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Abstract

Diffusion magnetic resonance imaging (dMRI) of biological systems most often results in non-

monoexponential signal, due to their complexity and heterogeneity. One approach to interpreting 

dMRI data without imposing tissue microstructural models is to fit the signal to a multiexponential 

function, which is sometimes referred to as an inverse Laplace transformation, and to display the 

coefficients as a distribution of the diffusivities, or water mobility spectra. Until recently, this 

method has not been used in a voxelwise manner, mainly because of heavy data requirements. 

With recent advancements in processing and experimental design, voxelwise Laplace MRI 

approaches are becoming feasible and attractive. The rich spectral information, combined with a 

three-dimensional image, presents a challenge because it tremendously increases the 

dimensionality of the data and requires a robust method for interpretation and analysis. In this 

work, we suggest parameterizing the empirically measured water mobility spectra using a bimodal 

lognormal function. This approach allows for a compact representation of the spectrum, and it also 

resolves overlapping spectral peaks, which allows for a robust extraction of their signal fraction. 

We apply the method on a fixed spinal cord sample and use it to generate robust intensity images 

of slow- and fast-diffusion components. Using the parametric variables, we create novel image 

contrasts, among them the information entropy of the water mobility spectrum, which pack unique 

features of the individual diffusion regimes in the investigated system.
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1. Introduction

Diffusion magnetic resonance imaging (dMRI) delivers a signal that is proportional to the 

local water mobility and, therefore, can be used to probe biological tissue at different length 

scales [1–7]. Water mobility in biological tissue cannot be described by a single, simple 
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process such as Gaussian diffusion because of the complexity and heterogeneity of the 

system’s microstructure. In particular, the existence of a range of physical barriers at 

different scales and permeabilities, multiple exchanging water pools with different 

viscosities, and even active processes in live tissue, results in a non-monoexponential 

diffusion-weighted signal attenuation [8, 9]. Further complicating the interpretation and 

modeling of dMRI data is tissue anisotropy (e.g., axonal fibers), which creates a directional 

dependence of the acquired signal [1, 10].

An approach similar to the one used to investigate porous media with nuclear magnetic 

resonance (NMR) relaxation-based methods [11–13], multiexponential modeling of the 

diffusion signal can be used to characterize heterogenous biological systems [14–17]. 

Finding the coefficients of a multiexponential function is, in theory (for the practical case, 

please refer to the Theory section), equivalent to performing an inverse Laplace 

transformation (ILT), and, therefore, these methods are often termed Laplace NMR or MRI.

Treating the diffusion signal decay as a multiexponent provides a spectrum of diffusivities, 

which leads to a model-free description of the water mobility. Because of the heavy data 

requirements, diffusion-weighted Laplace approaches have most often been limited to NMR. 

As methods that make Laplace MRI more feasible and accessible emerge [18–20] and are 

applied [21–25], there is a concomitant growing need for dimensionality reduction. Whereas 

traditional Laplace NMR results in one- to three-dimensional spectral data, three additional 

spatial dimensions are added when this approach is combined with imaging. The increased 

dimensionality, along with the requirement to visualize the data in a summarized manner, 

creates a need for a more compact representation of the spectral information. In addition, a 

very important quantity that is usually derived from Laplace spectra is the signal fraction of 

the different spectral peaks (calculated by means of numerical integration), which is 

indicative of their associated water volume fraction. In many instances the spectral peaks are 

overlapping or somewhat indistinguishable, making it hard to robustly determine their limits 

and consequently making it impossible to reliably compute their signal fraction [26, 27].

In this work, we present a method to reduce the dimensionality of the nonparametric 

Laplace-based diffusivity spectrum by fitting it to a bimodal parametric function. This 

approach allows for a compact representation of the spectrum. Importantly, this method also 

resolves overlapping spectral peaks and allows for a robust extraction of their signal fraction.

2. Theory

2.1. Water mobility spectra

In the case of diffusion-weighted data, the signal attenuation, A, can be described by the 

following discrete sum [28]:
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A bi =
n = 1

N
P Dn K bi, Dn + ϵ b ,

(1)

where ϵ(b) is the experimental noise, which is assumed to be Gaussian. The parameter b is 

defined as b = γ2δ2G2 Δ − δ/3 , which is composed of a pair of magnetic pulsed gradients 

[29] of duration δ, separation ∆, and amplitude G, with γ being the gyromagnetic ratio. The 

measured diffusion parameter, D, is distributed according to P(D) with N discrete 

components, and K(b, D) relates b and D and is called the kernel. In this particular case, the 

kernel can be expressed as

KD b, D = exp −bD .

(2)

Encoding is done by sampling the diffusion weighting parameter space Nb times. In this 

case, Eq. 1 can be written in matrix form as

A = KP + ϵ,

(3)

where A and ϵ are Nb × 1 vectors, P is an N × 1 vector, and K is an Nb × N matrix. Eq. 3 is 

the matrix form of the Fredholm integral of the first kind, which is a classic ill-conditioned 

problem [30]. The main implication is that the data inversion is inherently non-unique [11, 

31]. A standard approach to solving ill-conditioned problems is to regularize them. When 

the spectrum is expected to be smooth, ℓ2 regularization is appropriate [13]. While slightly 

distorted, a regularized problem has (by definition) a unique solution that depends on the 

data [13]. Therefore, the regularized problem considered in this study was

P α = argmin
P ≥ 0

KP − A 2 + α P 2 ,

(4)
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where ‖⋯  is the ℓ2 norm. The regularization term is a measure of the desired smoothness in 

P(D). Choosing the suitable value of α is still an open research question, with several 

approaches having been proposed (for a comprehensive review, please refer to [32]). The 

regularization parameter in this study was chosen by means of the L-curve method [33]. 

Note that since P(D) is a probability density function, nonnegativity constraints were 

imposed.

Data processing was performed with in-house code written in MATLAB (The Mathworks, 

Natick, MA). To estimate the water mobility spectra in a voxelwise manner we used CVX, a 

package for specifying and solving convex problems [34, 35].

2.2. Parametrization using a bimodal lognormal function

Reports of two dominant diffusivity regimes in nerve tissue are very common in the dMRI 

and dNMR literature. As a result, a widely used model for water diffusion signal in nerve 

tissue has been a biexponential model, which assumes it is a sum of two components with 

distinct diffusion coefficients [8, 9, 36]. While our work here is not intended to debate or to 

question the validity of the biexponential model, it is important to understand that its use is 

rooted in the observation of the apparent slow and fast diffusion coefficients in nerve tissue. 

Later Laplace NMR and MRI studies have also reported bimodal water mobility spectra in 

different types of brain tissue [14–17, 24]. These studies have led Ronen et al. to use a 

bimodal lognormal function to describe the estimated diffusivity distributions in their 

investigation of the usefulness of Laplace MRI in the characterization of diffusion in the 

brain [17]. Here we are using the same parametric function to reduce the dimensionality of 

the nonparametric Laplace-based diffusivity spectrum and to achieve a robust separation of 

overlapping spectral peaks.

A lognormal distribution as a function of the diffusivity is given by

Plog D = 1
S 2πD

e
− lnD − M 2/ 2S2

,

(5)

and a bimodal lognormal distribution is given by

Pbilog D =
f slow

Sslow 2πD
e

− lnD − Mslow
2/ 2Sslow

2

+
f f ast

S f ast 2πD
e

− lnD − M f ast
2/ 2S f ast

2
,

(6)
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where the volume fractions, f, and the lognormal distribution variables, S and M, of the slow 

and fast components are used.

Once (the nonparametric) P(D) was estimated by solving Eq. 4, it was fed into a subsequent 

optimization procedure that fit it to Eq. 6. A global minimum for this constrained 

optimization over the six variables was found by using MATLAB’s GlobalSearch procedure, 

with an fmincon solver and an objective function specified as the Jensen difference, which is 

a well-established method of measuring distance between two probability distributions [37].

3. Materials and Methods

3.1. Specimen preparation

The animal used in this study was housed and treated at the Uniformed Services University 

of the Health Sciences (USUHS) according to national guidelines and institutional oversight. 

As part of standard necropsy for an unrelated study, a healthy adult male ferret was 

euthanized and underwent transcardial perfusion with ice-cold 0.1M phosphate buffered 

saline (PBS, pH 7.4, Quality Biological) followed by 4% paraformaldehyde (PFA, Santa 

Cruz Biotechnology, in PBS 0.1M pH 7.4) at USUHS, according to standard methods. For 

the present study, the spinal cord tissue was extracted by careful surgical dissection. A 

cervical portion of the spinal cord was then transferred to a PBS-filled container for 7 days 

to ensure any residual PFA was removed from the tissue. The sample was then immersed in 

perfluoropolyether (Fomblin LC/8, Solvay Solexis, Italy) and inserted into a 5 mm Shigemi 

tube (Shigemi Inc., Japan) with a glass plunger matched to the susceptibility of water. The 

tube was oriented along the direction of the main magnetic field in a 5 mm birdcage radio 

frequency (RF) coil.

3.2. MRI data acquisition

MRI data were collected on a 7 T Bruker wide-bore vertical magnet with an AVANCE III 

MRI spectrometer equipped with a Micro2.5 microimaging probe and three GREAT60 

gradient amplifiers, which have a nominal peak current of 60 A per channel. This 

configuration can produce a maximum nominal gradient strength of 24.65 mT/m/A along 

each of the three orthogonal directions. MRI data were acquired with a spin-echo diffusion-

weighted sequence. The sample temperature was set at 16.8°C.

Diffusion-weighted data were collected in two sets, with diffusion gradients oriented 

perpendicular and parallel to the spinal cord axis of symmetry. In both cases, 20 diffusion 

gradient steps, G, were applied in linear increments from 0 to 852 mT/m, with duration δ = 3 

ms and separation ∆ = 15 ms, resulting in a maximal b-value of 7290 s/mm2.

Signal-to-noise ratio (SNR) was defined as the ratio between the average signal intensity 

within a tissue region of interest (ROI), and the standard deviation of the signal intensity 

within a background (i.e., no sample) ROI. SNR was similar in both perpendicular- and 

parallel-oriented diffusion gradient encoding. The highest SNR image (i.e., with b = 0) had 

an SNR of 60, and the lowest SNR image had an SNR of 54.
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For all types of acquisitions, repetition time was TR = 3 s, and echo time was TE = 7.6 ms. 

A single 4 mm axial slice with a matrix size of 128 × 128 that led to in-plane resolution of 

35 × 35 µm2, was acquired with four averages.

4. Results and Discussion

4.1. Regularization and its effects

Although the focus of this paper is not the regularization process and its robustness, it is 

important to consider its influence on the mobility spectrum. The issue of balancing between 

the stability of the inversion and the over-smoothing effect of the regularization process is 

still an open question. When the diffusion signal source is comprised of relatively narrow 

spectral components, as might be the case with non-biological materials, ℓ2 regularization is 

not suitable, and instead the ℓ1 norm should be used [20]. However, the diffusion signal from 

biological tissue contains information from multiple length scales that include membranes 

acting as local barriers, intracellular organelles, extracellular matrix and macromolecules; as 

such, the diffusivity spectrum should span continuously, which is enforced by the ℓ2 

regularization.

Even though other methods for choosing the regularization parameter, α, such as Butler-

Reeds-Dawson (BRD) [38] and generalized cross-validation (GCV) [38] are regularly used, 

we chose here the L-curve method, which is also well-established in the literature. We do 

not attempt to advocate for the use of the L-curve method; in fact, for the purpose of this 

work, the choice of α has little importance. Our approach for parametrization of the spectra 

is specifically designed to address, among other issue, ambiguities arising from under- and 

over-regularization.

To illustrate, the signal from a representative white matter (WM) voxel was processed with 

several degrees of regularization (α), and resulted in the nonparametric spectra shown in 

Fig. 1 (dots). Each of these curves was then fitted to the bimodal lognormal distribution 

function, and was plotted as well (solid red line). Two well-separated peaks are evident when 

very small α values were used. As the regularization coefficient is increased, the peaks are 

starting to merge and become less distinguishable. Regardless of this fact, the fitting of the 

spectra to the bimodal lognormal function in Eq. 6 was not affected, and two spectral 

components were reliably identified at each of the regularization degrees. In this particular 

WM voxel, the L-curve method determined that α = 1.20 provides the optimal solution. 

While this result might appear to be over-regularized, two well-separated peaks are unlikely 

because of the vast microstructural heterogeneity in nerve tissue, which would be expected 

to yield a continuous water mobility spectrum. Whether or not this regularization coefficient 

is the optimal one is outside the current scope, but note that a smoother spectrum provides 

less spectral separation, and hence a greater challenge for our parametric fitting approach.

4.2. Resolving diffusion spectral peaks

Examples of characteristic diffusivity spectra from different nerve tissue regions, types, and 

orientations are shown in Fig. 2. The spectra in Fig. 2B, whose locations are marked on the 

spinal cord proton density image in Fig. 2A, all exhibit non-monomodal characteristics. 
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However, whether the orientation is perpendicular X⊥  or parallel Z∥ , or whether the 

tissue type is gray or white matter, dramatically changes the distribution. Without 

parametrization of the spectra, the approach to obtaining the signal fraction is to judiciously 

determine the diffusivity limit, Dlim, where the contribution of the slow diffusivity 

component ends and the fast diffusivity component begins (Fig. 2B). In the case of diffusion 

in nerve tissue, in which two main components are assumed to exist, one would divide the 

spectrum into two parts, separated by Dlim, integrate over them, and obtain the signal 

fractions of the slow and fast components. The limitation of this method is clear: how does 

one choose Dlim? The arrows in Fig. 2B point to potential Dlim values, which change and 

move as a function of tissue type and orientation. Thus, a global Dlim value does not exist, 

and the choice of such value would significantly bias the resulting signal fraction.

Although the nonparametric distribution (i.e., the one obtained directly from solving Eq. 4) 

contains the richest information compared with a parametric model, it may be challenging to 

interpret. Specifically, the overlapping spectral components are often hard to resolve, and the 

fact that their location on the spectrum is not constant, make it very difficult to automatically 

determine where one peak ends and the other begins. Fitting the diffusion spectrum in each 

voxel to the bimodal lognormal function in Eq. 6 allowed for a more robust interpretation of 

the data. Examples from white and gray matter, and from parallel and perpendicular 

orientations are shown in Fig. 3. Regardless of the tissue type or orientation, the 

parametrization captured most of the information contained within the nonparametric 

distributions.

Using a bimodal function to fit the data involves the underlying assumption that regardless 

of the nerve tissue type and its orientation, the diffusivity spectrum should not contain more 

than two resolvable peaks. At first glance, this assumption sounds very limiting; however, 

two important arguments for using a bimodal model function should be kept in mind: (1) a 

continuously growing body of research demonstrates that dMRI or dNMR signal from nerve 

tissue contains two observable diffusion regimes, usually referred to as restricted and 

hindered [6, 8, 9, 17, 24, 36, 39], and (2) numerically inverting a Fredholm integral of one-

dimensional data with ℓ2 regularization very rarely results in more than two distinct spectral 

peaks [40].

4.3. Water mobility spectral imaging

In the case of NMR, automation of the process of identifying and resolving the water 

mobility spectral peaks is not necessary; instead, each spectrum can be examined and 

analyzed manually. Conversely, in conjunction with imaging and, specifically, when 

voxelwise analysis is desired, the large number of voxels requires a completely automated 

and robust method to identify the peaks and their point of separation and to resolve them. 

The most common and useful quantity one can derive from such spectra is the relative signal 

fraction of each of the spectral components, which is generally assumed to be proportional 

to the proton’s volume fraction, thus giving the spectral content physical meaning.

Knowing the parametric form of the slow and the fast diffusion spectral components allows 

for a simple integration over their entire range, which results in their respective signal 

fractions. Fig. 4 shows the slow and fast diffusion signal fraction images in the cases where 
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the diffusion encoding gradients are oriented perpendicular (X⊥, top panel) and parallel (Z∥, 

bottom panel) to the spinal cord. At each orientation, the voxelwise signal fractions derived 

from the parametric model, and from using the conventional method with three different 

Dlim values, are shown (left to right). Maps of the average normalized root mean square 

error (NRMSE), which was defined as the RMSE divided by the mean of the measured data, 

are also shown in Fig. 4. The relatively low NRMSE values and their uniform spatial 

distribution indicate the good agreement and small bias of the fit. The parametric X⊥
diffusion images demonstrated a typical white–gray matter contrast: high Islow

⊥  and I f ast
⊥

intensities in white and gray matter, respectively. This contrast is attributed to the higher 

density and content of barriers perpendicular to the spine’s axis of symmetry in white 

matter, compared with gray matter [24].

Although clear from the examples in Fig. 2, we can now see how the subjective selection of 

Dlim is critical and how it significantly changes the image contrast of the signal fraction. As 

opposed to relaxation data, diffusion attenuation is highly dependent on the tissue 

orientation, or equivalently, on the diffusion gradients direction. While the fibers orientation 

arrangement in the spinal cord is mostly known a priori, each voxel in the brain could 

contain a population of anisotropic “pores” with different orientations. In the absence of an 

automated method of distinguishing and identifying the diffusion spectral peaks, one would 

necessarily have to simply select a global Dlim and apply it to all voxels, which should be 

expected to perform very poorly. To illustrate, the image contrast in Z∥ obtained by using 

Dlim = 0.1287 µm2/ms seems to be qualitatively similar to that of the parametric images. 

However, if we look at the same Dlim value images in X⊥, we see that the nonparametric 

images are completely saturated and are definitely different from the parametric ones and the 

expected image contrast.

An alternative to fitting the spectra to a bimodal lognormal function, Stanisz and Henkelman 

suggested to fit the signal directly to a two-component model [26], stating, similarly to our 

case, that “the T2 spectra for white matter estimated using nonnegative least squares method 

results in overlapping components, making the estimation of the relative T2 component 

amplitudes prone to a priori defined thresholds”. A comparison between their method to the 

approach we suggested here can be found in the Supplementary Material.

4.4. Dimensionality reduction

In this work, we discretized the spectra into N = 50 diffusivities values. With the current 

imaging matrix size of 128 × 128 our spatially resolved spectral data became a 128 × 128 × 

50 matrix. A concise examination, study, and interpretation of the spectral information 

within the context of the image require the processed data be more compactly represented. 

After voxelwise parametrization of the diffusion spectra, the number of parameters in each 

voxel was reduced from 50 to 6. The six bimodal lognormal distribution parameters, fslow, S 

slow, Mslow, f fast, S fast, and Mfast, may be used to visualize specific aspects and properties of 

the parametrized distributions they represent.
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The usefulness of such dimensionality reduction is reflected in the images of Sslow
⊥ , Mslow

⊥ , 

S f ast
⊥ , and M f ast

⊥  shown in Fig. 5. These can be further developed into a family of statistical 

characteristics of the lognormal probability density function; among them are the mean, 

variance, skewness, etc. Images of the moments of the slow and fast diffusion components 

could then be analyzed and interpreted in the biological context of the investigated sample, 

which is beyond the scope of this work.

We suggest using a useful quantity, the information entropy of the lognormal distribution, by 

computing the expression ln S e
M + 1

2 2π . Generally, entropy refers to disorder or 

uncertainty, and in our context lower probability increases the uncertainty and thus increases 

the entropy. In that sense, a diffusivity value with low probability carries more information 

than when the same diffusivity value has a higher probability value. By using Sslow
⊥ , Mslow

⊥ , 

S f ast
⊥ , and M f ast

⊥ , the entropy of the slow and fast diffusion components perpendicular to the 

spinal cord were calculated; they are shown in the bottom panel of Fig. 5. We can see that 

the fast diffusion component has a relatively low entropy (i.e., carries less information), 

which is due to its relatively narrow peak. Conversely, the slow diffusion components have a 

much higher information content, which can be attributed to the shape of their associated 

spectral peaks. In particular, the slow diffusion components in gray matter were 

characterized by the widest spectral peaks (as can be seen in Fig. 3), which is concisely 

reflected in the entropy image.

5. Conclusions

In this paper we suggested parameterizing the empirically measured diffusivity spectra 

obtained from Laplace dMRI spinal cord data. The advantage is twofold: (1) the parametric 

form has a compact representation of the spectra, which can be used to infer useful statistical 

quantities, and (2) it provides a robust method to resolve overlapping spectral peaks. Based 

on previous studies (e.g., [17]) we chose a bimodal lognormal probability density function to 

model the nerve tissue–derived diffusivity spectra. We demonstrated the benefits of this 

parametrization on a fixed spinal cord sample and showed how it generates robust intensity 

images of slow- and fast-diffusion components. We suggested a novel image contrast, the 

information entropy of the water mobility spectrum, which packs unique features of the 

individual diffusion regimes in the investigated system. Finally, we note that this 

parametrization approach is not limited to diffusion-based Laplace applications but can also 

be used to process relaxation spectra (e.g., T1 and T2 distributions), and to characterize and 

reduce the dimensionality of multidimensional Laplace MRI data, such as D-T1 [24]. In 

particular, one proposed method of myelin imaging is based on multiexponential analysis of 

multiecho data, where the myelin water fraction (MWF) is defined as the percentage of the 

total signal associated with the short T2 peak [28, 41, 42]. MWF calculations use a 

predefined T2 range cut-off (i.e., T2
lim), which is inconsistent across different studies, mainly 

due to acquisition protocol, hardware, and inversion method, e.g., [27, 43, 44]. Our method 

can be applied to robustly and automatically assign the short T2 peak in a consistent and 
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reliable manner regardless of the experimental conditions, which may improve the 

reproducibility of MWF imaging.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Water mobility spectra perpendicular to the fibers from a representative white matter (WM) 

voxel. The effect of increasing the degree of regularization (α) is shown, along with the 

parametric fit to the spectra.
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Figure 2: 
Variability of diffusivity spectra as a function of tissue type and orientation. (A) A proton 

density image of the spinal cord, on which the locations of spectra in (B) are indicated. (B) 

Diffusivity spectra from single voxels at different locations and gradient orientations. Dlim is 

a subjective, manually selected value according to which the spectrum is divided into two 

diffusivity components, slow and fast.
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Figure 3: 
The nonparametric distributions and their fitted parametric models. Spectra from three 

representative voxels: two in white matter (A and B) and one in gray matter (C), with 

diffusion encoding perpendicular and parallel to spinal cord.
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Figure 4: 
Slow and fast diffusion signal fraction images with diffusion encoding perpendicular (X⊥, 

top panel) and parallel (Z∥, bottom panel). The images were obtained by using bimodal 

parametrization, and three different Dlim values, and subsequent integration, which resulted 

in quantitative images of Islow
⊥ , I f ast

⊥ , Islow
∥ , and I f ast

∥ . Average NRMSE maps at each gradient 

orientation are also presented, indicating high confidence of the fit and uniform spatial 

distribution.
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Figure 5: 
Quantitative images of the lognormal probability density function parameters. Images of (A) 

Sslow
⊥ , (B) S f ast

⊥ , (C) Mslow
⊥ , and (D) Mslow

⊥ . Each pair of S and M parameters was then used to 

compute the entropy images of the slow- and fast-diffusion spectral components, which are 

shown at the bottom.
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