for the GPCR-Bench, 40 decoys per ligand 

for the GLL/GDD dataset, and 121 decoys per ligand for our dataset. The methods at the 

basis of the selection of the decoys are also significantly different. In particular, we selected 

the decoys on the basis of highest topological similarity, as calculated through molecular 

fingerprinting. Conversely, the decoys for GPCR-Bench and GLL/GDD datasets were 

selected on the basis of molecular properties (molecular weight, estimated water−octanol 
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partition coefficient, rotatable bonds, net charge and, for GPCR-Bench only, hydrogen bond 

acceptors/donors) and highest topological dissimilarity (selecting only the decoys with the 

most dissimilar molecular fingerprints with respect to the ligands). As shown in Figure 2 for 

the Glide SP/XP-refine scoring method and in Supporting information Figures S2–S3 for 

Glide SP and Glide/XP-score-in-place, the three datasets of ligands and decoys appear 

similarly challenging, although there are some differences. In particular, the GLL/GDD 

dataset is generally the most challenging for the majority of the metrics and the majority of 

the scoring methods. Conversely, our dataset is generally the least challenging. This trait is 

particularly evident with respect to the EF5 and EF10 methods.

Correlation between virtual screening performance and structural accuracy of the models.

After gauging the performance of each docking-based virtual screening campaign, we 

studied the correlation between said performance and the structural accuracy of the models, 

assessed with respect to the entire structure, the TMs bundle, the EL2 domain, and the 

ligand-binding cavity – RMSD values calculated for heavy atoms, including backbone and 

side chains (see Methodology section for further details).

A complete set of plots of all virtual screening performance metrics versus the structural 

accuracy of the models is provided in Supporting Information Figure S4 for all the scoring 

methods. A bar graph representation of the resulting R2 values is provided in Figure 3 for 

the ROC AUC and the BEDROC metrics, while analogous bar graphs for the enrichment 

factors (EF1, EF5, and EF10), are provided in Supporting Information Figures S5–S7.

As Figure 3 and Supporting Information Figures S5–S7 indicate, for all the metrics, the 

highest degree of correlation between virtual screening performance and structural accuracy 

of the models was found for the ligand-binding cavity and the EL2 domain. Overall, for both 

the structural accuracy of the ligand-binding cavity and EL2, there was a significantly 

stronger correlation with the ROC AUC than with the indicators of early enrichment 

(BEDROC and EFs). In particular, the highest R2 values were detected for the correlation 

between the ROC AUC and the structural accuracy of the ligand-binding cavity – 0.55 and 

0.45 for Glide SP/XP-score-in-place and Glide SP/XP-refine, respectively (Figure 4) – 

followed by the R2 values for the correlation between the ROC AUC and the structural 

accuracy of EL2 – 0.44 and 0.41 for Glide SP/XP-score-in-place and Glide SP/XP-refine, 

respectively (Figure 5).

In terms of scoring methods, we found that Glide SP/XP-score-in-place and Glide SP/XP-

refine performed generally better than Glide SP without rescoring. We also found that Glide 

SP/XP-score-in-place performed slightly better than Glide SP/XP-refine for the correlation 

with ROC AUC (Figure 3 panel A, and top row panels for Figures 4 and Figure 5), EF5 

(Supporting Information Figure S6), and EF10 (Supporting Information Figure S7). 

Conversely, Glide SP/XP-refine performed slightly better than Glide SP/XP-score-in-place 

for the correlation with BEDROC (Figure 3 panel B, and bottom row panels for Figures 4 

and Figure 5) and EF1 (Supporting Information Figure S5).
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Correlation between virtual screening performance and template/β2AR sequence identity.

Lastly, we studied the correlation between the performance of the docking-based virtual 

screening campaigns and the sequence identity between β2AR and the template on which 

the models targeted by each campaign were based. Just as for the structural accuracy, we 

calculated the sequence identity values for the whole receptor, the TMs, EL2, and the ligand-

binding cavity.

A complete set of plots of all virtual screening performance metrics versus the sequence 

identity between the β2AR and the templates on which the models were built is provided in 

Supporting Information Figure S8 for all the scoring methods. A bar graph representation of 

the resulting R2 values is provided in Figure 6 for the ROC AUC and the BEDROC metrics. 

Analogous graphs for the enrichment factors (EF1, EF5, and EF10), are provided in 

Supporting Information Figures S9–S11. Of note, the correlation coefficients shown in these 

bar graphs were obtained excluding from the calculation the β1AR, which is indeed an 

outlier in terms of its very high sequence identity with respect to the β2AR (for instance, 

with respect to the overall sequence, the β1AR shares 64% of identity with the β2AR, while 

the sequence identity displayed by the other templates ranges between 16% and 37%).

As Figure 6 and Supporting Information Figures S9–S11 indicate, we did not find a strong 

correlation between the performance of our docking-based virtual screening campaigns 

targeting β2AR homology models and template/β2AR sequence identity, with all calculated 

R2 values being lower than 0.3. In fact, as evident from the plots shown in Figures 7–8 and 

Supporting Information Figure S8, there is not a linear correlation between the template/

β2AR sequence identity and the virtual screening performance of the resulting models. 

Rather, the models based on the β1AR and the dopamine D3 receptor – i.e. the two templates 

that share the highest sequence identity with the β2AR overall, in the TMs, and in the ligand 

binding cavity – yielded excellent levels of virtual screening performance in terms of ROC 

AUC (Figures 7–8, panels A–B) as well as good levels of virtual screening performance in 

terms indicators of early enrichment, namely BEDROC (Figures 7–8, panels C–D) and EFs 

(Supporting Information Figure S8, panels 29–40 and panels 49–60) for both the Glide 

SP/XP-score-in-place and the Glide SP/XP-refine scoring methods. Conversely, for the 

remainder of the models, which are based on templates that share lower percentages of 

sequence identities with the β2AR, no correlation between sequence identity level and 

virtual screening performance was detected. The separation between the two models that 

consistently performed well and the others is particularly evident for the ligand binding 

cavity, where the β1AR and the dopamine D3 share 95% and 55% of sequence identity with 

the β2AR, respectively, while the remainder of the templates share sequence identities with 

the β2AR ranging from 5% to 30% (Figure 7). The same trend is maintained for the 

sequence identity calculated for the TMs (Figure 8) or the overall sequence (Supporting 

Information Figure S8), where the β1AR and the dopamine D3 also share higher sequence 

identities with the β2AR, although the separation between the β1AR and D3 receptors and 

the rest of the templates in terms of sequence identity with respect to the β2AR is not as 

pronounced as that calculated within the ligand-binding cavity.
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DISCUSSION

As evident from Table 1 and Supporting Information Tables S2–S3, a first notable result of 

this study is that, in our docking-based virtual screening campaigns, over half of the β2AR 

homology models yielded ROC AUC values confidently above the expectation for random 

ranking (lower boundary of the 95% confidence interval above the expectation for random 

ranking) for all of the tested scoring methods. Moreover, with the best performing scoring 

method (Glide SP/XP-refine), over one third and one quarter of the β2AR homology models 

yielded enrichment factors (EF1, EF5, and EF10) and BEDROC (α = 160.9) values 

confidently above the expectation for random ranking, respectively. Specifically, with the 

Glide SP/XP-refine scoring method, out of the 23 tested models, we registered virtual 

screening performance values confidently above random ranking expectations for 14 models 

in terms of ROC AUC, 6 in terms of BEDROC (α = 160.9), 8 in terms of EF1, 10 in terms 

of EF5, and 11 in terms of EF10 (Table 1).

These findings are in line with de Graaf and Rognan’s observation that, despite their 

structural inaccuracies, GPCR models are generally useful for the identification of novel 

ligands.50 Of note, our control experiment in which we docked our dataset of β2AR ligands 

and decoys to the crystal structure of the dopamine D3 receptor yielded virtual screening 

performance levels inferior to those obtained with the D3–based β2AR homology model, 

thus suggesting that, in the absence of the structure of a receptor, GPCR homology modeling 

indeed brings added value to virtual screening (Table 2). This is reasonable, in consideration 

of the fact that 9 out of the 20 residues that line the β2AR binding cavity are not conserved 

in the dopamine D3 receptor – for a schematic diagram of the β2AR ligand binding cavity 

and the corresponding residues in the dopamine D3 receptor, see Supporting Information 

Figure S12.

Not surprisingly, the data shown in Figures 3–5 indicate that there is a detectable linear 

correlation between the performance of the models, especially in terms of ROC AUC, and 

the structural accuracy of the portions of the receptor directly involved in ligand binding. In 

particular, for all the metrics, the highest R2 values were detected for the ligand-binding 

cavity as well as the EL2 domain, which, as known, constitutes the upper lining of the β2AR 

ligand-binding cavity.

The model based on the dopamine D3 receptor, which, as the β2AR, belongs to the family of 

aminergic receptors, showed the best virtual screening performance in all the metrics for 

both Glide SP/XP-refine and Glide SP/XP-score-in-place (Table 1 and Supporting 

Information Table S3). This is in line with the fact that this template yielded the most 

accurate model with respect to both the ligand-binding cavity and the EL2 domain, even 

higher than the structural accuracy of the model based on the β1AR, which is closer to the 

β2AR in terms of sequence identity. Just as this study indicates that the D3 receptor is a good 

template for the construction of β2AR, previously published studies highlighted that, in turn, 

the β2AR is a good template to build models of the D3 receptor. In particular, our finding is 

consistent with work published by Shoichet and coworkers that highlighted the good 

performance of prospective docking-based virtual screening campaigns targeting homology 

models of the dopamine D3 receptor based on the β2AR.51 Our finding is also consistent 
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with the results of the GPCR Dock 2010 assessment, which highlighted that accurate models 

of the dopamine D3 receptor in complex with the antagonist eticlopride could be built on the 

basis of adrenergic receptor templates.22

The fact that we found no linear correlation between template/β2AR sequence identity and 

performance of the β2AR models in virtual screening (Figure 6) is not entirely surprising. 

As this study demonstrates, the region whose structural accuracy affects the most virtual 

screening performance is the ligand-binding cavity. However, as we have previously 

reported, the correlation between the structural accuracy of the model of the ligand-binding 

cavity and template/β2AR sequence identity calculated for the same cavity, although 

detectable, is not strong (R2 = 0.41). Consequently, although we found a measurable 

correlation between structural accuracy and virtual screening performance for the ligand-

binding cavity, it is reasonable that this observation did not translate into a linear correlation 

between the template/β2AR sequence identity relative to the cavity and the virtual screening 

performance of the models.

Despite this lack of linear correlation, our work shows that, indeed, a high sequence identity 

relative to the ligand-binding cavity between template and modeled receptor translates into a 

good virtual screening performance of the resulting β2AR homology model (Figure 7). In 

particular, the two models based on the two templates with particularly high sequence 

identity with respect to the β2AR within the ligand-binding cavity, namely the β1AR and the 

dopamine D3 receptor, performed very well in virtual screening, especially in terms of ROC 

AUC. Conversely, models based on templates with lower sequence identity showed a wide 

spectrum of virtual screening performances, with no apparent correlation with the 

template/β2AR sequence identity. As it is evident from Figure 7, there is a wide separation, 

in terms of percentage of sequence identity relative to the ligand-binding cavity, between the 

two models that performed well in virtual screening and those with unpredictable 

performance. In particular, the β1AR and D3 receptors show a sequence identity with the 

β2AR of 95% and 55%, respectively, while all the others show sequence identities ranged 

from 5% to 30%.

Similarly, our work shows that a high sequence identity relative to the overall structure of 

the receptor or the TM bundle between template and modeled receptor translates into a good 

virtual screening performance of the resulting β2AR homology models (Figure 8 and 

Supporting Information Figure S8). Again, the two models based on the β1AR and the 

dopamine D3 receptor, which show the highest sequence identity with respect to the β2AR 

relative to the overall structure and the TMs, performed very well in virtual screening, 

especially in terms of ROC AUC. Conversely, just as noted for the ligand-binding cavity, 

models based on templates with lower sequence identity showed a wide spectrum of virtual 

screening performance, with no apparent correlation with the template/β2AR sequence 

identity. Unlike for the ligand-binding cavity, there appears to be a rather small separation in 

terms of the percentage of sequence identity between the templates that yielded the two 

models that performed well in virtual screening and those that yielded models with 

unpredictable performance. With respect to the TM bundle, the β1AR and D3 receptors show 

a sequence identity with the β2AR of 67% and 41%, respectively, while all the others show 

sequence identities comprised between 38% and 17% (Figure 8). With respect to the overall 
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structure of the receptor, the β1AR and D3 receptors show a sequence identity with the β2AR 

of 64% and 37%, respectively, while all the others show sequence identities comprised 

between 34% and 16%. In light of these observations, it can be concluded that high 

template/β2AR sequence identity relative to the overall structure of the receptor, the TM 

bundle, and, especially, the ligand-binding cavity can be taken as an indication of likely 

good virtual screening performance, in particular in terms of ROC AUC, of the resulting 

β2AR homology models.

An important caveat is that the present work is a case study relative to the β2AR. In light of 

the generality of the domains on which we focused our analysis, namely the TMs bundle, the 

ligand-binding cavity, and EL2, our study might be relevant to other GPCR systems as well. 

In particular, we expect it to be relevant to those GPCRs that bind small-molecule ligands in 

a cavity enclosed within the TMs bundle and capped by EL2, as it is the case for several 

class A receptors.52 For instance, our conclusion that the overall sequence identity between 

template and target receptor is not a good predictor of virtual screening performance is in 

line with what was reported by Rataj and coworkers in a study focused on homology models 

of four serotonin receptors. In light of their findings, the authors hypothesized that “the 

three-dimensional structure of the binding pocket should bear more significance [for virtual 

screening performance] than overall sequence similarity.”53 Our results entirely support and 

corroborate this hypothesis.

This work was not intended to probe the effectiveness of optimized β2AR homology models 

or to study how to maximize virtual screening performance through the incorporation of 

external information. Rather, it was meant to provide an assessment of the performance of 

crude β2AR homology models and determine how this is affected by the structural accuracy 

of the models and the sequence identity between template and modeled receptors. However, 

it is worth noting that it is generally recognized that the effectiveness of GPCR models as 

platforms for virtual screening significantly improves when the models are optimized in 

complex with a prototypical ligand, for instance through molecular dynamics or 

conformational searches, or when experimental information is incorporated in the screening, 

for instance through the application of filters or fingerprints meant to capture plausible 

receptor-ligand interactions.25, 50, 54–56 Indeed, a recent article from Loo and coworkers, in 

which homology models of eight different GPCRs were evaluated for their virtual screening 

performance, pointed out that geometrically optimizing the models around the structure of a 

docked ligand significantly improved their performance in docking-based virtual screening. 

The authors proved this by docking into their homology models the ligand co-crystallized 

with a reference structure of the modeled receptor through a procedure that accounts for the 

flexibility of both ligands and receptors (induced fit docking). It is reasonable to expect that 

similar results would be obtained repeating the same procedure with different ligands of the 

studied receptors.57

As a final point, it should be noted that, as for all controlled virtual screening campaigns, the 

performance levels that we registered in this study are highly dependent on the ligands and 

decoys that we employed. This is well illustrated by the comparison of the performance of 

docking-based virtual screening campaigns targeting the β2AR conducted with our dataset 

of ligands and decoys as well two alternative datasets of ligands and decoys previously 
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published by other authors (GPCR-Bench and GLL/GDD).48, 49 In particular, the 

comparison shows that our dataset is somewhat less challenging than the other two. In light 

of these consideration, it should not be discounted that the performance levels that would be 

registered in prospective docking-based virtual screening campaigns targeting our β2AR 

models might be lower than those reported in Table 1 and Supporting Information Tables 

S2–S3.

SUMMARY AND CONCLUSIONS

Our study demonstrates that controlled docking-based virtual screening campaigns targeting 

homology models of the β2AR, in the majority of the cases, yielded results that confidently 

exceeded random expectations in terms ROC AUC (Table 1 and Supporting Information 

Tables S2–S3). Moreover, with the best performing scoring method, over one third and one 

quarter of the models yielded results that confidently exceeded random expectation also in 

terms of enrichment factors (EF1, EF5, and EF10) and BEDROC (α = 160.9) (Table 1). Not 

surprisingly, we found a detectable correlation between virtual screening performance and 

the structural accuracy of the ligand-binding cavity (Figure 4). Moreover, we also found a 

detectable, although lower, linear correlation between virtual screening performance and 

structural accuracy of the EL2 domain (Figure 5). As our data indicate, in both cases, the 

linear correlation was stronger when virtual screening performance was assessed in terms of 

ROC AUC values, i.e. in terms of prioritization of ligands over decoys over the entire 

screened dataset, than when it was assessed in terms of early enrichment metrics. Finally, 

our data indicate that, although there is no detectable linear correlation between virtual 

screening performance and template/β2AR sequence identity, models built on the basis of 

templates that show high sequence identity with the β2AR, especially within the ligand-

biding cavity, performed consistently well. Conversely, models based on templates with 

lower sequence identity displayed performance levels that ranged from very good to random, 

with no apparent correlation with the sequence identity itself (Figures 7–8).

In conclusion, this study identifies the characteristics of the β2AR homology models that 

determine their virtual screening performance. The lack of linear correlation between 

template/β2AR sequence identity implies that, in most cases, it will not be possible to 

predict on the basis of sequence alignment considerations whether or not a given model will 

perform well in docking-based virtual screening. However, our data on the performance of 

the studied β2AR homology models suggests that when the sequence identity between 

template and target receptor is high, especially within the ligand-binding cavity, the resulting 

models will perform well as docking-based virtual screening platforms. Conversely, when 

the sequence identity is lower, predicting the performance of the campaigns becomes 

unfeasible.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overall topology of the β2AR bound to the agonist epinephrine (panel A, PDB ID: 4LDO), 

and details of the ligand-binding cavity with bound epinephrine (panel B, PDB ID: 4LDO) 

and the inverse agonist carazolol (panel C, PDB ID: 2RH1).7–9 In panel A, the backbone 

structure of the receptor is represented as a ribbon, with a spectrum of colors ranging from 

red at the N-terminus to purple at the C-terminus. Labels indicate each of the seven TMs as 

well as the ELs and ILs. The agonist epinephrine is shown with green carbons (panels A and 

B). The inverse agonist carazolol is shown with magenta carbons. The residues lining the 

binding pocket for the bound ligands are shown with gray carbons (panels A-C).
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Figure 2. 
Bar graph showing the performance of virtual screening experiments (Glide SP/XP-refine 

rankings) targeting a crystal structure of the β2AR (PDB ID: 2RH1) using different sets of 

ligands and decoys. Blue bars refer to the dataset of ligands and decoys used in this work; 

orange bars refer to the Heptares GPCR-Bench dataset for the β2AR; gray bars refer to the 

GLL/GDD dataset for the β2AR. The presented performance metrics include ROC AUC, 

BEDROC (α = 160.9), and enrichment factors within the top 1% (EF1), 5% (EF5), and 10% 

(EF10) of the screened dataset. To facilitate the comparison, the enrichment factors are 

expressed as relative values with respect to the highest value for the metric achievable with 

each dataset (maximum EF1: 100 for our dataset, 62 for the GPCR-Bench dataset; 40 for the 

GLL/GDD dataset; maximum EF5: 20 for all datasets; maximum EF10: 10 for all datasets). 

For analogous figures relative to the data obtained with Glide SP rankings and Glide SP/XP-

score-in-place rankings, see Supporting Information Figures S2–S3.
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Figure 3. 
Values of the square of the correlation coefficients (R2) for the correlation between the 

performance of β2AR models in the controlled virtual screening experiments and the 

structural accuracy of the models, expressed in terms of RMSD from a reference β2AR 

crystal structure (PDB ID: 2RH1). The RMSD values were calculated relatively to the whole 

receptor (all residues) the TMs bundle, the ligand-binding cavity (Cavity), or the EL2 

domain. The virtual screening performance was gauged in terms of ROC AUC and 

BEDROC (α = 160.9). Blue bars: Glide SP rankings; red bars: Glide SP/XP-score-in-place 

rankings; green bars: Glide SP/XP-refine rankings. For analogous figures reporting the 

virtual screening performance in terms of enrichment factors within the top 1%, 5% and 

10% of the screened dataset (EF1, EF5, and EF10), see Supporting Information Figures S5–

S7.
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Figure 4. 
Scatter plots showing the relationship between the performance of β2AR models in the 

controlled virtual screening experiments and the structural accuracy of the models within the 

ligand-binding cavity, expressed in terms of RMSD from a reference crystal structure (PDB 

ID: 2RH1). The virtual screening performance was gauged in terms ROC AUC (panels A 

and C) and BEDROC (α = 160.9, panels C and D). Data relative to the Glide SP/XP-score-

in-place and Glide SP/XP-refine rankings are shown in right and left panels, respectively. In 

each panel, the linear regression analysis curve and the associated R2 values are shown. 

Moreover, a red dashed line marks the performance expectation for random ranking (ROC 

AUC = 0.50 and BEDROC = 0.07). Green labels indicate the templates on which the models 

that yielded the best virtual screening performance were based.
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Figure 5. 
Scatter plots showing the relationship between the performance of β2AR models in the 

controlled virtual screening experiments and the structural accuracy of the models in the 

EL2 domain, expressed in terms of RMSD from a reference crystal structure (PDB ID: 

2RH1). The virtual screening performance was gauged in terms of ROC AUC (panels A and 

C) and BEDROC (α = 160.9, panels C and D). Data relative to the Glide SP/XP-score-in-

place and Glide SP/XP-refine rankings are shown in right and left panels, respectively. In 

each panel, the linear regression analysis curve and the associated R2 values are shown. 

Moreover, a red dashed line marks the performance expectation for random ranking (ROC 

AUC = 0.50 and BEDROC = 0.07). Green labels indicate the templates on which the models 

that yielded the best virtual screening performance were based.
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Figure 6. 
Values of the square of the correlation coefficients (R2) for the correlation between the 

performance of β2AR models in the controlled virtual screening experiments and the 

sequence identity shared by the β2AR and the templates on which the models were based. 

The sequence identities were calculated relatively to the whole receptor (all residues), the 

TMs bundle, the ligand-binding cavity (Cavity), or the EL2 domain. The virtual screening 

performance was gauged in terms of ROC AUC and BEDROC (α = 160.9). The R2 values 

given in panel B were calculated excluding the β1AR, which shares a sequence identity with 

the β2AR much higher than that displayed by the other receptors. Blue bars: Glide SP 

rankings; red bars: Glide SP/XP-score-in-place rankings; green bars: Glide SP/XP-refine 

ranking. For analogous figures reporting the virtual screening performance in terms of 

enrichment factors within the top 1%, 5% and 10% of the screened dataset (EF1, EF5, and 

EF10), see Supporting Information Figures S9–S11.
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Figure 7. 
Scatter plots showing the relationship between the performance of β2AR models in the 

controlled virtual screening experiments and the sequence identity, relative to the residues 

that line the ligand-binding cavity in the β2AR, shared by β2AR and the templates on which 

the models were based. The virtual screening performance was gauged in terms of ROC 

AUC (panels A and C) and BEDROC (α = 160.9, panels C and D). Data relative to the Glide 

SP/XP-score-in-place and Glide SP/XP-refine rankings are shown in right and left panels, 

respectively. In each panel, the linear regression analysis curve and the associated R2 values 

are shown. Moreover, in each panel, a red dashed line marks the performance expectation for 

random ranking (ROC AUC = 0.50 and BEDROC = 0.07). Green labels indicate the 

templates on which the models that yielded the best virtual screening performance were 

based. A green box encloses the models based on the two templates endowed with the 

highest sequence identity with respect to the β2AR, while a red box encloses all the other 

models.
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Figure 8. 
Scatter plots showing the relationship between the performance of β2AR models in the 

controlled virtual screening experiments and the sequence identity in the transmembrane 

domains shared by β2AR and the templates on which the models were based. The virtual 

screening performance was gauged in terms of ROC AUC (panels A and C) and BEDROC 

(α = 160.9, panels C and D). Data relative to the Glide SP/XP-score-in-place and Glide 

SP/XP-refine rankings are shown in right and left panels, respectively. In each panel, the 

linear regression analysis curve and the associated R2 values are shown. Moreover, in each 

panel, a red dashed line marks the performance expectation for random ranking (ROC AUC 

= 0.50 and BEDROC = 0.07). Green labels indicate the templates on which the models that 

yielded the best virtual screening performance were based. A green box encloses the models 

based on the two templates endowed with the highest sequence identity with respect to the 

β2AR, while a red box encloses all the other models.
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