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Abstract

Traumatic brain injury (TBI) is a major risk factor for acquired epilepsy. Post-traumatic epilepsy 

(PTE) develops over time in up to 50% of patients with severe TBI. PTE is mostly unresponsive to 

traditional anti-seizure treatments suggesting distinct, injury-induced pathomechanisms in the 

development of this condition. Moderate and severe TBIs cause significant tissue damage, 

bleeding, neuron and glia death, as well as axonal, vascular, and metabolic abnormalities. These 

changes trigger a complex biological response aimed at curtailing the physical damage and 

restoring homeostasis and functionality. Although a positive correlation exists between the type 

and severity of TBI and PTE, there is only an incomplete understanding of the time-dependent 

sequelae of TBI pathobiologies and their role in epileptogenesis. Determining the temporal profile 

of protein biomarkers in the blood (serum or plasma) and cerebrospinal fluid (CSF) can help to 

identify pathobiologies underlying the development of PTE, high-risk individuals, and disease 

modifying therapies. Here we review the pathobiological sequelae of TBI in the context of blood- 

and CSF-based protein biomarkers, their potential role in epileptogenesis, and discuss future 

directions aimed at improving the diagnosis and treatment of PTE.
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1. Introduction

Traumatic brain injury (TBI) triggers an array of dynamic and potentially long-term 

pathobiological responses (Ahmed et al., 2015; Blennow et al., 2016; 2012), making TBI a 

major risk factor for neurodegenerative and other chronic conditions such as post-traumatic 

epilepsy (PTE). Sudden mechanical impact to the brain causes macro- and micro-structural 

changes that include injury to axons, glia cells, and vasculature, as well as altered 

metabolism and water dysregulation (McGinn and Povlishock, 2016). While the effects of 

the primary injury, i.e., the direct physical damage to the head/brain, are instantaneous, the 
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secondary injury process is a highly complex biological response that takes place over days, 

weeks, and even months after the insult (Grafman and Salazar, 2015; Wilson et al., 2017). 

Importantly, the onset and magnitude of these pathobiological mechanisms (e.g., 

neuroinflammation, cellular proliferation, synaptic remodeling) may significantly differ in 

relation to injury time.

The same secondary injury process, initially aimed at limiting the extent of the damage and 

restoring homeostasis and functionality (Kochanek et al., 2013), can last beyond the repair 

period and become pathogenic as in PTE. Epileptogenesis is a process that leads to the 

development of epilepsy, a chronic disorder characterized by recurrent seizures, following 

various forms of innate or acquired brain pathology including TBI (Choi and Koh, 2008; 

Diaz-Arrastia et al., 2009; Scharfman, 2000; Webster et al., 2017). The role of secondary 

injury processes, such as neuroinflammation, in epileptogenesis and the development of 

spontaneous seizure activity after TBI is currently poorly understood (Webster et al., 2017). 

Protein biomarkers offer a reliable and objective means to identify individual molecular 

pathologies and their temporal profiles during the secondary injury process, and in turn 

provide opportunities for therapeutic intervention that can limit damage, improve functional 

recovery, and prevent injury-induced chronic conditions.

2. Traumatic brain injury

The pathobiological processes that ensue the physical damage vary depending on the type 

(closed head vs. penetrating, focal vs. diffuse) and intensity (mild vs. severe) of the primary 

injury (Salazar and Grafman, 2015). The primary injury causes structural damage to the 

skull, dura, brain parenchyma and its various cellular elements including axons, blood 

vessels, neurons and glia (Hawryluk and Manley, 2015; Manley and Maas, 2013; Manley et 

al., 2017). At the molecular level, receptors, surface molecules, ion channels, as well as 

intracellular structural proteins and signaling molecules of damaged cells are dislocated 

(Potts et al., 2006), thereby affecting signaling processes and cerebral metabolism (Buitrago 

Blanco et al., 2016). The secondary injury process begins almost immediately after the 

physical impact and includes neuroinflammation (Kelso and Gendelman, 2014) to demark 

damaged foci and eliminate cellular debris (Simon et al., 2017), as well as regenerative 

mechanisms to promote cellular proliferation and synaptic reorganization (Abbott and 

Videnovic, 2016; Baker, 2014; Takase et al., 2018).

Clinical and experimental studies have shown that each of these injury processes has a 

temporal profile that is both distinct and dynamic, especially during the acute to subacute 

post-injury phase where primary (damage) and secondary (repair) processes overlap (Adams 

et al., 2017; Bogoslovsky and Diaz-Arrastia, 2016; Bramlett et al., 1997; Cernak et al., 2002; 

Hicks et al., 1996; Li et al., 2013; O’Connor et al., 2006; Schuhmann et al., 2003). In the 

chronic post-injury phase, cell loss may continue due to neuroinflammation directly and 

indirectly attacking neurons and glia (Balu, 2014; Cederberg and Siesjo, 2010; Hinson et al., 

2015; Kumar and Loane, 2012; Potts et al., 2006). Ongoing neuroinflammation is believed 

to be one of the main pathomechanisms underlying long-term complications including PTE 

(Aronica and Crino, 2011; Choi and Koh, 2008; Vezzani and Friedman, 2011; Webster et al., 

2017).
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3. Post-traumatic epilepsy

Post-traumatic epilepsy (PTE), characterized by repeated posttraumatic seizures (PTS), can 

occur at various time points after injury (Diaz-Arrastia et al., 2009; Kharatishvili and 

Pitkanen, 2010; Pitkanen et al., 2014; Prince et al., 2012; Wilson et al., 2018). Immediate 

PTS are defined as typically occurring within 24 hours of brain injury, early PTS within a 

week post-injury, and late PTS occurring more than a week after injury. The definition, 

however, can vary; “immediate” may be used to describe seizures that occur within minutes 

after injury and “late” after a month or longer (Englander et al., 2003; Lucke-Wold et al., 

2015; Ritter et al., 2016; Temkin, 2003). Early (and immediate) PTS are likely provoked by 

an altered threshold to stimuli and abnormal signaling that are directly caused by physical 

injury to the brain parenchyma (Christensen, 2015; Diaz-Arrastia et al., 2009; Frey, 2003). 

The ensuing hemorrhage, cerebral edema, metabolic crisis, and impaired energy production 

alter the extracellular ion milieu causing excessive glutamate release that overloads the 

already compromised astroglia. Early seizures are more frequent in kids (< 5 years) and in 

the presence of risk factors such as hematomas (both subdural and intracerebral), edema, and 

skull fractures (Prince et al., 2012), while late seizures are more frequent in adults over 65.

Late onset PTS is likely due to the lasting structural and molecular changes caused by the 

combination of initial physical damage and subsequent secondary injury processes 

(Christensen, 2015; Diaz-Arrastia et al., 2009; Frey, 2003). The resulting glia scarring, 

aberrant synapses, and abnormal rewiring of neuronal networks culminates in an imbalance 

between excitatory and inhibitory signaling that is manifested in unprovoked and recurring 

seizures or PTE (Pitkanen et al., 2009; Pitkanen et al., 2014). Epileptic seizures are defined 

as a “transient occurrence of signs and/or symptoms due to abnormal, excessive or 

asynchronous neuronal activity in the brain” (Falco-Walter et al., 2018). Late onset PTS/PTE 

can develop up to 2 years post-injury, and early PTS, hematomas, bleeding, penetrating 

injury, focal contusions, and injury severity are considered major risk factors (Diaz-Arrastia 

et al., 2009; Frey, 2003; Xu et al., 2017). The prevalence of PTE is not only correlated with 

injury type and age of subjects, but also with TBI severity (Ritter et al., 2016; Temkin, 

2003).

The current classification of TBI severity is based on clinical symptoms such as Glasgow 

Coma Scale (GCS), loss of consciousness (LOC), post-traumatic amnesia (PTA), and basic 

neuroimaging (mainly computed tomography, CT). The incidence of PTE after mild TBI 

(GCS 13–15, LOC < 30 minutes, PTA < 1 hour, and normal neuroimaging) is low, about 1–

3% (Ritter et al., 2016). Patients who have suffered moderate TBIs (GCS 9–12, LOC > 30 

minutes and PTA between 1 and 7 days, with or without abnormal imaging) have the second 

highest, or in some studies (Englander et al., 2003) the highest, risk for developing PTE. In 

addition to TBI severity based on GCS, LOC, and PTA, epidemiology studies have identified 

dura penetration with bone fragments, subdural hematoma, intraparenchymal bleeding, and 

injury with contusions as major risk factors for PTE (Ding et al., 2016; Lucke-Wold et al., 

2015; Salazar and Grafman, 2015). In fact, the incidence of PTE after severe TBI (GCS 3–8, 

LOC > 24 hours, PTA > 7 days, and typically abnormal neuroimaging) can be as high as 

50% in patients with a penetrated dura (Christensen, 2015; Salazar and Grafman, 2015). 

Abnormal imaging indicating contusion and/or hematoma puts these patients at the highest 
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risk for both early and late onset PTE. It should be noted that this injury group also has the 

highest mortality rate, which impacts our ability to accurately account for the incidence of 

late onset PTE.

4. Protein biomarkers in TBI

The same clinical symptomatology described above can result from different injury types 

(i.e., penetrating/focal vs. closed-head/diffuse) with disparate primary injuries and 

heterogeneous secondary injury processes (Saatman et al., 2008). Penetrating head injury 

generally presents a greater risk for PTE development than diffuse injury of a similar 

severity (Ding et al., 2016; Lucke-Wold et al., 2015; Salazar and Grafman, 2015). In 

penetrating/focal TBIs, kinetic forces affect a small area of the brain causing massive local 

damage. Conversely, closed-head/diffuse TBIs affect larger areas of the brain, particularly at 

the interface of tissues with varying densities (e.g., white and gray matter). Protein 

biomarkers measured in CSF and serum have played a critical role in determining TBI 

severity, identifying molecular changes related to damage and repair, and their temporal 

profiles (Agoston and Elsayed, 2012; Agoston et al., 2017; Strathmann et al., 2014; Wang et 

al., 2005; Wang et al., 2018; Zetterberg and Blennow, 2016; Zetterberg et al., 2013). 

Biomarkers have the potential to monitor disease progression and clinical outcomes, and to 

provide molecular-level information about the pathobiologies that can lead to long-term 

consequences/complications after TBI. The specific serum and/or CSF-based protein 

biomarker “footprints” have already been identified for a number of these processes. 

Because the incidence of PTE after mild TBI and concussion is very low, here we focus on 

the pathobiologies of moderate and severe TBI and related protein biomarkers. We list the 

main pathobiological events triggered by penetrating, focal TBI and closed head, diffuse 

TBI and discuss in the context of epileptogenesis and PTE (Fig. 1). While most of the injury 

mechanisms described below occur in both TBI types, their onset, duration, and contribution 

to the overall pathology can significantly vary (Table 1).

4.1. Skull fracture and fragmentation

Epidemiology studies identified skull fracture and dura penetration as the most frequent 

underlying cause of PTE (Lucke-Wold et al., 2015; Salazar and Grafman, 2015; Xu et al., 

2017). TBI with concomitant bone fracture triggers a highly complex molecular response 

involving osteogenesis and ossification (Brady et al., 2016a; 2017; 2016b). Accordingly, the 

penetration of the skull and dura induces pathobiological changes unique to this form of TBI 

(Huang et al., 2018). Penetrating TBIs result in the deposition of bone particles in the brain 

parenchyma; these foreign bodies, along with metal fragments after ballistic TBI, are among 

the greatest risk factors for epileptogenesis and PTE (Ommaya et al., 1996; Raymont et al., 

2010; Salazar et al., 1995). Bone fracture results in bleeding, followed by inflammation 

aimed at demarcating the lesion, which is followed by a repair process that involves partial 

reactivation of the developmental process (Bajwa et al., 2018; Yao et al., 2004). Levels of 

inflammatory proteins, both chemo- and cytokines, osteogenic proteins (Brady et al., 2017; 

Huang et al., 2018), mesenchymal proteins and their regulators (Gu et al., 2016), and bone 

morphogenic proteins (BMPs) (Agarwal et al., 2017) increase in the systemic circulation. 

These may be used to indicate the extent of the damage and the status of the repair process 
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(Heggeness et al., 2017). Osteopontin (OPN) is an extracellular matrix protein and 

proinflammatory cytokine that plays a critical role in bone formation and 

immunomodulation (Butler, 1989; Shin, 2012). Up-regulation of OPN has been found to 

respond to mechanical forces, such as those of the primary injury, making OPN a potentially 

important differentiator of injury type and related patomechanisms.

4.2. Dura penetration and/or damage

Piercing the dura, especially with intraparenchymal bone and/or metal fragments, 

substantially increases the risk for developing PTE. The dura mater is heavily vascularized; 

perforating it disrupts blood vessels and venous sinuses resulting in hemorrhage. Dura 

penetration also damages and/or destroys fibroblast cells which then release their structural 

proteins, collagens, reticular fibers and glycosaminoglycans into the CSF and systemic 

circulation. The dura hosts various immune cells, lymphocytes, plasma and mast cells that 

are involved in the response to tissue damage and mediation of the inflammatory process. 

Upon activation, these cells release a whole array of chemo- and cytokines. While dura 

penetration and the extent of damage may be clinically obvious without measuring protein 

biomarker levels in the CSF (and/or serum), CSF levels of dura markers, fibroblast-derived 

and inflammatory molecules can indicate the magnitude of the neuroinflammatory response. 

Determining the temporal profiles of such changes can aid in the diagnosis and prognosis of 

epileptogenesis, and improve the predictability of PTE.

4.3. Hemorrhage/hematoma

Hemorrhage and hematoma are among the most important risk factors for developing PTE 

(Lucke-Wold et al., 2015; Pitkanen et al., 2016; Salazar and Grafman, 2015; Xu et al., 

2017). The presence, extent, and location of hematoma and/or hemorrhage are diagnosable 

by various neuroimaging techniques. Serial imaging provides critical information about 

time-related changes that can be used to direct surgical intervention and help assess 

outcome. Similarly, determining hemoglobin levels and its breakdown products in the CSF- 

along with vascular, metabolic, and inflammatory markers-can be an important addition to 

imaging-based decision making and prognosis for PTE. Ceruloplasmin, also called 

ferroxidase, is an acute phase protein that plays a protective role after infection and injury 

(Hellman and Gitlin, 2002). In addition to binding 95% of all copper in plasma, 

ceruloplasmin also plays a role in iron metabolism through its copper-dependent oxidase 

activity. Ceruloplasmin oxidizes ferrous iron (+2) into ferric iron (+3), which is important 

because transferrin can only carry iron in the ferric state. Iron accumulation due to bleeding 

and subsequent hemolysis in the brain is a major risk factor for PTE (Ding et al., 2016; 

Salazar and Grafman, 2015). Iron is cytotoxic, resulting in oxidative stress through the 

generation of free radicals and mitochondrial pathology. Importantly, it has been shown that 

TBI patients with abnormally low ceruloplasmin plasma levels develop increased 

intracranial pressure (Ayton et al., 2014; Dash et al., 2010).

4.4. Vascular changes

TBI can cause vascular damage of varying severity: from transient increases in blood-brain-

barrier (BBB) permeability and microbleeds to subdural or intracerebral hemorrhage. 

Cerebral contusion is associated with vascular injury and/or microhemorrhage that also 
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significantly increases the probability of developing PTE. Increased serum and/or CSF levels 

of proteins such as occludin or claudin-5 are good indicators of damage to the endothelial 

tight junctions (Jiao et al., 2011). Cerebral endothelial cells and their astrocytic 

footprocesses express high numbers of aquaporin-4 (AQP4), the main water channel in the 

brain (Arcienega et al., 2010; Thrane et al., 2011). AQP4 functions are critical for 

maintaining the balance between extra- and intracellular water in the CNS. Elevated serum 

and CSF levels of AQP4 are detected after TBI, indicating damage to the molecular 

machinery of water homeostasis (Ahmed et al., 2012; Ahmed et al., 2015). Cerebral edema 

and vasospasm are hallmarks of severe TBI, indicating major changes in water transport and 

altered endothelial/vascular reactivity. Stressed or injured endothelial cells increase the 

expression of von Willebrand factor (vWF), an endothelium-specific glycoprotein that plays 

a major role in blood coagulation and platelet adhesion to wound sites (De Oliveira et al., 

2007; Yokota et al., 2007). Elevated vWF levels in the serum indicate endothelial activation 

in response to TBI, to counter injury-induced vascular damage, increased permeability, and 

microbleeding. In response to stress and injury, endothelial cells also express elevated levels 

of vascular endothelial growth factor (VEGF) which promotes proliferation and vascular 

regrowth (Croll et al., 2004; Lee and Agoston, 2005; Lee and Agoston, 2009). Elevated 

serum or CSF levels of VEGF after TBI can be indicative of endothelial damage or repair, 

depending on the tested VEGF isoform (anti-angiogenic vs. pro-angiogenic) and injury 

phase (Ahmed et al., 2014; 2015; 2013).

4.5. Cell surface and extracellular matrix changes

Sudden acceleration/deceleration in closed head injury causes massive lateral movement of 

adjacent membrane surfaces. Cell to cell junctions are disrupted and opposing cell 

membrane surfaces are dislocated affecting extracellular matrix molecules, junctional 

proteins, receptors, ion channels, and so forth. Increased CSF and/or serum levels of cell 

adhesion and cell surface molecules such as matrix metalloproteinase-9 (MMP9), Integrin-

α6, tissue inhibitor of metalloproteinases, TIMP1 and TIMP4, connexin-43, neural cadherin 

(NCAD), intercellular adhesion molecule-1 (ICAM1), and neural cell adhesion molecule-1 

(NCAM1) indicate alterations in cell-cell adhesion and cellular connectivity (Karkela et al., 

1993; Park and Biederer, 2013). TIMP4 is an inhibitor of matrix metalloproteinases involved 

in the degradation of the extracellular matrix (Pullen et al., 2012; Rorive et al., 2010). 

NCAD is a multifunctional molecule involved in mediating cell adhesion; in the CNS, it is 

involved in stabilizing synapses, thus playing an important role in learning and memory 

(Jang et al., 2009; Kanemaru et al., 2013). Increased CSF and/or serum levels of NCAD 

indicate altered cell adhesion including synapse disruptions. NCAD is also involved in the 

repair process due to its involvement in mediating astrogliosis.

4. 6. Cellular proliferation, astrogliosis

While neurons in the adult CNS are post-mitotic, there is a limited population of reserve 

neural stem/progenitor cells, located mostly in the subgranular layer of the dentate gyrus of 

the hippocampus (Palmer et al., 1997; Song et al., 2002). This population responds to injury 

with proliferation and some of the new cells can differentiate in to functional neurons (Hess 

and Borlongan, 2008; Ming and Song, 2005; Picard-Riera et al., 2004). This adult 

neurogenesis is regulated by several soluble molecules including VEGF-A, a pro-angiogenic 

Agoston and Kamnaksh Page 6

Neurobiol Dis. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



isoform of the endothelial growth factor (Lee and Agoston, 2009). However, there is 

experimental evidence that de novo neurogenesis following TBI may increase neuronal 

excitability and seizure susceptibility (Kuruba and Shetty, 2007; Neuberger et al., 2017; 

Parent, 2003; Yu et al., 2014a). Cellular proliferation, the response of endothelial cells, 

oligodendrocytes, astro- and microglia to TBI, is an important part of the secondary injury 

process (Chirumamilla et al., 2002). Of these proliferative events, reactive astrogliosis is a 

major risk factor for epileptogenesis (Cotrina et al., 2014; Eng and Ghirnikar, 1994; Little 

and O’Callagha, 2001; Takano et al., 2014). Proliferation and differentiation of astrocytes 

into the reactive, morphologically distinct, stellar shape is part of the secondary injury 

mechanism. Their primary biological function is to demarcate the injury site and mediate 

neuroinflammatory response by controlling the access of inflammatory cells to the lesion, 

rebuild the BBB, and reduce oxidative stress (Fitch and Silver, 2008). However, glial scar 

formation creates a physical and chemical barrier in the injured brain, thereby preventing 

select regenerative efforts (e.g., axonal regeneration) and contributing to the epileptogenicity 

of brain structures after TBI. The signaling molecules that trigger astroglia proliferation 

include several growth factors such as epidermal growth factor (EGF), fibroblast growth 

factor (FGF), and endothelin-1 (Okada et al., 2018; Pekny and Pekna, 2014; Sofroniew, 

2014). In addition to these soluble regulatory molecules, several chemo- and cytokines 

including interleukin-1β (IL1β), interleukin-6 (IL6), and tumor necrosis factor-α (TNFα), 

produced by microglia and invading leukocytes, also act as regulators of astrogliosis.

4.7. Metabolic changes

Metabolic dysregulation is implicated in all TBIs, albeit the molecular nature, magnitude, 

and duration depend on the primary injury mechanism and severity (Buitrago Blanco et al., 

2016; Giza and Hovda, 2001; Hillered et al., 2006; Hovda et al., 1995; Ott et al., 1987; 

Vespa et al., 2005). Metabolic depression, i.e., altered cerebral glucose metabolism, is a key 

component of cerebral vulnerability that underlies many of the clinical symptomatologies 

observed after TBI (Buitrago Blanco et al., 2016). Reduced cerebral glucose metabolism 

leads to overproduction of reactive oxygen species (ROS) and, in turn, oxidative stress 

(Chong et al., 2005; Martin et al., 2005; Potts et al., 2006). The onset and extent of oxidative 

stress can be determined by monitoring 4-hydroxynonenal (HNE), hypoxia-inducible factor 

1α (HIF1α), and mitochondrial superoxide dismutase (SOD2) levels preferably in CSF or in 

serum. HNE is a byproduct of lipid peroxidation, and a sensitive and specific marker of 

oxidative stress (Abdul-Muneer et al., 2013; Hall et al., 2004; Versace et al., 2013). 

Increased CSF levels of HNE are good indicators of the extent of oxidative stress in the 

CNS. HIF1α is a transcription factor that plays a critical role in the adaptive response to 

hypoxia. Its levels in the CSF are elevated in TBI and in stroke; elevated serum levels, 

however, can be the result of CNS as well as peripheral/systemic response to hypoxic 

conditions. Astroglia and endothelial cells play important roles in glucose metabolism and 

transport, thus elevated CSF and/or serum levels of glial fibrillary acidic protein (GFAP), 

various astroglia-associated and endothelium-specific proteins, as well as vascular factors 

(see in detail under respective sections) can provide insight into more than one pathobiology.
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4.8. Neuronal, axonal and glial damage/loss

Closed or penetrating head trauma can cause structural brain injury, directly killing neurons 

and glia and damaging axons (Blennow et al., 2012). Proteins that are (mostly) specific to 

neural cells (e.g., neuron-specific enolase, NSE, or GFAP) are released from damaged 

and/or dying cells; therefore, serum and CSF levels of these proteins are good indicators of 

injury severity (Agoston and Elsayed, 2012; Agoston et al., 2017; Wright et al., 2016; 

Zetterberg and Blennow, 2015). Cell damage or death, and consequent release of damage-

associated proteins, can continue during the secondary injury process due to 

neuroinflammation causing extended cell death. Chronically elevated serum and CSF levels 

of these biomarkers indicate poor prognosis. Ubiquitin C-terminal hydrolase-Ll (UCHL1) is 

a (mostly) neuron-specific cytoplasmic enzyme involved in protein ubiquitination and 

elimination (Bishop et al., 2016). Increased serum levels of UCHL1 in the acute phase of 

TBI have been associated with injury severity (Brophy et al., 2011; Li et al., 2015; Liu et al., 

2010; Mondello et al., 2012). In conjunction with elevated GFAP serum levels, these two 

markers are positively correlated with injury severity (Diaz-Arrastia et al., 2014; Diaz-

Arrastia et al., 2013). However, there are controversies about how well their serum levels 

reflect injury severity (Diaz-Arrastia et al., 2014; Diaz-Arrastia et al., 2013). Elevated serum 

and CSF levels as well as the temporal pattern of myelin basic protein (MBP), respectively, 

can indicate the extent and kinetics of white matter damage, and help to predict outcome 

(Berger et al., 2005; Derkus et al., 2017; Thomas et al., 1978). Increased serum levels of 

additional astroglia-enriched markers (aldolase C, ALDOC; its 38kD breakdown product, 

BOP; brain lipid-binding protein, BLBP; phosphoprotein enriched in astrocytes-15, PEA15; 

glutamine synthetase, GS; and 18–25kD-GFAP-BDPs) have shown positive correlation with 

injury severity (Halford et al., 2017). Elevated serum and/or CSF levels of axonal markers 

including various isoforms of neurofilament (NF), tau, as well as its phosphorylated form (p-

tau) have been extensively used as biomarkers of TBI type and severity (Liliang et al., 2010; 

Wang et al., 2016a; Zemlan et al., 2002; Zetterberg, 2017). Like other markers, the 

diagnostic and prognostic value of these proteins is greatly dependent on their temporal 

pattern, e.g., an early peak in NF heavy chain (NF-H) serum levels indicates severe TBI and 

poor outcome, whereas a gradual increase reflects mild to moderate injury (Gyorgy et al., 

2011). S100β is one of the most studied, albeit controversial serum biomarkers in TBI 

(Thelin et al., 2013) versus (Papa et al., 2014). However, the temporal profile of serum 

S100β levels has been found to be correlated with injury severity and outcome (Thelin et al., 

2014), but increased serum S100β levels can also be due to non-neuronal sources (Unden et 

al., 2005). It should be noted that S100β is an important member of damage associated 

molecular patterns (DAMPs) mostly originating from non-neural source (see 

Neuroinflammation).

4.9. Synaptic remodeling

Damage to neurons, especially in focal injury, results in axonal degeneration and loss of 

synapses as indicated by the reduced number of dendritic spines observable within a few 

days after the insult (Biennow et al., 2016; Blennow et al., 2012). These adverse changes are 

followed by axonal sprouting as part of the regenerative attempt along with de novo 
neurogenesis (Parent, 2003; Richardson et al., 2007; Sun, 2014) and angiogenesis (Morgan 

et al., 2007; Thau-Zuchman et al., 2012). Axonal sprouting and synaptic remodeling are 
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regulated by neuronal growth factors, like nerve growth factor (NGF) and brain-derived 

neurotrophic factor (BDNF), through various tyrosine receptor kinase (trk) signaling 

pathways and neuronal adhesion molecules (da Silva Meirelles et al., 2017; Lorente, 2017; 

Werner and Stevens, 2015). It should be noted that the availability of BDNF after 

penetrating TBI is a critical determinant of functional recovery; diminished BDNF signaling 

(e.g., caused by mutation) results in poor functional outcome (Rostami et al., 2011). The 

process is a partial reenactment of the developmental process of axonal growth and synapse 

formation regulated by the same molecules: NCAD, polysialylated-neural adhesion 

molecule (PSA-NCAM), NCAM, neuropilin, and various semaphorins, ephrins, and 

neuroexins (Park and Biederer, 2013). CSF levels of these molecules may be used to assess 

the extent of axonal regrowth and synaptic remodeling (Pleines et al., 1998; Whalen et al., 

1998).

4.10. Neuroinflammation

Inflammation is a fundamental defense mechanism after injury, and potential disease 

mechanism in moderate and severe TBI (Balu, 2014; Corrigan et al., 2016; Hinson et al., 

2015; Simonet al., 2017). In fact, neuroinflammation is one of the main candidate 

pathomechanisms in the development of PTE (Webster et al., 2017). Several of the above 

described injury-induced changes, such as bleeding, contusion/cell loss, and metabolic 

changes (especially reactive oxygen species) can activate the neuroinflammatory process 

within minutes after insult. Following injury, resident microglia and astrocytes are activated, 

and leukocytes from the systemic circulation invade the brain parenchyma (Simon et al., 

2017). During the acute phase of injury, soluble cytokines (IL1, IL6, and TNF) and 

chemokines (monocyte chemoattractant protein-1, MCP1; macrophage inflammatory 

protein-1, MIP1; and regulated on activation, normal T cell expressed and secreted, 

RANTES) are released to guide immune cells to injured brain regions. Significant increases 

in the CSF and serum levels of several inflammatory markers have been demonstrated in 

experimental TBI as well as in clinical TBI (Woodcock and Morganti-Kossmann, 2013). For 

instance, injury-induced increases in serum levels of the toll-like receptor (TLR) family of 

proteins and MCP1 (Semple et al., 2010). MCP1, a member of the CC chemokine family, is 

involved in attracting monocytes and regulating the permeability of the BBB (Yadav et al., 

2010). Neuroinflammation may play an important role in maintaining PTE because seizures 

can increase BBB permeability, allowing the entry of peripheral immune cells into the brain 

parenchyma and the release of inflammatory molecules that creates a vicious, self-sustaining 

cycle.

Increased serum levels of cytokine-induced neutrophil chemoattractant-1α (CINC1α), 

CD53, and TLR9 have also been found in various TBI models (Katayama et al., 2009; 

Vollmer, 2006). CINC1α is produced by astrocytes in response to oxidative stress, linking it 

to the neuroinflammatory response (Anada et al., 2018). CD53 is a cell-surface protein 

expressed by microglia that mediates cell growth and immune response. Elevated CSF levels 

of CD53 are indicative of an ongoing neuroinflammatory process that involves microglia 

(Woodcock and Morganti-Kossmann, 2013). Elevated serum levels of fibrinogen, a plasma 

glycoprotein, are detected during neuroinflarnmation (Davalos and Akassoglou, 2012; 

Muradashvili and Lominadze, 2013; Ryu et al., 2009). Increased fibrinogen levels increase 
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blood viscosity and vascular permeability by activating the extracellular signal-regulated 

kinase 1/2 (ERK1/2) pathways. The pro-inflammatory chemokine MIP1α is produced by a 

variety of immune cells including macrophages and microglia (McManus et al., 1998). 

Elevated MIPla serum levels after TBI have been found to indicate a systemic inflammatory 

response (Hsieh et al., 2008). Importantly, activated glia cells can be found months to years 

following TBI (Gentleman et al., 2004; Johnson et al., 2013) further implicating 

neuroinflammation in the pathomechanism of PTE. A genetic and biomarker cohort study by 

(Diamond et al., 2014) has shown that elevated CSF/serum IL1β ratios were associated with 

increased risk for PTE.

Damage associated molecular patterns (DAMPs) are released from damaged and dying cells 

after TBI and initiate the innate immune reaction in response to injury (Liesz et al., 2015). 

DAMPs are highly heterogenous molecules and include heat shock proteins (HSPs), high 

mobility group (HMG) proteins, extracellular proteins, as well as non-proteins like 

deoxyribonucleic acid (DNA), heparin sulfate, and adenosine triphosphate (Pandolfi et al., 

2016). DAMPs bind to pattern recognition receptors and activate immune response (Kigerl 

et al., 2014). High mobility group box 1 protein (HMGB1) is an intracellular DNA binding 

protein that elicits an inflammatory response upon release from damaged cells by activating 

glia, endothelial and peripheral immune cells (Asavarut et al., 2013; Parker et al., 2017). 

HMGB1 can bind to multiple receptors, including TLR2 and TLR4, and regulate the 

expression of pro-inflammatory cytokines IL1α, IL1β, IL6, TNFα, and interferon-gamma 

(IFNγ) through the nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) 

signaling pathway. Heat shock proteins (HSP27, HSP40, HSP60, HSP70, HSP100 and 

Crystallin alpha-B) are molecular chaperons involved in stabilizing damaged proteins in 

injured cells (Kim and Yenari, 2013; Stetler et al., 2010).

Extracellular HSP70, like HMGB1, also binds to TLR2 and TLR4 receptors and can induce 

the release of cytokines from activated immune cells. HSP70 may play a neuroprotective 

role in TBI by blocking pro-inflammatory signaling in astrocytes. CSF levels of HSP60, a 

mitochondrial protein, are significantly increased after severe TBI (measured in pediatric 

patients) indicating mitochondrial/metabolic stress (Lai et al., 2006). Serum levels of HSP60 

also increased in temporal lobe epilepsy; levels showed positive correlation with the 

activation of immune cells and the secretion of cytokines (Marino Gammazza et al., 2015). 

S100β is a calcium-binding protein that is mainly (but not exclusively) expressed and 

released by astrocytes (Donato, 1999). S100β is neurotrophic at low concentrations, but in 

micromolar doses S100β is neurotoxic and promotes neuroinflammation by binding to the 

receptor for advanced glycation endproducts (RAGE) and activating NFkB signaling 

(Kleindienst et al., 2007; Kleindienst and Ross Bullock, 2006). Other members of the S100 

family, S100A8 and S100A9 are also involved in mediating neuroinflammation but their role 

is less well understood (Sorci et al., 2000). Osteopontin is an extracellular matrix protein 

with multiple functions that include immunoactivation (Butler, 1989; Shin, 2012). Elevated 

serum levels of osteopontin have been found after TBI, and it has been implicated in 

autoimmune diseases such as multiple sclerosis (MS), bridging between innate and adaptive 

immunity (Agah et al., 2018).
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4.11. Autoimmune response

Autoimmune epilepsy (AE) is considered a separate disease entity that is mostly resistant to 

traditional anti-epileptic drugs (Britton, 2016; Gaspard, 2016; Greco et al., 2016). AE can be 

caused by a whole array of pathologies including malignancies, infections, and by TBI. TBI, 

especially its severe form, causes significant tissue damage releasing extra- as well as 

intracellular proteins into the interstitium, CSF, and eventually systemic circulation. The 

accompanying vascular damage and/or major breakdown of BBB enable peripheral immune 

cells to be exposed to the proteins and/or their degradation products triggering an 

autoimmune response. Some of the released proteins undergo post-translational 

modifications, such as deimination (also called citrullination), creating novel, highly 

antigenic epitopes that can elicit autoimmune responses. One example is GFAP that is 

citrullinated after release from injured astrocytes following TBI (Attilio et al., 2017; Wang et 

al., 2016b). CSF- and serum-based biomarkers of autoimmune response that can 

significantly contribute to PTE include autoantibodies against channel and receptor proteins, 

especially against N-Methyl-D-aspartate, voltage-gated potassium receptor complex, and 

voltage-gated calcium channel proteins, as well as against glutamic acid decarboxylase-65 

(GAD65). (Fang et al., 2017). Important considerations are: autoantibodies are not the best 

biomarkers because autoantibody levels can remain elevated even after treatments that 

alleviate the symptoms; the production of autoantibodies takes time, typically beyond the 

time frame of preclinical TBI studies and clinical observations. Additional biomarkers, 

ideally measured in the CSF, include degradation products of the released protein(s), 

enzymes like MMP2 and MMP9 that are indicators of ongoing proteolytic process and 

inflammatory markers, cyto- and chemokines, and other indicators of immune system 

activation like IL6 and TNFα (Britton, 2016; Gaspard, 2016; Greco et al., 2016).

5. Considerations for biomarker studies of PTE

5.1. The time factor

PTE can develop at various post-injury time points (Ding et al., 2016; Lucke-Wold et al., 

2015; Pitkanen and Immonen, 2014; Pitkanen et al., 2009; Wilson et al., 2018). The onset of 

early, provoked seizures vs. unprovoked and recurrent seizures is related to distinct 

pathobiological events of the primary and secondary injury mechanisms. Therefore, the 

pathomechanisms (and candidate biomarkers) for immediate and early PTS vs. late onset 

PTE are likely very different (Fig. 1). As discussed above, the acute phase of TBI is 

dominated by the consequences of the primary injury, and changes in protein biomarker 

levels in CSF and/or serum can reflect the underlying pathologies. Neuron- and glia-specific 

proteins such as UCHL1, GFAP, and NSE are released from damaged and dying cells and 

their levels peak in biofluids at the earliest measured time point (Agoston and Kamnaksh, 

2015; Diaz-Arrastia et al., 2014; Rostami et al., 2015; Wang et al., 2018). Similarly, axonal 

damage is reflected in the peak levels of p-tau and NF proteins (Rubenstein et al., 2017; 

Wang et al., 2016a). While metabolic changes in the cerebrum are best measured by other 

clinical methods (Agoston and Kamnaksh, 2015), protein biomarkers like HNE and SOD2 

can also indicate drastic changes in oxidative stress during the acute phase (Ahmed et al., 

2015). The combination of disrupted connectivity due to cell damage/death and metabolic 

dysregulation are likely the main cause of immediate and early onset seizures (Diaz-Arrastia 
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et al., 2009; Ding et al., 2016; Tubi et al., 2018). Late onset PTE, however, is likely caused 

by the combination of initial damage to the brain parenchyma, loss of cells and physically 

disrupted connectivity, as well as the biological responses of the secondary injury 

mechanism (Diaz-Arrastia et al., 2009; Dulla et al., 2016; Salazar and Grafman, 2015; 

Wilson et al., 2018). The exact onset and time course of these pathobiological responses is 

currently not well known. But an acute inflammatory response to injury can become chronic. 

Combined with an autoimmune response, neuroinflammation is probably the most important 

pathomechanism underlying epileptogenesis and sustaining PTE (Lucke-Wold et al., 2015). 

Studies have found dynamic changes in protein biomarker levels and biofluid-specific 

temporal profiles of prognostic value (Ahmed et al., 2012; Gyorgy et al., 2011; Thelin et al., 

2014), for that reason biofluids should be obtained for analysis at multiple post-injury time 

points.

5.2. Biofluids

The importance of CSF for proteomic analysis.—The functional relationship 

between intracranial and extracranial fluid dynamics is very complex, and intracranial 

changes may not be truly reflected in the systemic blood (Nakada and Kwee, 2018). 

Therefore, biofluids selected for routine clinical analysis each has its pros and cons. The 

advantages of using blood as “the biofluid” for biomarker analysis are obvious: obtaining 

blood is minimally invasive and it can be repeated frequently. However, blood (serum or 

plasma) has limitations for the initial phase of PTE protein biomarker discovery for several 

reasons (Agoston et al., 2017). Protein biomarkers that are indicative of certain 

pathomechanisms (e.g., inflammation) are not specific to the central nervous system (CNS) 

(Zetterberg and Blennow, 2016), and their concentrations in serum or plasma are typically 

very low. Furthermore, there is a temporal mismatch (even under normal physiologic 

conditions) between blood and CSF levels of the same protein(s) due to blood-CSF 

concentration gradient and molecular size (Huhmer et al., 2006). The BBB is almost always 

compromised after moderate to severe TBI. An “open BBB” allows protein biomarkers to 

enter the systemic circulation thereby “diluting”/reducing their CSF levels (Abbott and 

Friedman, 2012). The BBB thus plays a dual role in the pathobiology of TBI; BBB 

breakdown majorly contributes to the propagation of the injury intracranially, and it permits 

the movement of protein biomarkers from the brain parenchyma into systemic circulation 

(Simon and Iliff, 2016). Intracranial fluid movements, including protein and metabolite 

clearance from the injured brain parenchyma, involve the glymphatic system (Benveniste et 

al., 2017). The exact role of the glymphatic system in clearing proteins from the interstitium 

is currently poorly understood and little is known about how TBI affects the structural 

elements of the glymphatic system and consequently glymphatic flow (Asgari et al., 2016). 

This provides a strong rationale for comparing protein bio-marker levels in serial blood and 

CSF samples collected from the same patients at identical timepoints.

Severely injured TBI patients are typically admitted to neurointensive care units where CSF 

is routinely obtained for various clinical diagnostics (Agoston, 2015). Patients are clinically 

monitored even after discharge; thus, CSF samples can be obtained via lumbar puncture at 

several, later time points. This patient population is particularly valuable for identifying and 

profiling time-related changes in CSF protein biomarkers to determine the 
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pathomechanism(s) of epileptogenesis and onset of PTE (Agoston et al., 2017). The value of 

analyzing CSF to identify risk factors for PTE has been demonstrated by several studies 

(Aronica and Crino, 2011; Britton, 2016; Diamond et al., 2014; Hegde and Lowenstein, 

2014; Nordby and Urdal, 1982; Vezzani and Friedman, 2011; Xi et al., 2015; Yu et al., 

2014b). Relative to blood serum or plasma, the biochemical properties and physiologic 

compartmentalization of CSF makes it a “cleaner” biomaterial for proteomic analysis. A 

significant proportion of patients admitted to the neurointensive care unit with moderate to 

severe TBI receive whole blood transfusions, fresh frozen plasma, cryoprecipitate, and factor 

VII among other substances. What was infused, how much, the rate and duration of trans-

fusion (relative to the time blood is drawn for biomarker analysis) can markedly impact the 

biochemistry of serum and plasma samples. Therefore, CSF offers a relatively undisturbed 

“window” into the brain’s physiologic (or pathologic) state as well as its surrounding 

environment. Nevertheless, the benefits of using CSF for proteomic analysis come with 

important caveats. Despite its closeness to the brain parenchyma, CSF levels of protein 

biomarkers, especially after moderate to severe TBI, can be substantially affected by brain 

edema, poor CSF circulation, and altered BBB function. Cerebral edema is one of the 

leading consequences of moderate to severe TBI; intracranial fluid movements, including 

the production, circulation, and absorption of CSF, can be majorly affected by the swelling 

of the brain (Donkin and Vink, 2010; Pasco et al., 2006). Therefore, brain edema and altered 

cerebral blood flow can also change protein biomarker levels (Simon and Iliff, 2016). 

Furthermore, it is unrealistic to expect that CSF sampling will be widely and routinely used, 

so the value of identifying blood-based protein biomarkers for PTE is paramount. An 

essential first step toward this goal is to establish how injury-induced changes in the CSF 

levels of protein biomarkers are reflected in systemic circulation. This can be achieved by 

comparing protein biomarker levels in the CSF vs. serum/plasma obtained from the same 

patients at identical time-points, at least for the duration of their stay in neurointensive care 

as in the Epilepsy Bioinformatics Study for Antiepileptic Therapy (EpiBioS4Rx).

5.3. Protein biomarker studies in rodents vs. human

Protein biomarker studies of TBI animal models have provided critical information about the 

underlying pathobiological changes that can contribute to epileptogenicity after TBI 

(Agoston and Elsayed, 2012; Kobeissy et al., 2008; Kovesdi et al., 2010; Mondello et al., 

2017; Thelin et al., 2017). As discussed above, serial sampling is important to ensure that 

the onset and evolution of pathobiological changes are not missed. Determining the temporal 

profile of protein biomarkers in different biofluids would enable a timelier PTE diagnosis 

and better prognosis. Combined with systems biology, establishing the time-dependent 

changes of protein biomarkers in the CSF and/or in serum has the potential to identify the 

precise chain of molecular events that lead to PTE. Age is another important risk factor for 

PTE (Bruns Jr. and Hauser, 2003); therefore, animal studies should account for age effects 

and design experiments accordingly. An important yet poorly understood relationship is how 

rodent and human timescales compare. All available data point to accelerated biological and 

pathological processes in rodents as compared to humans (Agoston, 2013; Agoston, 2017). 

Unfortunately, there is no simple “conversion factor” to translate between rodent and human 

times, even for normal biological processes. Based on limited experimental data from rodent 

and human TBI studies that have used comparable outcome measures, the difference 
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between rodent and human time appears to be process-dependent making the translation 

between rodent and human timeframes challenging.

5.4. Limitations of protein biomarker studies

Virtually all biomarker assay platforms are dependent on the availability of specific 

antibodies. Proteases normally present in the various biofluids can damage epitopes and 

result in false negative data. Therefore, sample collection, handling, and preparation (e.g., 

serum or plasma isolation) are critical for proteomic analysis, yet there are no standardized 

protocols or internal controls to indicate the intactness of proteins. Sample quality and 

stability can significantly affect biomarker values, especially when ultra-high sensitivity 

platforms such as Simoa are used (Ambroz, 2011; Signore et al., 2017; Solier and Langen, 

2014). The alternative to antibody-based analysis platforms, mass spectrometry, is currently 

not fast enough. While protein biomarker studies can provide important molecular level 

information about post-injury pathobiological events and their temporal patterns, they lack 

spatial precision. Elevated CSF and/or serum levels of protein markers can be the result of 

massive focal damage or smaller but more diffuse damage. This information can be provided 

by neuroimaging, and the combination of protein biomarker data and imaging data provides 

high diagnostic value and specificity for PTE. Similarly, protein biomarker data needs to be 

analyzed in the context of functional, neuropsychiatric, and electroencephalography (EEG) 

data for a better understanding of how macrostructural and molecular abnormalities translate 

into functional changes.

6. Conclusion

Protein biomarkers of the acute and subacute phase of TBI have been identified, but 

relatively little is known about their potential role in PTE development. The temporal 

profiles of protein biomarkers in CSF and serum of these early post-injury phases indicate 

complex and dynamic pathobiological processes. Much needs to be learned about the long-

term changes. Longitudinal studies, both experimental and clinical, such as the 

multinational, multicenter consortium EpiBioS4Rx are needed to identify specific and 

reliable biomarkers for PTE. In combination with other biomarkers, imaging and EEG, 

protein biomarkers will help to identify individuals at increased risk for PTE, elucidate the 

exact molecular pathologies underlying epileptogenesis, and guide the development of 

evidence-based therapeutic interventions.
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Fig. 1. 
The onset and extent of select pathological changes and biological responses after TBI (a 

hypothetical model). The colored horizontal bars illustrate the approximate onset and scale 

of the individual pathological changes following injury; color gradients reflect time-

dependent changes in the intensity of individual pathobiologies. The grey shaded boxes 

indicate the relative onset of post-traumatic seizures (PTS) and post-traumatic epilepsy 

(PTE). * pathological changes that occur predominantly or exclusively after penetrating 

TBI; hr = hours; ROS = reactive oxygen species.
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