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Evaluating probabilistic forecasts in the context of a
real-time public health surveillance system is a com-
plicated business. We agree with Bracher’s (1) obser-
vations that the scores established by the US Centers
for Disease Control and Prevention (CDC) and used to
evaluate our forecasts of seasonal influenza in the
United States are not “proper” by definition (2). We
thank him for raising this important issue.

A key advantage of proper scoring is that it incen-
tivizes forecasters to provide their best probabilistic
estimates of the fundamental unit of prediction. In the
case of the FluSight competition targets, the units are
intervals or bins containing dates or values representing
influenza-like illness (ILI) activity. A forecast assigns
probabilities to each bin.

During the evolution of the FluSight challenge, the
organizers at CDC made a conscious decision to use a
“moving window” or “multibin” score that rewards
forecasts for assigning substantial probability to values
within a window of the eventually observed value. This
decision was driven by the need to find a balance be-
tween 1) strictly proper scoring and high-resolution bin-
ning (e.g., at 0.1% increments for ILI values) and 2) the
need for coarser categorizations for communication
and decision-making purposes. Because final observa-
tions from a surveillance system are only estimates of
an underlying “ground truth” measure of disease ac-
tivity, a wider window for evaluating accuracy was
considered. In the end, CDC elected to allow nearby
“windows” of the truth to be considered accurate (e.g.,
within ±0.5% of the observed ILI value), understanding
that there was a downside to not using a proper score.

Given the increasing visibility and public availabil-
ity of infectious disease forecasts, such as those from

the FluSight challenge (3), forecasts are being used
and interpreted for multiple purposes by more end
users than when the challenge was originally conceived.
Using a proper logarithmic score would require that
forecasts be evaluated at a fixed resolution, e.g., for
prespecified bins of 0.1% or 0.5%. Even if forecasts
were optimized for and formally evaluated at one spe-
cific resolution, this use would not preclude the trans-
formation of forecast outputs to a variety of resolutions
appropriate for the specific decision or communica-
tion. Therefore, Bracher’s (1) letter raises an interest-
ing and timely question about whether to institute a
proper scoring rule for evaluating these public health
forecasts.

Regarding the impact of the impropriety of the
score on the results in our original paper, we confirm
that none of the forecasts presented in our original
paper were manipulated in the way that Bracher
shows is possible (4). Furthermore, evaluating fore-
casts by the proper logarithmic score metric does
not substantially change the quality of the component
models relative to each other (Fig. 1).

Bracher’s (1) letter contributes to an existing and
robust dialogue among quantitative modelers and
public health decision makers about how to mean-
ingfully evaluate probabilistic forecasts and support
effective real-time decision making. We welcome
this ongoing public discussion of both scientific
and public policy considerations in the evaluation
of forecasts.
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Fig. 1. (A and B) Average logarithmic scores for all component models, shown separately for week-ahead targets (A) and seasonal targets (B). The
component models are sorted with the best model according to the multibin score at the top for each panel separately. Within each panel, Left
column shows the average log score calculated using the improper multibin rule and Right column shows the average log score calculated using
the proper single-bin rule. The color coding indicates the percentage by which the given model is lower in score than the best model (darker
colors indicate a larger difference from the best model within each column). Of the top 10most accurate models according to themultibin scoring
rule for both week-ahead and seasonal targets, 8 are in the top 10 according to single-bin scoring.
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