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1  | INTRODUC TION

Animal models have proved critical in developing concepts of immu‐
nity to infection. Non‐human primates (NHP) are a highly human‐
relevant disease model for infectious agents due to high genetic 
conservation between humans and NHP.1-3 However, significant 
cost and ethical issues often necessitate the use of smaller animal 
models for both basic and translational research. Mice (Mus muscu-
lus) are a favoured small animal model due to widespread availability, 
incisive transgenic models, comprehensive genomic information4 
and readily available reagents. However, for many viruses, alterna‐
tive animal models better recapitulate human physiology and dis‐
ease. Ferrets (Mustela putorius furo) have been employed to study 

the pathogenesis of a variety of human pathogens, including human 
and avian influenzas, coronaviruses including severe acute respira‐
tory syndrome (SARS‐CoV),5-14 human respiratory syncytial virus 
(HRSV),15-20 human metapneumovirus (HMPV),21 Ebola virus22-28 
and henipavirus (Nipah virus and Hendra virus).29-34 While ferrets 
can be productively infected with many of these viruses, a lack of 
some tools to interrogate ferret immunological responses to infec‐
tion limits insights that might impact the development of vaccines 
and/or therapeutics. Here, we review recent insights gained from 
ferret models of human respiratory diseases, with a major focus on 
influenza, and highlight several knowledge gaps whose closure will 
greatly enhance the informational gain from ferret models to ad‐
vance development of human vaccines and therapeutics.
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Abstract
Ferrets are a well‐established model for studying both the pathogenesis and trans‐
mission of human respiratory viruses and evaluation of antiviral vaccines. Advanced 
immunological studies would add substantial value to the ferret models of disease 
but are hindered by the low number of ferret‐reactive reagents available for flow 
cytometry and immunohistochemistry. Nevertheless, progress has been made to un‐
derstand immune responses in the ferret model with a limited set of ferret‐specific 
reagents and assays. This review examines current immunological insights gained 
from the ferret model across relevant human respiratory diseases, with a focus on in‐
fluenza viruses. We highlight key knowledge gaps that need to be bridged to advance 
the utility of ferrets for immunological studies.
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2  | FERRETS A S AN INFLUENZ A 
PATHOGENESIS AND TR ANSMISSION 
MODEL

Ferrets can be directly infected with influenza from human clinical 
isolates without prior adaptation. Influenza infection of ferrets reca‐
pitulates key hallmarks of human clinical disease, such as high fever 
accompanied by sweating, as well as respiratory symptoms such as 
rhinorrhea and sternutation.35,36 The shared susceptibility to influ‐
enza infection is based on similarity in respiratory tract physiology, 
where a predominance of α2,6‐linked sialic acid (SA) receptors in the 
upper respiratory tract of ferrets mimics that of humans,37-41 unlike 
α2,3‐SA prevalent in other species such as mice. Ferrets are an ex‐
tremely valuable model for studies on influenza pathogenesis42,43 
and both direct and aerosol transmission.44,45 Critically, ferrets are 
a susceptible host for highly pathogenic avian strains of influenza 
with pandemic potential, such as H5N1 and H7N9, although disease 
severity in infected ferrets is somewhat variable.42,46-48 Similar vari‐
ability in pathogenesis has been reported for some seasonal strains 
such as recent H3N2 isolates,49,50 which display a range of disease 
severity in humans51 but generally remain mild in ferrets.52,53

3  | FERRETS FOR INFLUENZ A 
SURVEILL ANCE AND VACCINE 
DE VELOPMENT

Ferrets play a critical role in annual seasonal influenza vaccine 
strain selection. Antigenic drift in circulating strains is monitored 
primarily using hemagglutination inhibition (HI) assays on serum 
from ferrets infected with recently circulating human viral iso‐
lates.54,55 In both ferrets and humans, HI titres are a marker of 
protection from acquiring infection and currently the key immu‐
nological correlate for assessing potential vaccine effectiveness. 
Currently licensed seasonal vaccines, historically trivalent (TIV) 
but increasingly quadrivalent inactivated vaccines (QIV), can pro‐
tect both ferrets56,57 and humans58,59 from infection and disease. 
Protection is mediated through neutralising antibodies targeting a 
cluster of epitopes surrounding the viral receptor‐binding domain 
(RBD) within the highly variable hemagglutinin (HA) head domain 
(HA1).60,61 Inactivated influenza vaccines significantly reduce 
mortality rates in children62,63 and severe disease in adults.58,64 
However, vaccine protection is notoriously strain‐specific, and 
mismatches between vaccine and circulating strains through anti‐
genic drift lead to low vaccine efficacy.65-67

There are global efforts to increase the breadth of protection 
of influenza vaccines, with an eventual goal of universal protection 
(reviewed in68), and most strategies have been evaluated in ferret 
models. A non‐exhaustive list of strategies to induce heterosubtypic 
immunity against influenza evaluated in ferrets include: HA stem 
vaccination69-71; prime‐boost with chimeric HA‐based vaccines72; 
use of conserved influenza proteins such as nucleoprotein (NP),73-75 
matrix‐1 (M1),74,76 matrix‐2 (M2)75,77 and RNA polymerase subunit 

B1 (PB1)74; replication‐deficient viruses78-81; live attenuated formu‐
lations82-84; the use of potent adjuvants such as Protollin,85 glucopy‐
ranosyl lipid adjuvant—aqueous formulation (GLA‐AF),86 CoVaccine 
HT,87 cationic adjuvant formulation88 and poly‐g‐glutamic/chitosan 
nanogel89; Escherichia coli‐derived vaccines90; DNA, mRNA and viral 
vector vaccines75,91-93; and the use of virus‐like particles (VLP).76 
Additional examples of important ferret studies include (but are not 
limited to) evaluating the influence of changing the route of influenza 
inoculation on subsequent immunity94 and the use of neuraminidase 
(NA) inhibitors as prophylaxis.95

4  | FERRETS A S AN IMMUNOLOGIC AL 
MODEL FOR STUDYING INFLUENZ A

The utility of ferrets for incisive immunological studies is hampered 
by limited reagents to study ferret immunity and a paucity of back‐
ground knowledge about the ferret immune system. Some insights 
into ferrets’ immunological responses to influenza have been gained 
by indirect measurements of immune gene expression such as quan‐
titative RT‐PCR (qRT‐PCR), transcriptome analysis or oligonucleotide 
microarrays.22,96-100 For example, assessing the differential expres‐
sion levels of innate and adaptive immune genes in the lungs fol‐
lowing primary or secondary 2009 H1N1pdm infection revealed 
upregulation of interferon‐stimulated genes involved in antiviral re‐
sponses such as C‐X‐C motif chemokine 10 (CXCL10), 2′‐5′ oligoad‐
enylate synthase 1 (OAS1), interferon regulatory factor 1 (IRF1) and 
radical S‐adenosyl methionine domain containing 2 (RSAD2) as well 
as chemokines such as CXCL16 and C‐C motif chemokines 3, 4 and 
5 (CCL3, CCL4 and CCL5).98 Similarly, the degree of disease sever‐
ity, virus shedding and transmission in ferrets has been associated 
with tumour necrosis factor (TNF) and interleukin‐6 (IL‐6) mRNA 
expression in the upper respiratory tract.97 However, mRNA levels 
can correlate poorly with protein levels,101 and techniques such as 
flow cytometry, bead arrays and immunohistochemistry would fa‐
cilitate direct measurement of immune marker expression. To date, 
flow cytometric or microscopy techniques have been limited in fer‐
rets by the lack of suitable antibodies specific for ferret immune cell 
markers.

Screening for cross‐species reactivity has identified antibody 
clones recognising ferret T‐cell markers such as CD3 and CD8, and 
an intracellular B‐cell marker CD79b102-104 (summarised in Table 1). 
The utility of such cross‐reactive reagents has been shown exper‐
imentally. For example, prime‐boost immunisation using DNA and 
adenoviral‐based influenza vaccines provided effective protection 
in experimentally challenged ferrets, with protection correlating to 
the capacity of CD3+ T cells to express interferon gamma (IFN‐γ) 
following in vitro stimulation on peripheral blood mononuclear cells 
(PBMCs) with HA peptide pools.92 Caution should be taken when 
using antibodies developed for other species in ferret experiments, 
as there may be subsets of cells displaying variable reactivity to the 
antibodies.105,106 In addition, currently available anti‐ferret B‐cell 
antibodies such as CD79α target intracellular epitopes, requiring 
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fixation and permeabilisation. This limits downstream applications 
such as RT‐PCR or the recovery of antigen‐specific immunoglobu‐
lin sequences from sorted B cells. In the absence of cross‐reactive 

clones, several groups have generated novel monoclonal antibod‐
ies specific for ferret cellular markers. For example, novel anti‐
ferret CD4‐, CD8‐ and CD5‐specific antibodies were derived by 

Antigen Species Clonality‐Clone Cell type Reference(s)

CD20 Human Polyclonal—RB‐9013‐P B 108,163

CD32 Human Monoclonal—2E1 B 102

CD79a Human Monoclonal—HM47/HM57 B 108,163

CD79b Human Monoclonal—ZL9‐2 B 102

IgA Ferret Polyclonal—NBP‐72747 B 124

IgA Canine Polyclonal B 102

IgA/G/M Ferret Polyclonal B 108

IgG Ferret Polyclonal B commercially 
avaliable 

IgG Mink Polyclonal B 102,175

IgM Ferret Polyclonal B  commercially 
avaliable

IgM Human Polyclonal B 102

Kappa Ferret Monoclonal—multiple B 118

Lambda Ferret Monoclonal—multiple B 118

Immunoglobulin 
Heavy chain

Ferret Monoclonal—multiple B 118

CD11b Mouse Monoclonal—M1/70 Innate 103,108

CD14 Human Monoclonal—Tuk40 Innate 102

CD172a Human Monoclonal—DH59B Innate 102

CD163 Swine Monoclonal—2A10/11 Innate 163

MAC387 Human Monoclonal—M0747 Innate 163

CD88 Human Monoclonal—S5/1 Innate 102

SWC3 Swine Monoclonal—BA1C11 Innate 163

CD43 Mouse Monoclonal—S7 Pan‐leuco‐
cyte

103

LFA‐1 Mouse Monoclonal—2D7 Pan‐leuco‐
cyte

103

Ly6C Mouse Monoclonal—AL‐21 Pan‐leuco‐
cyte

108

TNF Mouse Monoclonal—MP6‐XT22 Pan‐leuco‐
cyte

103

MHC‐II Human L243 T 108

CD3 Human Polyclonal—IS503 T 163

CD103 Mouse Monoclonal—M290 T 103

HLA‐DR Human Monoclonal—TAL.1B5  T 163

CD25 Human Monoclonal—B1.49.9 T 102

CD4 Ferret CL3.1.5 T 108

CD4 Ferret Monoclonal T 107

CD8 Human Monoclonal—OKT8 T 102,103,108

CD8 Ferret Polyclonal—60001RPO2 T/NK 163

IL‐4 Bovine Monoclonal—CC303 T 103

Thy1.1 Mouse Monoclonal—OX‐7 T 103

IFN‐γ Bovine Monoclonal—CC302; 
XMG1.2

T/NK 103

TA B L E  1   List of currently available 
reagents available for studying ferret 
immune cells
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immunising mice with the CD4 ectodomain,107 whole CD4 pro‐
tein108 or ferret thymocytes.83 Efforts to develop novel antibody‐
based reagents to define various ferret immune cell subpopulations 
are accelerating, particularly through the Centers of Excellence for 
Influenza Research and Surveillance (CEIRS) network,109 and are re‐
viewed in detail further below.

Using existing reagents, innate and adaptive immune responses 
to influenza infection52,108,110 and immunisation83,111 have been 
studied and provide important insights into ferret antiviral immunity. 
Following influenza challenge of naïve or vaccinated ferrets, there is 
a transient increase in CD11b+ expressing PBMCs at 2 d.p.i, which 
decreased to baseline levels by 3 d.p.i, suggesting a role for mono‐
cytes/macrophages/neutrophils or antigen‐presenting cells (APC) 
during early infection.110,111 In addition, an infiltration of CD11b+ 
and MHC‐II+ cells into lungs between 2 and 5 d.p.i was observed, 
which could represent lung APCs.110 CD11b+ cells also increase in 
secondary lymphoid organs 10  d.p.i,108 suggesting a coordinated 
immune response involving both innate and adaptive responses to 
resolve infection.

Ferrets have also been employed to examine the spatiotempo‐
ral dynamics of B‐ and T‐cell responses after vaccination or infec‐
tion with different influenza strains.52,110 Immunologically naïve or 
primed ferrets challenged110,111 with influenza A virus (IAV) are ob‐
served to have transient blood CD4+ T/CD8+ T‐cell lymphopenia.110 
Correspondingly, influenza‐specific serum IFN‐γ responses in‐
creased by 5‐7 d.p.i which remain elevated up to 14‐34 d.p.i.52,83 This 
is consistent with the increase in CD8+ frequencies by 10‐34 d.p.i 
in vaccinated/infected ferrets 83,108 and influenza‐reactive CD4+ 
cells by 8‐34 d.p.i in draining lymph nodes.52,83 Further comparison 
of IFN‐γ‐expressing T‐cell responses during an infection in lung and 
blood PBMCs suggested H1 and H3 establish infection in different 
organ compartments, since IFN‐γ‐expressing T‐cell responses in the 
lungs of H3‐infected ferrets were significantly lower than H1‐in‐
fected ferrets.52 This is consistent with other studies showing lim‐
ited replication of H3 viruses in ferret lungs.111-113

The influenza protein specificity of the T‐cell response to influ‐
enza is beginning to be explored in ferrets using IFN‐γ expression 
assays and other standardised protocols.108,114 DiPiazza et al108 
found that the majority of bulk memory CD4+ T‐cell responses 
were specific for the M1 protein whereas non‐structural protein 
(NS) was mainly the target for CD8+ T‐cell responses, and hierar‐
chal responses were found to change over time without preferential 
retention of immunodominant specificities.115 In comparison, cross‐
reactive ferret CD4+ T cells recognise HA and NA epitopes pref‐
erentially whereas CD8+ T cells mount immune responses towards 
M1, NS2 and RNA polymerase subunit A (PA), with NP as a signifi‐
cant antigenic target.104 Interrogation of ferret T‐cell responses with 
improved reagents will increase our understanding of immunodom‐
inance hierarchies analogous to studies performed in other animal 
models and humans (reviewed in116).

Markers targeting B‐cell antigens such as CD79a, CD20 and sur‐
face immunoglobulin also allow ferret B cells to be examined by im‐
munohistochemistry and flow cytometry in ferret tissues.108,117,118 

B‐cell frequencies are also transiently decreased 2 d.p.i110,111 after 
infection, with a corresponding increase in secondary lymphoid 
organs 2‐5  d.p.i.110 The number of major histocompatibility com‐
plex (MHC‐II) expressing cells also increased, with no significant 
difference in surface immunoglobulin‐positive cells by 10 d.p.i.108 
Influenza‐specific ASCs were also increased by 37  d.p.i, high‐
lighting the role of B cells in the resolution of infection.83 These 
observations suggest changes in the maturation status of B cells 
after activation and mirror observations in humans and mice (as 
reviewed in119). MHC‐II is upregulated in B cells to induce germinal 
centre formation (GC) through cognate interactions with T follicu‐
lar helper cells (TFH). This has been demonstrated in mice, where 
the ablation of MHC‐II expression in mice led to a decrease in in‐
fluenza‐specific IgG and IgA titres and decreased survival rates.120 
Surface immunoglobulin expression in antibody‐secreting plasma 
cells (ASCs) is also downregulated, consistent with the decrease in 
the number of surface immunoglobulin expressing HA‐reactive GC 
cells by 14 d.p.i.121

Similar to T cells, B‐cell HA immunodominance hierarchies 
have been studied widely.122 A key target for broader antibody 
responses is the conserved stem domain (HA2) of HA; however, 
immunodominant responses against HA1 often limit antibody 
responses to variable regions, leading to escape from host re‐
sponses.123 Different vaccination strategies to induce broadly pro‐
tective antibody responses have been studied in ferrets.124 Using 
purified ferret immunoglobulins and cross‐reactive polyclonal 
immunoglobulin antisera from mink, goat, canine and rabbits, a 
ferret immunoglobulin class‐specific ELISA was developed.102 By 
exposing ferrets to recombinant HA constructs with exotic HA 
head domains via infections and vaccinations (H9/H8/H5 head 
domain with H1 stem domain), immunologically subdominant 
anti‐HA stem responses were induced as measured by ELISA.124 
Polyclonal stem‐reactive antibodies were detected serologically 
and protected ferrets against pH1N1 challenge in the presence of 
low neutralisation activities as measured by microneutralisation 
assays. This is consistent with studies in other mammalian models 
and humans suggesting that Fc‐mediated functions are important 
for HA2‐mediated protection (as reviewed in125). Further delinea‐
tion of such immunodominance hierarchies in HA at the monoclo‐
nal antibody level and functional characterisation of HA2‐specific 
antibodies are reviewed in detail further below.

The effects of prior infection on host susceptibility to re‐in‐
fection, that is viral interference, have also been studied in fer‐
rets.126 Ferrets sequentially challenged with B/Victoria and B/
Yamagata viruses display decreased virus shedding, which cor‐
related with the induction of high frequencies of cross‐reactive 
IFN‐γ‐expressing T‐cell responses between initial infection and 
heterologous challenge.127 Infection with A(H1N1)pdm09 was 
also shown to prevent HRSV infections in ferrets, though no 
IFN‐γ responses or cross‐reactive serological responses were ob‐
served, suggesting different underlying mechanisms driving viral 
interference between unrelated viruses.128This observation mir‐
rors epidemiological studies in humans, where peak incidences 
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of HRSV infections in humans were delayed by influenza A out‐
breaks (reviewed in128).

Several key questions remain unanswered in ferrets with regard 
to influenza‐specific immune responses. First, chemotactic signals 
important for the spatiotemporal distribution of immune cells are 
still largely unknown in ferrets; for example, influenza‐infected ep‐
ithelial cells secrete CCL‐2 which recruits monocytes to the lungs 
during early infection and may be associated with acute lung injury129 
during severe infections. Secondly, different innate immune subsets 
such as natural killer (NK) cells, dendritic cells (DCs), monocyte/mac‐
rophages and granulocytes have also yet to be studied in detail, and 
development of reagents to allow the delineation of these cell pop‐
ulations (reviewed in130-133) will enable a more detailed picture of 
early immune responses in ferrets. Thirdly, while adaptive immune 
responses have been studied in ferrets, markers to delineate B/T‐cell 
subpopulations will be useful to study long‐term protection against 
influenza infection (as reviewed in134). Examples include CD62L and 
CD44 for naïve and memory T cells, and IgD and CD27 for naïve and 
memory B cells, respectively.

5  | FERRETS A S AN IMMUNOLOGIC AL 
MODEL FOR OTHER EMERGING VIR AL 
DISE A SES

In addition to influenza, the ferret serves as a critical model for 
other important human pathogens such as SARS‐CoV, pneumo‐
viruses (HRSV and HMPV), Ebola virus and henipaviruses. While 
these infections remain less characterised in comparison with 
influenza, the ferret provides a platform to examine disease 
pathogenesis and transmission and to evaluate potential vaccine 
efficacy. However, like influenza, evaluation of host immune re‐
sponses in ferrets is commonly restricted to gene expression 
analyses.

5.1 | SARS‐CoV

SARS‐CoV infection causes acute respiratory distress in humans 
with mortality rates of up to 10%.135 While worldwide outbreaks 
have not been reported since 2004, there is still a lack of vaccines 
and effective treatment measures. Ferrets display clinical signs of 
infection such as elevated body temperatures, sneezing, increase in 
lymphocyte counts and lesions in the respiratory tract and alveo‐
lar oedema7 and are therefore a good mammalian model to study 
the pathogenesis of SARS‐CoV (reviewed in7,136) and evaluate vac‐
cines (reviewed in14,137-139). In terms of immunity, ferrets exhibit 
strong antiviral interferon responses after infection and vaccina‐
tion as measured by interferon response gene expression levels.5,13 
However, leucocyte counts and interferon‐related gene expression 
were decreased upon re‐infection,5 suggesting that innate immune 
dysregulation is a possible mechanism of pathogenesis, though a 
protective antibody response was also evident during attempts to 
re‐infect ferrets.8

5.2 | Henipavirus

Emerging viruses belonging to the Paramyxoviridae family 
(Henipaviruses) can cause severe respiratory illness and/or en‐
cephalitis in humans. Ferrets infected with henipaviruses exhibit 
similar symptoms as humans including respiratory signs such as 
cough and nasal discharge, neural signs such as depression,32 and 
high mortality rates with most experimentally infected ferrets suc‐
cumbing within 1 week.31 While the virus is detected in pharyngeal 
and rectal secretions, it is currently unclear if ferrets could serve 
as a transmission model for the disease.31,32 Ferrets infected in‐
tranasally with henipaviruses similarly display clinical illness.31,34 
Assessment of immune gene expression by Leon et al31 in both 
lungs and brain tissues of the infected ferrets revealed upregula‐
tion of macrophage markers such as CD40 and CD80 in both lung 
and brain tissues, whereas lymphocytic markers were unchanged 
in the lungs.

5.3 | Respiratory syncytial virus and 
metapneumovirus

RSV and HMPV cause severe respiratory disease in young chil‐
dren, the elderly and immunocompromised patients. Both RSV and 
HMPV readily infect ferrets but in general do not exhibit signs of 
disease.15,20,21 Nevertheless, ferrets have proven to be a useful 
model to study RSV. Several groups have successfully infected fer‐
rets with a wild‐type strain of human RSV and demonstrated effi‐
cient replication in both the upper and lower respiratory tracts of 
adult ferrets,15,20 consistent with humans where infection is often 
limited to the upper respiratory tract.140 Immunocompromised fer‐
rets, induced by oral administration of immunosuppressive drug 
mycophenolate mofetil (MMF), demonstrate prolonged RSV shed‐
ding and effective contact transmission to both immunocompetent 
and immunocompromised ferrets,18 confirming antiviral immunity 
in the ferret can curtail viral replication. An assessment of lung im‐
mune gene expression in ferrets infected with RSV demonstrated 
an upregulation of proinflammatory cytokines such as interleukin‐1 
alpha (IL‐1α) and interleukin‐1 beta (IL‐1β) by 5 d.p.i which coincided 
with maximum levels of RSV mRNA, while levels of other cytokines 
such as interferon alpha (IFN‐α) and IFN‐γ remained unchanged.20 
In terms of humoral responses, increased serum titres of fusion (F) 
glycoprotein antibodies were seen by 15 d.p.i20 that were protective 
against re‐infection.

5.4 | Ebola virus

Ebola virus disease (EVD) is caused by a zoonotic virus from the 
Filoviridae family of viruses.28 This disease can transmit from human 
to human and causes acute and often fatal disease. Ferrets are able 
to be directly infected with the Zaire, Bundibugyo and Sudan Ebola 
strains,22,23 which have previously caused major human outbreaks. 
Ferrets display hallmarks of pathological processes of human lethal 
infections such as petechial rashes, reticulated pallor of the liver and 
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splenomegaly.23,24 Transmission has also been reported in ferrets.141 
As for immunological studies, transcriptomic sequencing in ferrets 
infected with lethal doses (1000 plaque‐forming units (PFU)) of the 
Makona variant of Zaire ebolavirus revealed upregulation of proin‐
flammatory‐related genes such as interferon activation, Toll‐like 
receptor signalling, interleukin‐1/6 responses and coagulation cas‐
cades by 5 d.p.i.142

6  | KE Y KNOWLEDGE GAPS TO 
ADDRESS IN ORDER TO IMPROVE THE 
IMMUNOLOGIC AL UTILIT Y OF FERRET 
MODEL S

While the ferret model has unique potential for informative studies 
into pathogenic viral infections as noted above, addressing several 
key knowledge gaps will substantially advance the ferret as an im‐
munological model.

6.1 | Immunogenetics

There is a lack of well‐annotated, ferret genomic sequence infor‐
mation to characterise immune responses, limiting the scope of 
molecular analyses that can be performed; ferret T/B‐cell recep‐
tor repertoire analysis is currently not possible. Next‐generation 
sequencing (NGS) has become increasingly important for immuno‐
logical research and has led to the generation of huge amounts of 
data and the development of tools for data extraction and analy‐
sis. An important aspect of T‐ and B‐cell research is the immune 
cell receptor repertoire during an infection and the effects of al‐
lelic variation of important immunological molecules such as major 
histocompatibility complex (MHC) on host immune responses. A 
draft copy of the ferret genome is available,62 but genes coding for 
B‐ or T‐cell receptors have yet to be fully annotated and validated. 
Genomic sequencing and assembly of closely related species such 
as minks143 are also far from complete, though several similarities 
such as genome size and relative abundance of repeat elements 
have been found. In comparison, high‐quality draft genome as‐
semblies for dogs and cats are available and have been used for 
genome‐wide association studies144 and identification of single 
nucleotide polymorphisms (SNPs).145 The identification of SNPs 
in immunoglobulin genes is useful for distinguishing between so‐
matically mutated B‐cell receptor sequences and germline variants 
in affinity‐matured antigen‐specific B‐cell populations. There are 
currently databases of immunoglobulin sequences for well‐es‐
tablished animal models such as those found in the international 
ImMunoGeneTics (IMGT) information system database146 and 
have been useful for identifying somatic hypermutations in im‐
munoglobulin sequences.147 A curated and annotated database of 
immune gene sequences is a prerequisite for PCR primer design 
and post‐sequencing data analysis used to recover and express 
antibodies from single‐sorted B cells148 and recombinant T‐cell 
receptors.149

6.2 | Future T cell–specific reagents for ferrets

Future development of markers to delineate more T‐cell subsets will 
increase the utility of the ferret as an immunological model; a re‐
cent report listed several important ferret T cell–specific antibodies 
to be in production at the CEIRS such as CD4, CCR7, CD3e, CD40, 
CD40L, CD44, CD62L, CD69, CD103, PD‐1, CXCR3, CXCR5, IL‐7R 
and IL‐15R.109

6.3 | Future B cell–specific reagents for ferrets

To increase our understanding of antibody responses in ferrets, 
flow cytometric reagents that are able to delineate B‐cell subsets 
are required. Important ferret B cell–specific antibodies that are in 
production at the CEIRS include CD83, CD86, CD95, CD19, CD20, 
CD25, CD27, CD38, CD138 and FcR.109

6.4 | Current and future markers for ferret myeloid 
lineage cells

Several markers defining innate cell populations in mice and hu‐
mans such as CD11b103,108 and CD14102 have also been reported to 
cross‐react with ferret leucocytes and have been utilised to char‐
acterise ferret innate immune responses. However, these markers 
have also been found to be expressed in non‐myeloid lineages in hu‐
mans,150,151 and other markers such as CD16152 and CD66153 will be 
required to better define myeloid cell populations.

6.5 | Ferret immunoglobulin subclass and 
Fc receptors

Ferret immunoglobulin subclass and Fc receptors are not well stud‐
ied. Currently, only one IgG subclass that has been identified in 
ferrets, while four different IgG subclasses have been identified in 
other carnivores such as dogs154 and minks155 and three in felines,156 
suggesting other unidentified ferret IgG subclasses may exist. The 
diversity and function of ferret Fc receptors are also unknown. 
Different IgG and Fc receptor subclasses in humans and mice have 
shown to be important for different antibody‐mediated effector 
functions such as antibody‐dependent cellular cytotoxicity (ADCC). 
Human Fc gamma receptor IIIa (FcγRIIIa; FcγRIV in mice) is the main 
receptor involved in ADCC, and human IgG3 (mouse IgG2a) followed 
closely by human IgG1 (mouse IgG2b) displays the highest affinities 
for this receptor. Advanced assays for ADCC and other Fc‐medi‐
ated responses to influenza have been developed in recent years in 
both NHP157 and humans.158,159 Such non‐neutralising mechanisms 
have been shown to be important for broadly protective responses 
against antigenically distinct strains of influenza157,160,161 and devel‐
opment of universal influenza vaccines. Many of the current ADCC 
and related assays rely on the detection of Ab‐mediated activation 
of NK cells to express cytokines such as IFN‐γ or degranulation 
markers such as CD107a,162 but there are currently no reagents to 
differentiate NK cells from other cytotoxic lymphocyte populations 
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such as CD8+ T cells.163 While a ferret‐specific T‐cell IFN‐γ expres‐
sion assays164 to measure CD8 T‐lymphocyte activation have been 
developed and validated, the future elucidation of corresponding an‐
tibody/Fc receptor ferret orthologues will enable ferrets to be used 
to evaluate ADCC responses.

6.6 | Antigenic recognition of major 
influenza proteins

Epitope mapping studies using either human or murine mono‐
clonal antibodies have greatly increased our understanding of 
influenza viral evolution and allowed the identification of major 
HA epitopes and pathways of immune escape. While factors that 
determine the dominant escape mutants are still unknown, such 
studies have the potential to improve the process of influenza vac‐
cine design. The inability to isolate monoclonal antibodies from 
ferret B cells has limited studies into the antigenic recognition of 
influenza proteins in ferrets. Confirming epitope‐specific recogni‐
tion of HA at the monoclonal antibody level in ferrets is critical, 
as there have been several reports that human and ferret serum 
antibodies can display variable antigenic recognition.165,166 This is 
critically important as antisera from infected ferrets is widely used 
in HI assays as part of the strain determination process for influ‐
enza vaccines.167,168

Major antigenic sites of HA have been localised by generating 
viral escape mutants in the presence of influenza‐specific mu‐
rine169,170 or human171 monoclonal antibodies, which for H1N1 
viruses have been termed Sa, Sb, Ca1, Ca2 and Cb.170 A study of 
influenza A (IAV) HA antigenic sites using engineered viruses with 
mutations in each of the antigenic sites surrounding the RBD re‐
vealed species‐specific differences in antibody recognition.166 HI 
activities against H1N1 (A/Michigan/45/2015) mutants as de‐
scribed revealed differences in antigenic epitopes recognised by 
mice, guinea pigs, ferrets and adult humans using serum samples. 
For example, neutralising antibodies in adult humans recognised 
mostly Sb and Sa, while responses in ferrets were mostly directed 
to Sa.166 Another similar study characterising humoral responses 
against influenza B (IBV) using reverse‐engineered viral mutants 
showed that the proportion of human antibodies targeting non‐
canonical antigenic sites of IBV HA are comparable to canonical 
antigenic sites (120 loop, 150 loop, 160 loop and 190 helix).172 This 
is in contrast to IBV‐specific responses in mice and ferrets, where 
most serum antibody is directed against canonical antigenic sites 
only. These results suggest inter‐species differences in humoral 
recognition of the influenza HA. Other studies lend support, with a 
head‐to‐head comparison between humans and ferrets immunised 
or infected with various seasonal H3 vaccine strains showing key 
differences in serological recognition of viral HA173 based on mo‐
lecular modelling and antigenic cartography. Similarly, cross‐re‐
active H1N1 antibody responses in ferrets are not predictive of 
cross‐reactive responses in humans,174 confirming fundamental 
differences in B‐cell responses between humans and ferrets.

7  | CONCLUSION

Ferrets have tremendous utility for studying the pathogenesis and 
transmission of several human respiratory diseases and for pre‐clini‐
cal evaluation of vaccines. Ferrets are a critically important model 
that directly impacts human seasonal influenza vaccine selection 
and the pre‐clinical development of vaccines for other emerging 
diseases. However, knowledge gaps limit the in‐depth assessment 
of any immune mechanisms that may underpin transmission, pro‐
tection and/immunopathology of these viral diseases in the ferret 
model. There is an urgent need for novel reagents with well‐vali‐
dated and specific targets to resolve different immune cell popu‐
lations. Improving the ferret model to enable the application of 
insightful modern immunological tools, such as single‐cell B‐cell re‐
ceptor sequencing, next‐generation sequencing platforms and other 
bioinformatics tools, will greatly enhance the informative value of 
the ferret model which will in turn lead to better immunological in‐
terventions for human respiratory diseases.
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