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Abstract

Problem—Approximately half of all human embryo implantations result in failed pregnancy. 

Multiple factors may contribute to this failure, including genetic or metabolic abnormalities of the 

embryo. However, many of these spontaneous early abortion cases are attributed to poor uterine 

receptivity. Furthermore, although many fertility disorders have been overcome by a variety of 

assisted reproductive techniques, implantation remains the rate-limiting step for the success of the 

in vitro fertilization (IVF) treatments.

Results—We, as well as others, have demonstrated that endometrial biopsies performed either 

during the spontaneous, preceding cycle, or during the IVF cycle itself, significantly improve the 

rate of implantation, clinical pregnancies and live births. These observations suggest that 

mechanical injury of the endometrium may enhance uterine receptivity by provoking the immune 

system to generate an inflammatory reaction. In strong support of this idea, we recently found that 

dendritic cells (DCs), an important cellular component of the innate immune system, play a 

critical role in successful implantation in a mouse model.

Conclusion—In this review we discuss the hypothesis that the injury-derived inflammation in 

the biopsy-treated patients generates a focus for uterine DCs and Mac accumulation that, in turn, 

enhance the endometrial expression of essential molecules, that facilitate the interaction between 

the embryo and the uterine epithelium.
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1. The Uterus and Implantation

Embryo implantation, which is an absolute requirement for reproduction, starts with 

blastocyst apposition to the uterine endometrium, followed by its attachment to the 

endometrial surface epithelium. Implantation can only takes place in a receptive uterus. In 

humans the uterus becomes receptive during the mid-secretory phase (days 19-23) of the 
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menstrual cycle, commonly known as the window of implantation (WOI). Rodents exhibit a 

relatively short (4-days) estrous cycle and develop a receptive uterus on day 4 after mating 1.

The uterine endometrium consists of two distinct cellular components, the stromal cells and 

the cells of the epithelium. The cellular changes during the WOI include the transformation 

of the fibroblast-like endometrial stromal cells into larger and rounded decidual cells 

(decidualization) 2, as well as the growth and development of secretory glandules and the 

emergence of large apical protrusions (pinopodes) and microvilli on the luminal epithelium 
3. In parallel, modulations in the expression of different cytokines, chemokines growth 

factors, and adhesion molecules take place, as well as vascularization and infiltration of 

immune cells from the blood to the endometrial tissue 4. These changes are subjected to 

regulation by the ovarian steroid hormones, 17-β-estradiol and progesterone. 5, 6.

The modulated expression of the above-mentioned molecules at the WOI provides 

circumstantial evidence for their role in this process. However, the association of some of 

these specific endometrial genes with impaired fertility in humans has not been consistent 
5, 6. Many efforts have been invested in order to identify specific molecules that characterize 

receptive endometrium. Different “omics” technologies such as genomics (global microarray 

analysis)7-13, proteomics 14 and secretomics 15-17, performed in the last decade revealed a 

large number of genes expressed differentially in human endometrium during the WOI. 

Moreover, based on a customized microarray, a new assay, endometrial receptivity array 

(ERA), has been recently developed for prediction of endometrial receptivity 18, however its 

use in the clinic still needs to be further validated.

2. Tissue Repair and Implantation

We have demonstrated that endometrial biopsies taken during the spontaneous cycle that 

preceded the in vitro fertilization (IVF) and embryo transfer (ET) treatment more than 

doubled the rates of implantation, clinical pregnancies and live births 19. Such favorable 

influence of the biopsy-treatment on IVF outcome was later observed by other clinics 

worldwide 20-25, and further confirmed by two independent meta-analyses 26, 27. 

Moreover, Gibreel et al, 2013 have recently shown for the first time that biopsy treatment 

not only increases the chance of implantation in IVF patients but also positively affects the 

outcome of spontaneous pregnancies 28.

Mechanical manipulation, which is associated with formation of decidua is not a new 

phenomenon. In 1907, Leo Loeb 29, first reported that scratching the guinea-pig uterus 

during the progestational phase of the estrous cycle provoked a rapid growth of decidual 

cells. Later experiments showed that decidua formation in pseudopregnant rodents could be 

induced by other forms of local injury, such as suturing the uterine horn 30 and intrauterine 

injection of oil 31. These early observations in rodents, combined with our recent findings in 

human patients, suggest that local injury of the endometrium facilitates successful 

implantation. Additionally, albeit indirect, evidence to support the beneficial effect of 

endometrial injury on successful implantation comes from the observation that scar tissue 

from previous endometrial surgery (or Cesarean section) becomes an attractive site of 
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implantation 32. Taken together, these reports suggest that it is possible that the success of 

implantation is secondary to the development of an injury-induced inflammatory reaction 33.

3. Cytokines, immune cells and Implantation

A high level of the pro-inflammatory T helper (Th)-1 and cytokines (IL-6, IL-8, TNFα) 

characterizes early implantation 34-33, 35, Van Sinderen, 2013 #567, 36, 37. We previously 

demonstrated that endometrial biopsy up-regulates the expression of different pro-

inflammatory cytokines such as macrophage inflammatory protein (MIP)1B, TNFα, GROα, 

osteopontin (OPN) and IL-15 as well as the abundance of the specific immune cells, 

macrophages (Mac) and dendritic cells (DCs) 38. We further showed that the levels of these 

cytokines and immune cells positively correlate with the pregnancy outcome of the IVF 

patients 38. A recent study showed that increase in the expression of interferon-inducible 

protein-10 (IP-10) and TNFα in endometrial aspiration of IVF patients is associated with 

successful implantation39; supporting the concept that cytokines and chemokines are critical 

for the success of implantation. It is important to note that in addition to their classical role 

to attract and activate immune cells, cytokines such as IL-6, MIP-1B, CX3CL1 and IP-10 are 

directly involved in the implantation process by attracting human trophoblast cells 40-42. The 

role of IP-10 in regulation of blastocyst migration and apposition has been also confirmed in 
vivo in the mouse 43. These cytokines are secreted by the endometrial cells as well as by the 

immune cells that are recruited to the site of implantation. Indeed the utero-placental unit of 

human and mice was shown to be richly populated with hematopoietic cells. Of these, 

65-70% are uterine-specific natural killer (NK) cells, and 10-20%, are antigen presenting 

cells (APC) such as macrophages (Mac) and dendritic cells (DCs)44-50. Circulating NK cells 

in the peripheral blood are cytotoxic, however, upon their infiltration into the endometrium, 

they undergo differentiation into uNK cells, losing their killing activity 51. This change in 

their characteristics is mediated by IL-15, secreted by DCs and endometrial cells, and by 

TGF-β1, that is secreted by Mac 52-55. Decidual NK cells (dNK) have a role in regulating 

trophoblast invasion by the production of IL-8 and IP-10 chemokines 44. Moreover, these 

cells were also demonstrated to trigger endometrial stromal cells to produce chemokines, 

IL-8, CCL8 and CXCL1, that act synergistically with uNK to induce trophoblast migration 
56. In support to these findings, a recent study that applied a new method of morphometric 

image analysis, demonstrated a higher density of dNK cells and Mac in close proximity to 

the invasive trophoblast in human tissue fragments derived from first trimester placentation 

sites57. Decidual NK cells are also potent secretors of an array of angiogenic factors that 

induce vascular growth that is essential for the establishment of an adequate decidua 58. DCs 

are a heterogenous population of cells that initiate and coordinate the innate adaptive 

immune response. These cells accumulate in the pregnant uterus prior to implantation and 

stay in the decidua throughout pregnancy 45, 59, 60. Several lines of evidence point to a 

pivotal role of APC cells in shaping the cytokine profile at the maternal–fetal interface 
59, 61, 62. Furthermore, a previous study from our laboratory showed that depletion of uterine 

DCs (uDCs) cells resulted in a severe impairment of implantation and led to embryo 

resorption 63. However, the effect observed in our study was not related to tolerance but 

rather to successful decidualization. In agreement with our findings, another study showed 

that therapy with DCs significantly decreased the spontaneous resorption rate in a mouse 
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model 64. These studies suggest that, in addition to their involvement in the immune 

response, uDCs also play some tropic role in regulating pregnancy. It was shown that uterine 

DCs and Mac secrete, both, pro-inflammatory and anti-inflammatory cytokines, by which 

they were suggested to balance the endometrial Th1/Th2 cytokines that control endometrial 

tissue remodeling and growth 50, 61, 65. Indeed, Mac have been shown to regulate 

endometrial remodeling and clearance of apoptotic trophoblast cells during trophoblast 

invasion 47, 66. Furthermore, It was recently demonstrated that Mac also directly regulate the 

expression of endometrial epithelial fucosyltransferases, FUT1 and 2, enzymes that are 

involved in synthesis of fucosylated ligands, required for embryo attachment in cells 67, 68

The immune infiltrate, that plays a central role in the process of tissue renewal and 

differentiation, may also participate in the development of a receptive endometrium in 

biopsy-treated patients. In addition to their immediate influence, recruitment of cells of the 

immune system to the site of injury may create some “tissue memory” facilitating 

implantation in the following cycle of treatment. In fact, monocyte precursors of 

macrophages and DCs are known to be recruited to injured sites and provide essential 

beneficial effects during wound healing. These cells are long lived and reside in some tissues 

for months during which time they can differentiate into tissue-resident macrophages or DCs 
69.

Accumulating evidence suggests that intrauterine administration of autologous freshly 

isolated peripheral blood mononuclear cells (PBMC) also improves embryo implantation. It 

was recently shown that this treatment increases implantation rates in patients with three or 

more IVF failures 70. Previous studies showed that intrauterine administration of in vitro 
hCG pre-activated PBMC also increased implantation rates in patients with repeated 

implantation failure 71, 72. A recent study in mice showed that increased endometrial 

receptivity following hCG-treated PBMC administration is associated with elevated 

endometrial expression of LIF and VEGF. This effect has been suggested to be mediated by 

hCG-induced secretion of IL-1β and TNFα by the PBMC 73. It was also suggested that 

PBMC facilitates implantation by increasing epithelial cell adhesive properties 74. Recently 

we reported the in vitro effect of hCG on trophoblast-epithelium interaction by decreasing 

MUC16 expression and inducing OPN secretion, two factors which are thought to be 

relevant for implantation as we discussed below75.

4. The Trophoblast-Lumen Epithelium Synapse

As the blastocyst travels from the fallopian tube to the uterine cavity, the surface epithelium 

of the uterus functions as the first contact responsible for adequate attachment of the 

trophectoderm to the epithelium and the subsequent trophoblast invasion and placentation. 

When a mammalian blastocyst enters the uterine cavity, the surface epithelium of the uterus 

is covered by molecules, such as Mucin 1 (MUC1) carbohydrates that prevent the 

attachment of the highly adhesive blastocyst to an improper site. Indeed, in the human 

endometrium MUC1 is up-regulated during the implantation period 76. It prevents the 

adhesion of the blastocyst, except for the precise spot in which MUC1 is shed by specific 

metalloproteinases, secreted by the blastocyst.76-82. Another member of the mucin family, 

MUC16, was also demonstrated as a critical molecule that has to be dow-regulated in order 
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to enable the adhesion of the trophoblast cells to the epithelium.83. Alternatively, embryo-

endometrium interaction is stabilized by adhesion molecules 84. Adhesion of the trophoblast 

is mediated by integrins that are expressed by both, the endometrium and the blastocyst. 

Integrins bind to their ligands, fibronectin, vitronectin, thrombospondin, and osteopontin 

(OPN) that serve as a bridge between the luminal uterine epithelium and the blastocyst 84. 

Our previous study revealed that biopsy-induced improvement in the implantation rates of 

the IVF patients is associated with the increased endometrial expression of OPN 38. This 

molecule is indeed most highly expressed in the endometrium during its receptive phase 
38, 85, Functional blocking of endometrial OPN and its receptor integrin (ITG) αvβ3 by 

injection of specific antibodies significantly reduced the number of implantation sites in the 

mouse 86, 87. Furthermore, pre-treatment of epithelial cells with ITGβ3 siRNA in vitro, 

prevented the attachment of blastocysts to these cells 88.

There are four ways by which blastocysts binding to the epithelium may be enhanced i) 

stored adhesion molecules are rapidly moved to the cell surface; ii) inflammation-induced 

expression of new adhesion molecules; iii) increased affinity of specific molecules following 

initial cell contact; and iv) reorganization of adhesion molecules on the surface epithelium as 

well as local degradation of anti-adhesive molecules (Fig. 1). Taking all the above-

mentioned information into consideration, we hypothesize that either of these possibilities or 

their combination can represent the response of the endometrial epithelium to DCs recruited 

to the site of implantation (Fig. 2).

It is important to mention that the expression of the above discussed adhesive and non-

adhesive molecules is under the regulation of the pro-inflammatory cytokines secreted by 

endoemtrial cells as well as by the recruited immune cells 81, 89, 90. This, in fact, supports 

the notion that inflammation plays a crucial role in the acquisition of endometrial receptivity. 

We have developed an in vitro model of uterine implantation that allow us to furhter 

elucidate the role of inflammatory factors in the process of inplantation 91

Summary and Relevance

Many fertility disorders have been overcome by a variety of assisted reproductive 

techniques. Nevertheless, embryo implantation remains the rate-limiting step for the success 

of IVF. Attempts to maximize the chance of successful implantation include the transfer of 

more than a single embryo. This strategy results in a high incidence of multiple gestations, 

which is related to the number of embryos transferred. The rate of multiple gestations after 

IVF, in both Europe and the USA, is 26.4 and 35.4 percent, respectively and multiple 

gestation pregnancies are the major cause for the increased risks of potential death and 

premature birth in IVF patients. Furthermore, restricted fetal growth, increased incidence of 

congenital malformations and greater likelihood of maternal complications has been 

reported as a consequence of multiple birth pregnancies. Deciphering the components that 

are associated with improved implantation can be employed for identifying new therapeutic 

targets and developing novel means to extend uterine receptivity. Furthermore, once an 

improved rate of successful implantation is achieved it may serve as a strong incentive for 

the use of single-embryo transfers, avoiding multiple birth pregnancies and their subsequent, 

often severe implications. Moreover, increasing the rate of pregnancy in IVF/ET programs 
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will reduce the number of repeated cycles of treatment, thus lowering the possible risks 

associated with massive exposure to gonadotropins. Equally important, the information 

generated from studies associated with the inflammatory response during implantation will 

potentially define hitherto unavailable markers that will serve to predict low chances for 

successful implantation further recommending that IVF may not always be the immediate 

solution.
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Figure 1. 
Dendritic Cells and Macrophages create an inflammatory gradient, which affects the 

epithelium to form the mucin layer and increase the expression of ligands for adhesion 

molecules by the blastocyst. The inflammatory gradient allows the apposition and adhesion 

of the blastocyst to the epithelium and promotes implantation.
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Figure 2. 
Model of trophoblast-epithelium synapsis. Potential role of OPN as a bridge for CD44 on 

the trophoblast and integrins in the epithelium.
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