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Abstract

Circulating tumor cells (CTCs) have received a great deal of scientific and clinical attention as a 

biomarker for diagnosis and prognosis of many types of cancer. Given their potential significance 

in clinics, a variety of detection methods, utilizing the recent advances in nanotechnology and 

microfluidics, have been introduced in an effort of achieving clinically significant detection of 

CTCs. However, effective detection and isolation of CTCs still remain a tremendous challenge due 

to their extreme rarity and phenotypic heterogeneity. Among many approaches that are currently 

under development, this review paper focuses on a unique, promising approach that takes 

advantages of naturally occurring processes achievable through application of nanotechnology to 

realize significant improvement in sensitivity and specificity of CTC capture. We provide an 

overview of successful outcome of this biomimetic CTC capture system in detection of tumor cells 

from in vitro, in vivo, and clinical pilot studies. We also emphasize the clinical impact of CTCs as 

biomarkers in cancer diagnosis and predictive prognosis, which provides a cost-effective, 

minimally invasive method that potentially replaces or supplements existing methods such as 

imaging technologies and solid tissue biopsy. In addition, their potential prognostic values as 

treatment guidelines and that ultimately help to realize personalized therapy are discussed.
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1. Introduction

Currently available methods for cancer diagnosis and prognosis include medical imaging 

techniques, solid tissue biopsies, and liquid biopsies targeting biomarkers in patients’ blood 

[1–5]. Medical imaging techniques, including magnetic resonance imaging (MRI), 

computed tomography (CT), fludeoxyglucose-positron emission tomography (FDG-PET), 

and ultrasound tomography scans, are currently used as front-line standards to detect 

abnormal tissues as signs of primary cancer as well as recurrence of cancers [6–8]. However, 

relatively low sensitivity, required use of radioactive contrast agents, and high cost have 

hindered their frequent applications to patients for effective monitoring on disease progress 

and efficacy of applied therapeutics [9–11]. Following the discovery of abnormal tissues 

using the imaging techniques, solid tissue biopsies are typically performed to determine the 

pathology and the clinical stage of the disease. However, its invasive nature often results in 

discomfort/pain to patients and the risk of complications, such as bleeding, infection, and, 

rarely, tumor spreading along the track of the needle [12, 13]. In addition, information 

obtained from tissue collected from a single location at a given time provides only limited 

snap-shot of the tumor which does not reflect the heterogeneity and dynamicity of tumors 

[14–16]. Liquid biopsies based on detection of biomarkers in cancer patients’ blood have 

recently emerged as a potentially alternative way to overcome the limitations of the 

aforementioned methods, because they allow clinicians to frequently monitor therapeutic 

responsiveness and cancer recurrences with minimally invasive procedure and low cost [17, 

18]. For instance, screening of prostate-specific antigen (PSA) and carcinoembryonic 

antigen (CEA) has shown clinical success in diagnosis of prostate and colorectal cancers, 

respectively [19–22]. However, these molecular biomarkers have clinical significance only 

for a few specific cancer types, and do not provide other prognostically valuable 

information, such as genetic mutation in cancers [23]. To address the limitations, novel 

biomarkers that provide valuable information for cancer diagnosis/prognosis and that enable 

liquid biopsy, various genetic analysis, and ultimately personalized medicine would 

obviously be desirable to fill the clinically unmet need.

Liquid biopsy via detection of circulating tumor cells (CTCs) from peripheral blood of 

patients is a promising alternative to detect primary and metastatic tumors since cancer 

metastasis is frequently mediated by CTCs that are shed from primary tumor sites [8, 24–
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31]. Furthermore, it has been reported that CTC counts well correlate with clinical stage, 

metastasis, and recurrence of cancer [24, 25, 32]. CTC detection from cancer patients’ blood 

also allows efficient monitoring of the biomarker as patient compliance to frequent blood 

drawing is typically high due to its minimally invasive and cost-effective nature. 

Additionally, detected CTCs have potential to provide genetic information of heterogeneous 

and dynamic tumors, which would be useful to develop a personalized therapy [33, 34]. 

Consequently, the CellSearch™ system was developed to detect CTCs from clinical 

specimens and is the first FDA-approved CTC detection system for metastatic breast 

(2004/2006), colorectal (2007), and prostate cancers (2008) [35]. CellSearch™ utilizes 

immunoaffinity-based detection and separation of CTCs. Briefly, a blood layer containing 

mononuclear cells, so-called buffy coat, is separated from 7.5 mL of peripheral blood of 

patients, followed by incubation with magnetic nanoparticles coated with anti-epithelial-cell-

adhesion-molecule (aEpCAM) [24, 26]. This step results in magnetization of CTCs that 

express EpCAM (not expressed by normal hematologic cells), followed by separation of 

CTCs using a magnet. The captured CTCs are immunostained against epithelial cell-specific 

cytokeratin (CK), leukocyte-specific CD45, and nucleus (DAPI), and CK positive, CD45, 

negative, and DAPI positive cells are identified as CTCs [36]. This method has shown a 

degree of clinical success, i.e., having a threshold number of 5 out of 7.5 mL of blood as an 

indicator of patient survival [37]. However, CellSearch™ suffers from its limited sensitivity, 

often failing to provide actionable information to physicians, resulting in a very low 

prescription rate [38, 39]. Since then, various CTC detection methods have been introduced 

to improve the CTC detection sensitivity and specificity. Among those, capture systems, 

such as size-based trapping system (e.g., ISET) [40, 41], immunoaffinity-based fluidic 

system (e.g., NanoVelcro Chips and CTC-Chip) [30, 42–45], and immunostaining-based 

cytometry system (Epic HD-Chip) [46, 47], have shown promising results. However, an 

improved CTC detection method with clinically significant sensitivity and specificity toward 

CTCs are still in need to achieve early detection and reliable prognosis of cancer progress.

In response to the need of a CTC-detection technology enabling highly sensitive and specific 

capture, we have developed a platform using a biomimetic nanotechnology approach that 

integrates biomimicking cell rolling and multivalent binding engineered via dendrimer-based 

nanotechnology and microfluidics engineering [27, 28, 48]. Our capture system is unique in 

four aspects. First, it utilizes naturally occurring cell rolling that is often found in many of 

initial interactions between flowing cells in the blood and endothelial layers in events such 

as inflammation, stem cell homing, and CTC transmigration [49–51]. Cell rolling mediated 

via human recombinant E-selectin pulls the fast-flowing cells down to the capture surface, 

thereby increasing the chance of the cells to interact with the surface. Second, 

immobilization of capture agents that are linked to dendrimers significantly elevates capture 

efficiency and specificity through dendrimer-mediated multivalent binding effect. Third, the 

surface platform that combines cell rolling and multivalent binding also allows to employ 

virtually any antibodies that are specific to CTCs. Finally, the three unique aspects are 

engineered to be integrated into a single capture platform through applications of nano-scale 

dendrimers and fluidics engineering. The combination of all four aspects has been proven 

effective in capturing CTCs, as reported in our in vitro data and preliminary clinical data 

[27, 28, 48, 52]. This review paper highlights the concept and development of our 
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biomimetic platform for improved CTC detection sensitivity and selectivity, covering from 

its CTC capture mechanisms to its application in monitoring therapeutic effects and clinical 

outcomes.

2. Biomimetic nanotechnology to improve CTC capture

The adhesion of CTCs to endothelial cells is precisely regulated by the micromechanical and 

kinetic properties of molecular binding interactions with cell adhesion molecules, 

extracellular matrix components, and chemokines under the local circulatory hemodynamics 

in specialized microvasculature niches [53–55]. The physiological interactions between 

CTCs and an endothelium in the bloodstream, as illustrated in Figure 1a, could be classified 

into two stages: initial surface binding with fast association/dissociation kinetics, resulting in 

cell rolling; and stationary, tight adhesion steps [54, 56]. To detect and isolate target CTCs at 

a great sensitivity and specificity, we tried to mimic the concurrent rolling and firm adhesion 

in the physiological interactions on our biofunctionalized surface using E-selectin and 

aEpCAM – one of the most frequently used CTC capture agents – for a proof-of-concept 

study. Moreover, to substantially increase the firm adhesion kinetics, poly(amidoamine) 

(PAMAM) dendrimers were also used to immobilized aEpCAM to mediate strong 

multivalent binding effect [27, 57]. Using this configuration, we assessed the following three 

hypotheses: i) E-selectin-mediated cell rolling can efficiently recruit flowing cells from bulk 

flow to the capture surface with distinct biofunctions (selectin to induce rolling and 

aEpCAM to statically capture target cells); ii) the binding strength and stability between 

aEpCAM and CTCs can be substantially enhanced via dendrimer-mediated multivalent 

binding; and iii) the sequential binding events of cell rolling and multivalent binding can be 

micropatterned on a single platform surface to enhance overall capture efficiency of the 

surface (Figure 1b).

2.1. Cell rolling for efficient cell recruitment from bulk flow

During the process of CTC extravasation, CTCs often bind to vascular endothelium in a 

manner analogous to leukocyte homing to sites of inflammation and homing of 

hematopoietic progenitor cells, which is initiated via a transient adhesion of flowing cells to 

the endothelium, known as cell rolling [58]. A family of selectins on the vascular endothelial 

cell surface, E-selectin (CD62E), L-selectin (CD62L), and P-selectin (CD62P), has been 

known to be mainly involved in the molecular mechanism mediating shear-resistant adhesive 

interactions with membrane ligands on the carcinoma cell surface [59–62]. The rapid 

turnover of selectin–ligand bonds, due to their fast on- and off-rates along with their 

remarkably high tensile strengths, enables them to mediate cell tethering and rolling in shear 

flow [28]. Among them, E-selectin, an inducible endothelial cell-surface glycoprotein [63], 

was chosen to induce CTC rolling on our biomimetic platform, since it is being involved in 

the adhesion and homing of various types of cancer cells such as prostate [58], breast [51, 

64, 65], small cell lung cancer cells [66], and colon [61, 67, 68] carcinoma cells.

Recombinant human E-selectin Fc chimera proteins, a hybrid protein of human IgG1 

constant domains (Fc) and E-selectin binding domains through genetic engineering of a 

fusion gene, were immobilized on an epoxy-functionalized glass surface. Under flow 
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conditions, human breast cancer and leukemia cell lines, MCF-7 as a CTC model and HL-60 

as a leukocyte model, respectively, were efficiently recruited from bulk flow to the capture 

surface, and rolled in a shear stress-dependent way [48, 69]. However, given that a large 

class of hematological cells, including leukocytes, platelets, neutrophils, mesenchymal and 

hematopoietic stem cells, and metastatic cancer cells all exhibit rolling on E-selectin, CTC 

detection that is solely based on cell rolling has limitations to achieve a capture device with 

sufficient specificity to CTCs.

To provide sufficient specificity to the surface, the most commonly used CTC-specific 

antibody, aEpCAM, was co-immobilized to differentiate target tumor cells out of the rolling 

cell population. The surface immobilization of E-selectin and aEpCAM was confirmed by 

X-ray photoelectron scattering (XPS) and fluorescence microscopy using fluorophore-

conjugated antibodies. XPS analysis showed an increase in carbon and nitrogen 

compositions and decreased silicon content from the functionalized glass surface upon the 

surface functionalization. Fluorescence-labeled proteins, such as fluorescein-anti-E-selectin 

(green fluorescence) and APC-anti-EpCAM (red fluorescence), were also used to confirm 

the surface functionalization with E-selectin using a fluorescence microscope, as previously 

shown in our earlier report [27]. The immobilized proteins maintained their characteristic 

biological adhesive functions, i.e., cell rolling by E-selectin and tumor cell-specific 

stationary binding by aEpCAM, as tested using in vitro cell lines under flow conditions 

(Figure 2 a). Note that the sole use of E-selectin would not provide specific capture of tumor 

cells as many hematological cells (e.g., leukocytes, neutrophils, and other inflammatory 

cells), in addition to various stem cells and CTCs, can all roll on the surface. The addition of 

E-selectin can induce the rolling of various cell types to be readily accessible by aEpCAM 

that recognizes/captures tumor cells, resulting in substantially enhanced capture efficiency of 

tumor cells by more than 3-fold enhancement, compared to the surface with aEpCAM alone 

(Figure 2 b). The E-selectin-induced tumor cell rolling most likely maximizes the chance of 

the tumor cells to interact with aEpCAM on the surface, resulting in effective stationary 

binding and improved detection sensitivity of CTCs. These results proved our first 
hypothesis, i.e., efficient recruiting of flowing cells to the capture surface via cell rolling, 

thereby enhancing capture efficiency of the surface.

2.1.1. Connection to the literature: the attenuated tumor growth and 
metastasis in selectin-deficient animals—Our concept to improve the CTC detection 

sensitivity through E-selectin-mediated cell rolling is highly supported by other literature 

regarding how E-selectin involves efficient cell recruitment in cancer metastasis. For 

instance, the metastasis of human colon cancers to lung was significantly reduced in E-

selectin-deficient, severe combined immunodeficient (SCID) mice [61], and E-selectin 

expressing on bone marrow endothelial cells (BMECs) leads the predilection of prostate 

tumor metastasis to bone, compared to other tissue microvessels [58, 70, 71]. In addition, 

our approach to monitor the interaction between cancer cells and recombinant E-selectin in 

shear flow resulted in elucidating some of the molecular and biophysical mechanisms of 

CTC adhesion to endothelial cells via E-selectin. For example, MCF-7 cells express none of 

previously known ligands to E-selectin, such as E-selectin ligand-1 (ESL-1) [72], P-selectin 

glycoprotein ligand-1 (PSGL-1) [73, 74], sialyl Lewis X (sLex), sialyl Lewisa (sLea) [75, 
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76], CD43[77], hematopoietic cell E- and L-selectin ligand (HCELL; a specialized 

glycoform of CD44) [70], β2 integrins [78], and CD44v4[79]. By a series molecular and 

cellular experiments, we were able to identify CD24 overexpressed on MCF-7 cells as an E-

selectin ligand for the first time to our knowledge [27]. Given the oncological significance of 

E-selectin, better understanding of E-selectin ligands on the cancer cells would help to 

potentially find a way to prohibit the spreading of primary cancers in patients and provide 

guidelines for developing anti-metastatic therapies by disrupting the E-selectin receptor–

ligand bonds, which is well reviewed in a previous publication [70].

2.2 Dendrimer-mediated multivalent binding for strong, specific CTC capture

As mentioned above, the stationary binding between aEpCAM and tumor cells was 

observed, along with the cell rolling on E-selectin under flow. The aEpCAM-based tumor 

cell enrichment was critical to detection specificity, especially for extremely rare CTCs 

among numerous hematological cells. However, it is well known that the expression level of 

EpCAM on CTCs is not always maintained high, unlike some of the in vitro tumor cells, due 

to intrinsic heterogeneity of tumors and epithelial-mesenchymal-transition (EMT). By 

introducing multivalent binding effect through increasing localized density of surface-

immobilized aEpCAM, we attempted to increase the binding strength and detection 

specificity of the rare, heterogeneous CTCs on our capture surfaces.

2.2.1. Multivalent binding effect—Multivalent binding is the simultaneous binding of 

multiple ligands to multiple receptors in biological systems, which is observed in many 

physiological and pathological processes, including the attachment of viral, parasitic, 

mycoplasmal, and bacterial pathogens to the surface of a host cell during the infection 

process [80–82]. These multiple interactions impart the substantial increase of collective 

binding strength (avidity) for the interaction of a relatively weakly bound ligand and its 

receptor without increasing the affinity of single, monovalent ligand-receptor interactions 

[81]. The following cooperative, localized bindings at adjacent sites significantly influence 

the equilibrium between association and dissociation of a ligand from the initial site on the 

receptor at the first binding [83]. The binding strength and stability of multivalent ligands to 

surface-bound receptors can be affected by the composition and distribution of ligands on 

the surface of multivalent binding mediators [84]. Thus, the physiochemical and biological 

properties of the mediators to induce the multivalent bindings are critical to achieve 

significantly strong binding events, which will ultimately increase the capture efficiency.

2.2.2. Uniqueness of PAMAM dendrimers—Given their high surface-to-volume ratios, 

various types of nanoparticles, such as inorganic nanoparticles, linear polymers, branched 

polymers, dendritic polymers, and supramolecular assemblies, could surface immobilize 

aEpCAM at high local density, and thus could serve as mediators for multivalent binding, as 

summarized in our previous review paper [85]. Among these nanoparticles, 

poly(amidoamine) (PAMAM) dendrimers have been reported as an excellent mediator for 

multivalent binding effect because preorganization/orientation of ligands, polymer backbone 

topology, and easy deformability of the macromolecules all contribute to strong multivalent 

binding to cell surfaces [86–88]. Nano-scale PAMAM dendrimers are hyperbranched, 

chemically well-defined, flexible, spherical macromolecules with a high number of 
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peripheral functional groups, thereby allowing multifunctionalization through a variety of 

conjugation chemistries. There unique aspects of the dendrimers enable precise control over 

cellular interactions and molecular recognitions through multivalent binding [85, 89]. Such 

strong binding has been more commonly used to improve targeting efficiency of dendrimer-

based drug delivery systems [57, 90, 91]. Similarly, one could imagine that the advantages of 

enhanced binding avidity through dendrimers could significantly improve the detection 

sensitivity and specificity particularly in capturing human disease-related rare cells in blood 

(e.g., <0.1% subpopulation), such as CTCs, which our group attempted to achieve for the 

first time to our knowledge.

2.2.3. Enhanced binding strength—To create a highly sensitive surface via the 

multivalent binding effect, we employed generation 7 (G7) PAMAM dendrimers due to their 

adequate size (8 nm in diameter) and surface functional groups (512 theoretically) to 

accommodate multiple aEpCAM (around 5.5 nm in diameter of Fc region) per dendrimer. 

We first tested the multivalent interactions between aEpCAM-G7 PAMAM dendrimer 

conjugates and recombinant EpCAM-immobilized gold surfaces via a direct, quantitative 

analysis using surface plasmon resonance (SPR). Remarkably, compared to free aEpCAMs, 

the binding strength of the aEpCAMs conjugated on dendrimers with recombinant EpCAM 

were enhanced by up to ~106-fold (Figure 3a).

Although the aEpCAM-G7 PAMAM dendrimer conjugates dramatically enhanced binding 

kinetics through multivalent binding, we could not directly immobilize the conjugates on the 

epoxy-functionalized glass slide due to the flexibility and peripheral multifunctional groups 

of PAMAM dendrimers and 3-dimentional orientation of aEpCAM. To induce the 

multivalent binding on our capture surface, a layer-by-layer approach was used to build the 

dendrimer-functionalized surface through a sequential immobilization of a linear polymer, 

NH2-PEG-COOH, and partially carboxylated G7 PAMAM dendrimers onto epoxy-

functionalized glass slides [27, 28, 92]. The spacer PEG polymers and reduced amine groups 

of PAMAM dendrimers likely allowed to prevent spreading of PAMAM dendrimers on the 

epoxy-functionalized surface and keep dendrimers spherical after immobilized. The 

aEpCAM molecules were finally added on top of the dendrimer-functionalized surfaces, 

likely maximizing the surface availability of aEpCAM at a high local density, owing to the 

localized, multiple functional groups provided by the dendrimers.

The dendrimer-based configuration of the capture surfaces exhibited dramatically enhanced 

cell adhesion and binding stability of three breast cancer cell lines (MDA-MB-361, MCF-7, 

and MDA-MB-231) we tested, compared to the control surfaces with the linear PEG-

aEpCAM conjugates (Figure 3b). Furthermore, a significantly higher number of bound 

cancer cells, particularly MDA-MB-231 cells which have lower EpCAM expression than the 

other two cell lines, remained attached on the dendrimer-coated surface after strong agitation 

(up to 15.2 fold), further confirming the multivalent cell capture.[27] The non-specific 

binding between HL-60 cells and a capture platform was relatively negligible, indicating that 

selectivity and specificity of the capture surfaces were also improved.[27] These results 

validated our 2nd hypothesis, i.e., dendrimer-mediated multivalent binding effect would 

significantly enhance the binding kinetics between EpCAM on tumor cells and aEpCAM 

used as a capture agent.
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2.2.4. Connections to the literature: Multivalent binding effect to enhance the 
therapeutic and diagnostic efficiency—The enhanced targeting efficiency and binding 

strength/stability through dendrimer-mediated multivalent binding has been used to design a 

wide range of potential therapeutics in Pharmacology and targeted drug delivery systems 

[86, 93–95]. The biological multivalent inhibitors are responsible for modulation of potency 

and affinity and have yielded quantitative measurements of binding avidities with 1–9 orders 

of enhancement, compared to monovalent inhibitors [84, 96]. For instance in targeted drug 

delivery systems, G5 PAMAM dendrimers were multifunctionalized with therapeutic 

(methotrexate), targeting (folate), and imaging (radiolabel or fluorophore) agents and 

evaluated in a mouse tumor xenograft model using folate receptor (FR)-overexpressing KB 

cells [90]. The targeting efficiency of folate on the multifunctional dendrimer conjugates 

primarily to the tumor and liver was trackable using the attached imaging agents over the 

course of 4 days, resulting in the enhancement of therapeutic efficacy of methotrexate as 

measured by a reduction in tumor volume and decreased off-target toxicity. Another 

example is the 5-flurouracil (5-FU) delivery system using folate-targeted PEGylated 

PAMAM dendrimers. Compared to non-PEGylated dendrimers 5-FU (tmax=1–2.5 hrs), the 

5-FU-encapsulated PEGylated dendrimers showed prolonged retention of 5-FU (tmax=2.5–5 

hrs) and its anti-tumor efficacy, which was significantly safer and more effective at 

decreasing tumor volume [97]. Multivalent ligand-functionalized dendrimers have been 

applied successfully in vivo for anticancer drug delivery on numerous occasions and have 

been reviewed elsewhere [89, 98].

Multivalent binding has not only been utilized to enhance targeting efficacy as mentioned 

above, rather it has also been leveraged to develop highly sensitive devices to detect target 

molecules and sustain the trapped target molecules strongly and securely for diagnostic 

purposes [99]. These dendrimer-based, multivalent binding materials can be injected for 

analysis in vivo for direct detection, mixed with specimens in vitro, or immobilized on the 

surface of solid supports for in vitro analysis. As a contrast agents for in vivo diagnosis, 

dendrimers conjugated with targeting agents (e.g. antibodies, aptamers, nucleotides, 

proteins, and small molecules) were used to encapsulate or conjugate imaging agents (e.g. 

MRI contrast agents or fluorescent dyes) [100–102]. A dendrimer-immobilized substrate 

was used for the detection of DNA [103], toxins [104], antigens [105]. For instance, the 

dendrimer functionalization on substrates was able to enhance the capture of oligomers by 2-

fold, as observed in nucleic acid hybridization experiments using fluorophore-labeled 

complementary oligonucleotide targets, compared to the untreated intact substrate [106].

2.3. A combination of the two biomimetic approaches

As described above, it is obvious that the two biomimetic approaches, cell rolling and 

multivalent binding, individually enhance the surface capture of tumor cells in vitro. We then 

reached a next question: what if we integrate the both approaches into a single substrate to 
more faithfully mimic physiological complexity to better capture CTCs? To answer this 

question, E-selectin-mediated cell rolling and dendrimer-mediated multivalent binding were 

engineered onto a single multifunctional platform via micropatterning (Figure 4a). The E-

selectin-coated patterns would be effective in pulling CTCs along with leukocytes out of the 

bulk flow and induce the cell rolling behaviors on the surface. This step would substantially 
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increase the chance of the rolling cells to be interacting with the next patterns functionalized 

with the CTC-specific antibody-dendrimer conjugates, resulting in a strong binding 

formation between the CTCs and the surface. Our hypothesis (hypothesis 3) was proven 

correct: unlike the surface marker-dependent stationary binding of tumor cells, leukocytes 

and HL-60 cells passed through the channel without stationary capture on the antibody 

pattern after rolling on the E-selectin patterns. The geometry of the patterns of E-selectin 

and aEpCAM was optimized in terms of angle of the E-selectin patterns and length between 

the E-selectin and capture antibody patterns, as previously reported [28, 107]. The 

engineered multifunctional surface exhibited a significant enhancement in capture efficiency 

by up to 7-fold, compared to the surfaces with CTC-specific antibodies only [27, 28, 48, 92].

One can ask questions about the cell mixture included on the rolling population, which may 

decrease the purity of CTCs out of the captured cells. Those rolling cells (HL-60 for in vitro 

studies and leukocytes/inflammatory cells in our clinical studies) on E-selectin could be 

easily removed using a simple washing step with PBS buffer-supplemented with Ca2+ 

chelating agent ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) 

because the interaction between E-selectin and cells is Ca2+-dependent. Importantly, the 

washing step did not induce any noticeable detachment of CTCs captured on the dendrimer-

coated regions due to the ultralow dissociation constants achieved through the multivalent 

binding effect. This series of CTC isolation steps resulted in a highly sensitive, specific 

capture of tumor cells and CTCs from cell mixtures or blood samples.

We also wanted to introduce multiple antibodies into a single capture platform to effectively 

capture CTCs with high phenotypic heterogeneity [108] and biological plasticity frequently 

found during the metastatic process [109, 110]. In addition to aEpCAM, we successfully 

immobilized additional cancer cell-specific markers, such as human epidermal growth factor 

receptor-2 (HER-2) [111] and prostate specific antigen (PSA) [112]. To mimic the 

heterogeneity of CTC samples, three tumor cell lines, MDA-PCa-2b, MCF-7, and MDA-

MB-361 cells were used to test the multifunctional surfaces. Depending on the surface 

expression of the ligands on each of the cell lines, differential detection of the cells was 

achieved, as appeared in patterns that were pre-determined with different capture antibodies 

[28]. Following the in vitro experiments, we used tumor cell-spiked human blood samples to 

demonstrate that our multifunctional surface is functional and effective capture tumor cells 

with the background of human blood cells. As expected, a significantly enhanced capture of 

tumor cells in human blood was achieved, up to 82% capture efficiency (~10-fold 

enhancement than a surface with the antibodies alone) and up to 90% purity (Figure 4b). 

Taken together, these results indicate that our approach taking advantage of cell rolling and 

multivalent binding significantly enhance sensitivity and specificity of CTC capture and is 

expandable to multiple antibodies, accommodating virtually any antibodies to be used as 

capture agents. Although our extensive data assure that the efficient cell capture by 

combination of cell rolling, multivalent binding, and multiple antibodies, the effect of 

multiscale patterning with more precise geometries, such as lengths and angles of the protein 

patterns, on CTC capture could potentially further improve the device functionality, which is 

the subject of further studies.
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3. Clinical significance of CTC capture and its relation to clinical outcomes

3.1. Prognostic/therapeutic applications

Our biomimetic approach clearly enhances the detection sensitivity, selectivity, and purity of 

CTC capture, compared to the control surface using a conventional approach solely based on 

antibodies. The clinical applications of this device are to monitor the change of CTCs as a 

biomarker for therapeutic effect monitoring (section 3.1.1) and to evaluate novel therapeutic 

agents under development (section 3.1.2, Figure 5a). For clinical studies, three antibodies, 

aEpCAM, HER-2, and antibodies against epidermal growth factor receptor (aEGFR), were 

chosen as a cocktail to consistently generate the high capture efficiency as they are 

commonly expressed by many of cancer cells [113].

3.1.1. Monitoring of Therapeutic effects—On the biomimetic device functionalized 

with a cocktail of aEpCAM, aHER-2, and aEGFR, the improved sensitivity and specificity 

of CTC capture enable to investigate the clinical significance of CTCs and their kinetic 

profiles in cancer patients before, during, and after treatments [114]. We have conducted a 

clinical pilot study by recruiting cancer patients with diverse cohorts who undergo 

radiotherapy (RT) treatment [114]. For CTC kinetic profiling, 24 patients diagnosed with 

rectal, cervical, prostate, or head and neck primary carcinoma were enrolled in our pilot 

study. The median age of the enrolled patients was 58 years old (range, 42–84), including 7 

(29%) female and 17 (71%) male patients. Their peripheral blood was collected prior to the 

radiotherapy (RT) and at the each of radiotherapy (RT), including during the first week of 

RT, mid-way through RT (Mid-RT), and during the last week of RT (End-RT), and after 

completion of RT. This is in sharp contrast to previous reports using CellSearch™ where 

CTCs were not detected from ~1/3 of the patients with the comparable cohort [115–117]. 

The combined use of multivalent binding via PAMAM dendrimers and cell rolling 

dramatically improved CTC capture sensitivity and specificity (captured CTCs (CK+/

CD45−/DAPI+) among all captured cells), respectively. The CTC kinetic profiles well 

correlated to the clinical outcomes. The number of CTCs gradually decreased throughout RT 

in 18 patients with complete clinical and/or radiographic response. In contrast, pathologic 

residual disease was found from 3 patients with elevated CTC numbers. These results 

indicate that the CTC counts using our biomimetic platform allow reliable monitoring on 

CTC changes during and after treatment, opening a potential avenue of using CTCs as a 

biomarker to monitor therapeutic efficacy.

3.1.2. Efficacy test for experimental drugs in vivo—One of the clear advantages of 

our approach is that it provides a modular, platform technology. The dendrimer-based CTC 

detection platform was adapted for lung cancer CTCs by immobilizing aEGFR, and used to 

measure murine CTCs from peripheral blood of cyclin-E overexpressing (CEO) transgenic 

mice. A lack of an effective detection method for lung CTCs presents a substantial challenge 

to elucidate the value of CTCs as a diagnostic or prognostic indicator in lung cancer, 

particularly in non-small cell lung cancer (NSCLC). Given that 85% of the tumor cells from 

NSCLC patients overexpress epidermal growth factor receptor (EGFR) [118], aEGFR was 

chosen as a capture agent for this study [52]. Following in vitro confirmation using the 

murine lung cancer cell lines (a wild-type cyclin E-driven lung cancer cell line (ED-1) and 
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invasive ED1-SC harvested from tumor of FVB/N mice after subcutaneous injection of 

ED-1 cells), CEO transgenic mice were employed as an in vivo lung tumor model to assess 

specificity and sensitivity of the capture surface. Note that aberrant cyclin E expression is a 

negative prognostic indicator in the NSCLC patients, and the CEO mice have a high 

incidence and rapid onset of lung carcinogenesis [119, 120]. Our surfaces functionalized 

with the EGFR-dendrimer conjugates demonstrated that the numbers of CTCs in blood from 

the CEO mice were significantly higher than those from the healthy controls (on average 

75.3 ± 14.9 vs. 4.4 ± 1.2 CTCs/100 µL of blood, p<0.005), indicating the high level of 

sensitivity of the modified capture system. We then investigated the function of the surfaces 

as a therapeutic effect monitoring tool to evaluate a new engineered antagonist (locked 

nucleic acid) against microRNA-31 (anti-miR-31). A significant decrease in the CTC 

numbers from the CEO mice upon a treatment using a novel anti-miR-31 locked nucleic acid 

(LNA) was observed, compared to a vehicle treatment and a control-LNA treatment 

(p<0.05) [52]. Our detection system also demonstrated its efficiency in monitoring 

therapeutic effect of a novel CDK2/9 inhibitor in lung cancer, as shown in our recent 

publication [121]. All in all, our results using the in vivo lung cancer models confirm that 

our new CTC detection technology has great potential to be used as a diagnostic and 

prognostic tool for lung cancer and offers a promising way to monitor cancer progress and 

responsiveness to therapeutic interventions.

3.2. Post-capture applications for research

Additional features of this device include the ability to collect CTCs from whole blood 

under continuous flow without labeling or damaging CTCs (section 3.2.1, Figure 5c). 

Therefore, the collected CTCs could be extracted and potentially be culture expanded to be 

the subject for further analysis, such as genetic profiling and tests for patient-specific 

responses to various therapeutic options (section 3.2.2, Figure 5d).

3.2.1. Surface marker-dependent cell sorting—As described above, one of the 

unique characteristic of our engineered platform is that the capture mechanism is solely 

based on the surface expression of adhesive proteins from CTCs. The binding strength 

between the CTC proteins and the antibodies immobilized on our surfaces could be 

significantly augmented via dendrimers and cell rolling, thus maximizing the overall capture 

efficiency [28]. This advantage would enable us to exploit virtually any antibodies to achieve 

differential detection of CTCs sorted based on their surface protein profiles. As a proof-of-

concept study, various cell lines, e.g., prostate cancer (MDA-PCa-2b) and breast cancer 

(MDA-MB-361 and MCF-7) cells, were tested in mixture as well as after being spiked into 

human blood using a multipatterned surface with different markers. For example, MDA-

PCa-2b cells, the only PSA-positive cell line among the three CTC models, bound primarily 

on the aPSA-coated region at 91–100% purity from the cell mixtures with PSA-negative 

cells. MDA-MB-231 were bound to the patterns coated with aHER-2 and aEpCAM, whereas 

MCF-7 cells were primarily adhered to the aEpCAM-coated region [28]. It is noteworthy 

that the two breast cancer cell lines, MCF-7 and MDA-MB-231, exhibited different binding 

behaviors on the aHER-2 pattern, which is not surprising as MCF-7 cells do not express a 

high level of HER-2 whereas MDA-MB-231 cells do [122, 123]. Interestingly, MCF-7 cells 

showed noticeably increased binding to aHER-2 after addition of E-selectin, which was not 
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observed on the same surface without E-selectin. This is an indication that E-selectin-based 

cell rolling likely improves the capture efficiency of antibodies even though the cells express 

a low level of the corresponding surface receptors. Our results indicate that our CTC capture 

platform may achieve the surface marker-dependent tumor cell differentiation from cell 

mixtures and potentially from patients’ blood without cell labeling (Figure 5c) [28, 85, 92].

3.2.2. In vitro culture of CTCs—Post-capture analysis and culture expansion of the 

captured CTCs from blood specimens would be helpful to find CTC biomarkers and 

establish in vitro cell models for CTCs. Upon sensitive CTC capture, molecular analysis of 

the extracted CTCs would be particularly important, as it would provide genetic information 

to understand the invasive cancer in detail, which will ultimately help to develop an effective 

treatment, and even cure, for the debilitating metastatic cancers. To understand the molecular 

characteristics of CTCs, in vitro cell lines derived from clinical CTCs could be established 

upon the isolation of live CTCs from metastatic cancer patients [124, 125]. After 

mycobacteria-free confirmation and genome mapping (characterization), the captured CTCs 

could be expanded and established as cell lines for subsequent in vitro studies [124, 126]. 

Other groups have been successful in culture expanding CTCs. For example, CTCs isolated 

from breast cancer patients were expanded to ex vivo culture. The cultured CTCs were 

tested drug susceptibility in vitro and in mouse xenografts by directly inoculating the 

cultured CTCs to show potential therapeutic targets [34]. In our previous publication, the 

CTCs captured on our multifunctional platforms were still live as being stained with live cell 

tracking markers, which meant negligible damage to the cells from the capture procedure 

[28]. Moreover, CTCs were captured on our capture surfaces at high purity, which would 

allow more selective enrichment of CTC-containing cell population. The DsRED-transfected 

MDA-MB-231 cells recovered from the blood of xenografted mice using our biomimetic 

platform were alive and successfully cultured in tissue culture well plates in our pilot study 

(Figure 5d).

Subsequent cell culture and single cell analysis post efficient CTC capture would enable us 

to extract valuable clinical information from individual patients, ultimately allowing 

personalized medicine. The critical issue is how to isolate CTCs from the surfaces without 

damaging the cells. Although a simple treatment with trypsin exhibited partial success in our 

case, novel methods are required to efficiently collect the captured CTCs in their intact form. 

The methods of high potential that could be applicable to our devices include the approaches 

using stimuli-responsive polymers that cleave upon exposure to external stimuli, such as 

light, temperature, pH, and physical stress [127–129]. Additionally, enzyme-degradable 

materials, such as alginate hydrogel, DNA, or aptamer, could also be used to engineer the 

CTC capture surface to release the cells upon exposure to specific enzymes, such as alginate 

lyase, DNase, or endonuclease, respectively [130, 131]. Our next generation devices that are 

under investigation will incorporate such surface release mechanisms to effectively collect 

the captured CTCs in their intact form for a series of post-capture analyses.

4. Summary and Future Perspectives

Considering all the benefits that CTC-based liquid biopsy can potentially provide, a highly 

sensitive and selective device for CTC capture would obviously beneficial. Our recent 
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studies in an effort of integrating biomimicry and nanotechnology on a chip have resulted in 

a highly reliable CTC-capture platform with excellent yield and selectivity. The series of 

investigations using in vitro cancer cell suspension, cancer cell-spiked blood samples, and 

cancer patient specimens, as highlighted herein, clearly demonstrate the uniqueness and 

advantages of our CTC capture technology exploiting multivalent binding and cell rolling. 

Although more extensive clinical studies are still required, highly sensitive and specific CTC 

detection achieved using our detection method has shown a great potential to provide 

valuable clinical insight into the progress of metastatic cancers in individual patients, to 

monitor responses of patients during currently available cancer therapy as well as novel 

experimental treatments. Besides accurate CTC enumeration, our capture system can also 

potentially provide additional features, such as label-free cell differentiation and isolation of 

live CTCs, which would lead to molecular profiling of the captured CTCs and ultimately to 

personalized medicine against debilitating metastatic cancers.

To successfully translate our CTC detection technology to a clinical setting, additional 

investigations are necessary. First, clinical studies need to be expanded for various types of 

cancers and cancer therapies to further validate our system. The expanded clinical studies 

will allow us to confirm our device in terms of the accuracy of kinetic profiling of CTC 

numbers and its correlation with clinical outcomes. The CTC identification step will also 

have to be validated for each of the cohorts. The current DAPI+/CD45−/CK+ standard has 

been reported to often provide false values, as there are some of non-specific 

immunostaining of cells [132, 133]. Second, although our surface functionalization is based 

on simple chemical reactions, the consistency in quality control and device fabrication 

should be warranted to achieve a high level of controllability, scalability, and reproducibility. 

Third, tailoring the design of the capture system to different cancer types would be required. 

It is well known that the phenotypes of CTCs significantly vary depending on their origins 

and status of their phenotypic changes upon transition such as EMT [134, 135]. A right 

choice of mixtures of capture agents would be required to make our capture system effective 

in capturing highly heterogeneous CTCs. Through these efforts for clinical translation, we 

expect our CTC device to be implemented for the routine use in point-of-care testing and 

ultimately play a key role in achieving personalized treatments for cancer patients. This 

biomimetic nanotechnology platform could be broadly applicable to a variety of liquid 

biopsies by efficiently capturing and isolating other biomarkers, such as other types of rare 

cells, exosomes, proteins, and DNA/RNA not only from peripheral blood but also from other 

human specimens.
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Figure 1. 
Schematic diagrams of the biological interaction between CTCs and endothelium (a) and our 

biomimetic approach for CTC capturing on a micropatterned surface using iterative cell 

rolling and multivalent stationary adhesion (b). The inset diagram represents aEpCAM-

immobilized dendrimers, flexible polymer nanolinkers, by which the multivalent binding 

effect can be achieved through locally concentrated aEpCAM.
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Figure 2. 
The improved capture efficiencies of the surfaces immobilized with the mixtures of anti-

EpCAM and E-selectin (a) and a representative image of HL-60 and DsRED-transfected 

MCF-7 cells (red cells) on patterned E-selectin/anti-EpCAM coated surfaces (b). (a) Based 

on the numbers of DsRED-MCF-7 cells injected and recovered using a flow chamber, the 

capture efficiency was calculated at a shear stress of 0.16 dyn/cm2. As increasing E-selectin 

concentration, the capture efficiency of the surfaces was further enhanced by up to 3 folds, 

which was statistically higher than the surface functionalized with aEpCAM alone (one-

factor ANOVA, Error bars: standard error, * p < 0.05). (b) From the mixture with HL-60 (a 

leukocyte model: white), DsRED-transfected MCF-7 cells (a CTC model: red) on the anti-

EpCAM coated region of the patterned surface with E-selectin and anti-EpCAM were 

efficiently isolated. (Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Ref. 

27)
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Figure 3. 
Dendrimer-mediated multivalent binding for enhanced detection of CTCs. (a) The chemical 

structures of generation 2 (G2) of PAMAM dendrimers. Note that the chemical structure of 

G2 PAMAM dendrimer is given for structural simplicity instead of G7 used for our 

biomimetic platforms. (b–c) Experimental setup for comparison of the bound cell numbers 

on dendrimer (b)- and linear polymer, polyethylene glycol (PEG, c)-immobilized surfaces. 

Multivalent binding effect induced via multiple ligands-functionalized dendrimers can be 

used to enhance the detection sensitivity. (d–e) Compared to the surface with aEpCAM-

conjugated linear polymers, the dendritic nanoparticle-immobilized platform significantly 

increased the binding stability with tumor cells (d) and improved detection specificity of 

tumor cells from a mixture with 107 HL-60 cells (e, Error bars: standard error (n=3), * p < 

0.05). (Copyright WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Ref. 27)
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Figure 4. 
Micropatterning of E-selectin and aEpCAM-dendrimers for combining the effects of rolling 

and multivalent binding under flow. (a) Schematic illustration of the surface marker-

dependent cell capture using aPSA, aHER-2, and aEpCAM. (b) The capture patterns of the 

three cell lines labeled with three different fluorescent colors: green for MDA-PCa-2b, blue 

for MDA-MB-361, and red for MCF-7. The lower capture efficiency of MCF-7 cells for 

aHER-2 due to low HER-2 expression of MCF-7 cells were presented as a dotted, faded 

circle in the schematic illustration (a). (c) A combination of dendrimers and E-selectin (a 

cell rolling inducing agent), along with multiple antibodies achieved highly sensitive 
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differential detection of tumor cells (up to 82%, Error bars: standard error (n=4)). (Copyright 

American Chemical Society, Ref. 28)
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Figure 5. 
Various applications of our biomimetic platform with high capture sensitivity and specificity. 

(a) CTC capture in cancer patients undergoing RT. From 24 cancer patients in a pilot study, 

CTCs in their peripheral blood were able to detecte with high capture sensitivity and 

specificity on the biomimetic platform. The CTC kinetic profiles before and after RT clearly 

showed its potential for therapeutic effect monitoring. (Ref. 113) (b) CTC numbers detected 

from three groups including the transgenic mice treated with an experimental drug, anti-

miR-31 LNA (a31-LNA). The number of CTCs in transgenic mice with macroscopic lung 

tumors after a31-LNA treatment significantly decreased compared to the other two control 

groups (n=5, mean ± S.E., *p<0.05). Representative histology images of lung tissues of the 

mice were taken at 20× magnification: i) healthy lung and ii) lung tumors formed in the 

vehicle-treated control; iii) lung tumors formed in the control LNA (C-LNA) group; and iv) 

shrunk lung tumor and close-to-the-normal lung tissue morphology found in the a31-LNA 

group. (Copyright American Chemical Society, Ref. 52) (c) A schematic illustration of the 

surface marker-dependent bindings of cancer cell models for cell sorting. The enhanced 

capture efficiency on the multifunctional surfaces can be developed as a diagnostic platform 

for rare CTC, which could provide the information about cell surface markers for 

personalized cancer therapy and be used for cell sorting approaches in vitro. (d) A schematic 

diagram of the procedure how to establish in vitro CTC-originated cancer cell line from 

cancer patients’ blood. The image in the inset was obtained from the ex vivo culture of 

MDA-MB-231 cells from xenograft mice, after recovering using the biomimetic platform.
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