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Abstract

BACKGROUND—Atrial fibrillation (AF) is sustained by reentrant mechanisms that depend, in 

part, on atrial structural remodeling. Increased Ca2+/calmodulin-dependent protein kinase II 

(CaMKII) activity occurs in persistent AF. A general consensus has been that electrophysiological 

actions of CaMKII must be the contributing factor, but electrical remodeling in AF differs 

considerably with electrophysiological effects of CaMKII. CaMKII has been associated with 

structural remodeling in several tissues, but not the cardiac atria. The role of CaMKII in sustaining 

AF remains undefined.

OBJECTIVE—The purpose of this study was to assess the effects of CaMKII on AF-related 

structural remodeling.

METHODS—We evaluated the objective in a porcine AF-heart failure model using atrial gene 

transfer of the CaMKII inhibitory peptide CaMKIIn. We used conventional methods including in 
vivo electrophysiological study, telemetry, western blot, echo-cardiography, and histology to 

quantify rhythm, function, micro-structure, and signaling pathways relevant to CaMKII and 

structural remodeling.

RESULTS—CaMKII levels and activity increased progressively in the early stages of AF-heart 

failure. Inhibiting CaMKII preserved atrial contractile function and attenuated atrial hypertrophy, 

fibrosis, and apoptosis but did not affect inflammation or myolysis. These effects were 

accompanied by significantly decreased phosphorylation of HDAC4, decreased expression of 

p38MAP-kinase, and alterations in the phosphorylation pattern and relative ratios of JNK 

isoforms.
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CONCLUSION—Our findings suggest that CaMKII mediates signaling pathways related to atrial 

contractile function and structural remodeling in AF. CaMKII inhibition is potentially a novel 

therapy for AF. These findings are of importance because no clinically relevant mediators of either 

atrial contractile function or structural remodeling have yet been identified.
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Introduction

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia, affecting millions 

of patients worldwide.1 Currently available therapies have limited efficacy and significant 

risks of toxicity, suggesting the need for novel approaches to treat AF.1–3 Any new AF 

therapy will likely need to reverse structural and electrical remodeling that play central roles 

in AF. Electrical remodeling has been reliably reversed with drugs and in preclinical studies 

with gene therapy.4–7 Prolongation of atrial action potential duration (APD) prevents AF in 

the short term. In most patients, however, APD-prolonging drugs are insufficient to prevent 

the inevitable progression to permanent AF,8 suggesting that structural remodeling must be 

interrupted for long-term AF elimination.

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a multifunctional serine-threonine 

kinase. Total, phosphorylated, and oxidized CaMKII are increased in persistent AF.9,10 

CaMKII activity has been connected to triggered arrhythmias from diastolic sarcoplasmic 

reticular calcium leak, but data suggest that the sustaining mechanism for persistent AF is 

reentry and not triggered activity.11 Other than diastolic calcium leak, the electrical 

remodeling associated with AF differs drastically from that described for CaMKII,12–14 

suggesting that the contribution of CaMKII to persistent AF is likely independent of its 

electrophysiological effects. Because known elements of electrical remodeling are 

insufficient to connect CaMKII hyperactivity to reentry and persistent AF, we hypothesized 

that increased CaMKII activity is a cause of structural remodeling in AF.

Methods

We addressed our hypothesis using our porcine model of persistent AF and heart failure,15 

and our previously reported atrial gene painting technique with CaMKIIn, a specific and 

potent peptide inhibitor of CaMKII.16,17 A full description of methods is included in the 

Supplemental Methods. The overall study protocol is described graphically in Figure 1A. A 

total of 35 Yorkshire pigs were divided into 3 groups: (1) 7-day sinus rhythm (SR); (2) 7-day 

AF; and (3) 14-day AF. The 7-day time points were used to assess effects during peak 

adenovirus-mediated transgene expression,18,19 and the 14-day animals gave addition 

perspective on the time course of structural remodeling. Animals in each group were 

randomized to receive atrial gene painting with either an adenovirus encoding CaMKIIn 

(AdCaMKIIn) or saline, delivered in a mixture with 20% poloxamer F127 and 0.5% trypsin. 

Each of these subgroups contained 5 animals. Rhythm was checked with daily telemetry 

recordings (Figure 1B). When subgroup differences in AF burden became apparent (Figure 
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1C), we added another 14-day AF subgroup of 5 animals that received AdCaMKIIn and 

adjusted the burst pacing algorithm daily to reproduce the average daily AF/burst pacing 

load experienced by the 14-day AF control animals (Supplemental Figure 1). To distinguish 

from animals receiving AdCaMKIIn with standard 2-second on/off burst pacing, these 

additional animals were called the AF pacing control (AFPC) subgroup.

All animals underwent an initial procedure on study day 0 that included echocardiogram, 

invasive electrophysiology study, and gene painting. In the AF animals, an atrial pacemaker 

was implanted at this time, and burst pacing was started immediately after the procedure. 

Animals underwent daily telemetry recording to evaluate rhythm in 30 non-paced segments 

while the atrial burst pacing continued uninterrupted (Figure 1A). At sacrifice, animals were 

cardioverted to SR if necessary, and then they underwent repeat electrophysiology study and 

echocardiogram before sacrifice for tissue analysis. Testing after sacrifice included western 

blot, histology, and TUNEL staining using conventional methods.

Results

Time course of structural remodeling in the porcine model of AF and heart failure

To define the early time course of structural remodeling in our porcine AF-heart failure 

model, we compared the control subgroups (animals that did not receive an active transgene) 

at each time point, evaluating SR, 1-week AF, and 2-week AF animals.

Measures of cardiac electrophysiology were variably affected by the combination of AF and 

heart failure (Figure 2A). Measures of conduction progressively worsened. Monophasic 

APD was not significantly changed across time points, although there was a trend toward 

increased left atrial APD at 2 weeks (P = .1).

On echocardiographic examination, we found evidence of significant atrial dilation and 

decreased atrial and ventricular contractile function at 1 week that worsened at 2 weeks of 

AF (Figure 2B). Ventricular end-diastolic diameter was unchanged in the 1-week AF 

animals compared to SR animals, but ventricular dilation was present at 2 weeks.

Analysis of atrial histological samples showed increased nuclear and myocyte size, fibrosis, 

myolysis, and inflammation at 1 and 2 weeks of AF compared to SR (Figure 2C). Apoptosis 

was evident at 1 week (0.5% 6 0.1% of myocytes TUNEL positive) and worse at 2 weeks 

(1.9% 6 0.3% of myocytes TUNEL positive).

Western blot analysis showed that several proteins implicated in CaMKII signaling were 

altered (Figure 2D). Total CaMKII progressively increased. Phosphorylated and oxidized 

CaMKII were unchanged at 1 week and increased at 2 weeks of AF. Phosphorylated-

HDAC4 increased, and there was a trend toward increased total HDAC4 after 2 weeks of AF. 

Total JNK was unchanged, but the ratio of JNK46 to JNK54 decreased, and phospho-

JNK46:phospho-JNK54 increased. Likewise, total ERK was unchanged, but ERK1:ERK2 

decreased, and phospho-ERK1:phospho-ERK2 increased. There were no significant changes 

in either total or phosphorylated p38MAPK.
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CaMKII in AF-heart failure animals

We have previously shown complete transmural atrial gene transfer of the atrial free walls 

after epicardial gene painting.16 To verify successful transgene expression in this study, we 

quantified CaMKIIn mRNA with quantitative polymerase chain reaction analysis on the 7-

day animals (timed to peak transgene expression with adenovirus).18,19 We found transgene 

expression in the CaMKIIn group (right atrium 0.09 ± 0.02; left atrium 0.05 ± 0.02 mRNA 

copies of CaMKIIn per GAPDH mRNA) and no evidence of CaMKIIn expression in control 

animals. In the 2-week animals, CaMKIIn mRNA was below the detection threshold, 

indicating diminished transgene expression at that point.

On rhythm analysis, we saw maintenance of SR in animals receiving AdCaMKIIn (Figure 

1C). Because structural remodeling is dependent on AF burden, the difference in rhythm 

between the AF-CaMKIIn and AF-control animals was a potential confounder. To 

distinguish between AF burden and CaMKII inhibition effects, we created the AFPC 

subgroup. The AFPC animals received AdCaMKIIn by atrial gene painting. Rather than 

standard 2-second on/off burst pace cycling, in the AFPC animals burst pacing was adjusted 

daily so that the combined burden of AF and burst pacing in the AFPC animals equaled the 

total AF/burst pacing burden of the AF-control group (Supplemental Figure 1).

We assessed gross electrophysiological actions of CaMKIIn with in vivo electrophysiology 

study, comparing CaMKIIn-treated to control animals (Supplemental Figure 2). We saw no 

between-group differences in APD. The CaMKIIn-treated animals had decreased SR P-wave 

duration and sinus node-to-left atrial appendage conduction time compared to control 

animals. These conduction changes likely represented an effect of AF burden because they 

were not present in the AFPC group, suggesting that CaMKIIn had no direct effects on atrial 

conduction properties.

Echocardiographic assessment showed significantly smaller atrial size and better function in 

CaMKIIn-treated animals relative to controls (Figure 3A). These findings were also present 

in the AFPC group, confirming that the improvement came from CaMKIIn expression and 

not from differences in arrhythmia burden. These changes were atrial specific. No 

differences existed between groups with regard to left ventricular structure or function.

Histological analyses showed reductions in apoptosis for the CaMKIIn-treated animals 

relative to the controls at both 7-and 14-day time points (Figure 3B). There was no 

difference between the AF-control and AF-CaMKIIn groups at 7 days with regard to nuclear 

hypertrophy, cellular hypertrophy, or fibrosis, but each was significantly attenuated at 14 

days. No differences at any of the time points were seen for myolysis or inflammation. The 

AFPC animals also had significantly decreased nuclear hypertrophy, fibrosis, and apoptosis 

with a trend toward decreased cellular hypertrophy, suggesting that these changes were 

caused by CaMKIIn expression and not by differences in arrhythmia burden.

To connect CaMKII-associated signaling pathways to atrial structural remodeling, we 

compared expression levels of signaling pathway proteins between CaMKIIn and control-

AF groups at peak transgene expression (Figure 4). CaMKIIn animals had decreased total 

and oxidized CaMKII, decreased phospho-HDAC4, and decreased total p38MAPK. 
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CaMKIIn also prevented the changes in JNK and phospho-JNK subtype ratios. There were 

no between-group differences in phospho-CaMKII, total HDAC4, phospho-p38MAPK, and 

either total- or phospho-ERK. There were no between-group differences in western blot 

analyses for the 14-day animals, likely resulting from the minimal transgene expression at 

that point (Supplemental Figure 3).

CaMKII in SR animals

In the SR animals, we saw no differences between the CaMKIIn and control groups for any 

measurement. All animals remained in SR without atrial or ventricular ectopy. We saw no 

significant differences between groups with regard to echo-cardiographic measures of 

chamber size or function (Supplemental Figure 4A), histological characteristics 

(Supplemental Figure 4B), or electrophysiological measures (Supplemental Figure 4C). 

Western blot measures of CaMKII and various downstream targets were also not 

significantly different between groups (Supplemental Figure 5).

Discussion

In the porcine AF-heart failure model, rapid and aggressive atrial structural remodeling 

occurs within 2 weeks of AF and heart failure. The results of our current study extend our 

previous studies in which we found atrial fibrosis and reduced conduction velocity after 1 

week and severe 4-chamber dilation and failure with extensive structural remodeling after 3 

and 6 weeks of AF and heart failure.6,15 Pulling together these various studies, we see a time 

course of structural remodeling, including hypertrophy, myolysis, apoptosis, inflammation, 

fibrosis, contractile dysfunction, and reduced conduction velocity, which progresses over the 

first 2–3 weeks and then stabilizes out to 6 weeks. Based on our western blot studies, earlier 

events in the time course of structural remodeling include increased total CaMKII 

expression and switch in the JNK and ERK isotype ratios, and relatively later events include 

increased phospho- and oxy-CaMKII, HDAC4, and phospho-HDAC-4. The time course and 

severity of structural remodeling in our pigs with persistent AF and heart failure are similar 

to, although considerably more aggressive than, the results of Ausma et al,20 who studied 

goats with persistent lone AF, suggesting that AF and heart failure are synergistic in their 

effects on atrial structural remodeling.

We found that CaMKII inhibition had no detectable effect in SR animals, but it preserved 

left atrial contractile function, reduced several measures of structural remodeling, and had a 

modest but significant antiarrhythmic effect in our clinically relevant model of persistent AF 

and heart failure. These results correlated with CaMKIIn-induced decreases in total and 

oxidized CaMKII, phospho-HDAC4, total p38MAPK protein expression, and preservation 

of the SR pattern of JNK isoform expression and phosphorylation pattern. The timing of 

CaMKIIn effects relative to duration of transgene expression and time course of structural 

remodeling supports the idea that CaMKII is an upstream effector, allowing the effects of the 

inhibition to potentially last longer than transgene expression. If we consider the 

antiarrhythmic effect a marker of the timing and intensity of transgene expression, the likely 

time course is peak expression around days 4–7, with progressive loss of expression on days 

8–12 and potentially no expression on days 13–14.
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We observed an immediate antifibrillatory effect with CaMKIIn that could not be explained 

by alterations in either conduction or repolarization properties of the atria because measures 

of both were unaffected by CaMKIIn. It could also not be explained by the effects of 

CaMKIIn on structural remodeling because prevention of AF was evident before structural 

remodeling occurred. Further study is required to explain this antiarrhythmic action.

The absence of significant between-group differences in the SR animals suggests that 

CaMKII is minimally active with respect to atrial structure or electrical function in the 

absence of stress. The reduction in atrial structural remodeling with CaMKIIn treatment of 

our AF animals supports the hypothesis that increased CaMKII activity is a cause of 

structural remodeling in AF.

CaMKII and electrical remodeling in AF

CaMKII is increased in persistent AF, but most of the described electrophysiological effects 

of CaMKII are opposite the described electrophysiological effects of persistent AF. CaMKII 

alters INa inactivation kinetics, increases INa,late, increases ICa,L amplitude, delays ICa,L 

inactivation, decreases IK1 and Ito,fast, but increases Ito,slow.12 In contrast, AF does not 

change INa, decreases lCa,L and Ito, and increases IK1. CaMKII increases RYR leak, which is 

a consistent finding in AF as well. The stark differences between most of the electrical 

effects of CaMKII and AF suggest that CaMKII is not a key driver of electrical remodeling 

in AF, consistent with our data showing no change in APD or macroscopic conduction with 

CaMKII inhibition.

CaMKII and structural remodeling in AF

CaMKII has been connected to cellular hypertrophy, inflammation, apoptosis, and fibrosis in 

several organ systems,21–24 but a PubMed search failed to identify any previous 

investigation of CaMKII and structural remodeling in AF. Suggestion of a role for CaMKII 

in atrial structural remodeling can be found in a report by Li et al,25 who evaluated a 

transgenic mouse line characterized by increased sarcoplasmic reticulum diastolic calcium 

leak, atrial dilation, and decreased electrical conduction leading to increased AF 

susceptibility. They found that preventing RYR2 phosphorylation at the putative CaMKII 

site attenuated the atrial electrical and structural phenotype of the model.25 The data of Li et 

al data suggested that CaMKII activity, potentially working through RYR2 phosphorylation 

and increased diastolic calcium in the cytoplasm, may play a role in atrial dilation and 

conduction disturbances.

Our study more directly assesses the role of CaMKII in atrial structural remodeling. We 

found that CaMKII inhibition significantly reduced but incompletely prevents atrial dilation, 

myocyte hypertrophy, apoptosis, and fibrosis, suggesting that CaMKII plays an important 

role but that other drivers are likely active in these processes. Because cytoplasmic calcium 

overload also activates the calcineurin signaling pathway, future investigation of the 

calcineurin pathway in combination with CaMKII block may yield additional benefit with an 

ultimate goal of eliminating all AF-related structural remodeling.
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Molecular basis of CaMKII-induced atrial structural remodeling

Structural remodeling in other organ systems has been connected to CaMKII through 

signaling pathways involving HDAC4, JNK, ERK1/2, and p38MAPK.26–30 The components 

of these signaling pathways have, to a large extent, been worked out. For this work, we 

wondered which of those pathways might be playing a role in our observed reductions in 

hypertrophy, apoptosis, and fibrosis. We used western blot analysis to assay the entry points 

for each of these pathways and examined their expression and phosphorylation levels. Future 

study can further delineate the time course and sequence of events within these signaling 

pathways to refine the connection between our observed phosphorylation patterns, the 

isoform switch of JNK and ERK, and potentially other calcium signaling pathways (eg, 

calcineurin) with AF-induced structural remodeling, with the possibility of identifying 

therapeutic targets that could have synergistic effects with CaMKIIn.

Previous studies have connected cellular hypertrophy to HDAC4, and apoptosis, 

inflammation, and fibrosis to ERK, JNK, and p38MAPK in various models.28–33 We found 

increased phospho-HDAC4 with AF that was prevented by CaMKII inhibition, supporting 

the hypothesis that CaMKII effects on atrial hypertrophy are, at least partially, driven by 

HDAC4 phosphorylation in the atria. We saw shifts in JNK isoform expression and 

phosphorylation patterns with AF that were prevented by CaMKII inhibition, implicating 

CaMKII in JNK signaling and, in turn, JNK signaling in AF-induced apoptosis, 

inflammation, and fibrosis. Although we saw decreases in the ratio of ERK1:ERK2 and 

increases in p-ERK1:ERK2 with AF, these were not affected by CaMKII inhibition. Our 

results implicate ERK signaling in atrial hypertrophy but suggest that CaMKII is not a 

significant driver of this signaling pathway in the atria during AF.

We did not see significant changes in p38MAPK with AF, but CaMKIIn decreased total 

p38MAPK. Our data are insufficient to explain a role for p38MAPK in AF-related structural 

remodeling. It may be relevant, or it may be a bystander affected by CaMKII inhibition but 

not active in atrial structural remodeling. Aschar-Sobbi et al34 studied AF with endurance 

exercise in mice and found that direct inhibition of p38MAPK prevented atrial fibrosis, 

inflammation, and AF vulnerability, suggesting that p38MAPK may play a role. Further 

study is required to determine this 9 discrepancy.

The absence of any significant effect on inflammation in our model may indicate either that 

cellular drivers of the inflammatory response are not affected by CaMKII signaling or that 

the relevant cells are exogenous to the atrial myocardium at the time of gene transfer, so they 

were not transduced with CaMKIIn and therefore unaffected by our intervention. This 

finding clearly requires more investigation to fully understand, but it could potentially 

inform the debate about local vs recruited sources of inflammatory and fibrotic cells 

responsible for structural remodeling in AF. Our results show that this presumed lack of anti-

inflammatory effect does not limit the improved function and otherwise reduced structural 

remodeling that we see with CaMKIIn.
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Conclusion

We showed in a clinically relevant large mammalian model of persistent AF and heart failure 

that atrial gene painting with CaMKIIn reduced atrial structural remodeling and prevented 

AF. Our results are directly relevant to the patient with uncontrolled ventricular response to 

AF and tachycardiomyopathy and likely also relevant to patients with AF and heart failure of 

other etiologies. Our data suggest that atria-specific gene therapy with CaMKII inhibitor 

peptide could be a novel paradigm for AF treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A: Overall study design. B: Representative telemetry recordings at day 7 show the 2-second 

burst pacing and 2-second nonburst pacing intervals. Rhythm was recorded for each 

nonburst pacing interval, and the overall percentage of time in sinus rhythm (SR) was 

calculated by dividing the number of segments showing SR by the total number of assessed 

segments. C: Percentage of time in SR after gene transfer. Compared to controls, animals 

exposed to CaMKIIn had a significant increase in the percent with SR. †P <.01 comparing 

CaMKIIn to control over the time course of the study. AF = atrial fibrillation.
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Figure 2. 
Time course of remodeling during the early stages of persistent atrial fibrillation (AF) and 

heart failure. A: In vivo electrophysiological measurements demonstrated progressive 

worsening of conduction, no change in right atrial repolarization, and a trend toward 

prolongation of left atrial action potential duration. B: Echocardiographic assessment of 

cardiac structure and function revealed progressive worsening of atrial and ventricular 

ejection fractions, progressive increase in left atrial diameter, and delayed left ventricular 

dilation. C: Histological assessment showed progressive increase in nuclear and whole cell 
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measured area, persistent elevation in inflammation and myolysis scores (see Methods for 

scoring criteria), and progressive increase in fibrosis. D: Western blot analysis indicated 

progressive increases in total and oxidized CaMKII, delayed increases in phospho-CaMKII 

and phospho-HDAC4, and alterations in isoform ration and phosphorylation patterns of JNK 

and ERK. ●P <.10; *P <.05; †P <.01. LA = left atrium; MAPD = monophasic action 

potential duration; RA = right atrium; SR = sinus rhythm.
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Figure 3. 
Effects of CaMKII inhibition on structural remodeling. A: Echocardiography showed 

delayed progression in atrial dilation and dysfunction in subgroups receiving CaMKIIn. No 

change in ventricular structure or function was observed (data not shown). Right: Apical 4-

chamber echocardiographic views illustrate the smaller atrial size in the CaMKIIn animals. 

B: Histological analyses show significantly less nuclear and cellular hypertrophy, apoptosis, 

and fibrosis in CaMKIIn-treated animals at 2 weeks, and decreased apoptosis at 1 week; 

otherwise, no significant changes were seen at that time point, and no effect of CaMKIIn 
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gene transfer on myolysis or inflammation. Right: Representative images of right atrial 

microsections. Magnification bar indicates 50 μm in hematoxylin/eosin-and TUNEL-stained 

images and 200 μm in Masson trichrome images. ●P <.10; *P <.05; †P <.01. AF = atrial 

fibrillation; AFPC = atrial fibrillation pacing control.
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Figure 4. 
Effects of CaMKII inhibition on signaling pathway protein expression at peak transgene 

expression, 7 days after gene transfer. Quantified protein expression shows changes in total 

and oxidized CaMKII, phospho-HDAC4, phospho-p38MAPK, and the JNK isoform ratio 

and phosphorylation pattern. Right: Representative lanes from western blots for the 

indicated protein in each group. *P <.05; †P <.01. AF = atrial fibrillation.
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