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RNA molecules cannot fold in the absence of counterions. Exper-
iments are typically performed in the presence of monovalent
and divalent cations. How to treat the impact of a solution
containing a mixture of both ion types on RNA folding has
remained a challenging problem for decades. By exploiting the
large concentration difference between divalent and monova-
lent ions used in experiments, we develop a theory based on
the reference interaction site model (RISM), which allows us to
treat divalent cations explicitly while keeping the implicit screen-
ing effect due to monovalent ions. Our theory captures both
the inner shell and outer shell coordination of divalent cations
to phosphate groups, which we demonstrate is crucial for an
accurate calculation of RNA folding thermodynamics. The RISM
theory for ion–phosphate interactions when combined with sim-
ulations based on a transferable coarse-grained model allows
us to predict accurately the folding of several RNA molecules in
a mixture containing monovalent and divalent ions. The calcu-
lated folding free energies and ion-preferential coefficients for
RNA molecules (pseudoknots, a fragment of the rRNA, and the
aptamer domain of the adenine riboswitch) are in excellent agree-
ment with experiments over a wide range of monovalent and
divalent ion concentrations. Because the theory is general, it can
be readily used to investigate ion and sequence effects on DNA
properties.

RNA folding | free energy | ion preferential interaction coefficients |
three-interaction site (TIS) model | reference interaction site model (RISM)

The lack of a rigorous and thermodynamically consistent treat-
ment of interactions between counterions and RNA has

impeded a quantitative description of the self-assembly of RNA
molecules (1). Although many factors contribute to the stability
of a folded RNA molecule, the interplay between monovalent
and divalent cations and the highly correlated nature of ion–
RNA interactions make it challenging to develop an accurate and
tractable theory for RNA folding thermodynamics and kinetics.
The effects of monovalent ions could be accurately accounted
for by using the Debye–Hückel theory (2–4). However, theo-
retical and computationally tractable treatments of the effects
of divalent cations, such as Mg2+, which play an essential role
in RNA structure, folding, and function (5–8), have not been
fully developed. Accounting for the effects of divalent ions on
RNA folding requires an approach that goes beyond the use of
the Poisson–Boltzmann equation (9–11) to account for the ion
size, ion–ion correlations, and the complex coordination with
the phosphate groups. The simultaneous presence of monovalent
and divalent ions introduces additional complexity that has to be
dealt with to arrive at a reasonable predictive theory of RNA
folding.

How ions modulate the RNA energy landscape has also been
the subject of extensive experimental and theoretical studies
(1, 9, 12–20). From the chemistry perspective, binding of diva-
lent ions to the negatively charged phosphate groups could
be conceptually classified into 2 categories: direct (or inner-
sphere) contact where an atom (or more) of the RNA is part
of the divalent ion coordination sphere and indirect (or outer-
sphere) contact where the interaction is mediated by a water

molecule (5). Recent surveys of the RNA structures in the Pro-
tein Data Bank (PDB) reported the frequencies of both inner
and outer spheres Mg2+ binding to RNA atoms (21, 22), which
suggests that a theoretical model must take these interactions
into account to describe RNA folding. However, a complete
knowledge of the distribution of ions around RNA in solution
is still lacking although initial insights have been provided in a
recent study (23).

To arrive at an accurate model, which reliably predicts the
thermodynamic properties of large RNA molecules, we first
began with a sequence-dependent three-interaction site (TIS)
coarse-grained (CG) model for nucleic acids (24), which has
been adopted to study a range of problems related to RNA fold-
ing (2, 10, 25–32). Even with this simplification, the inclusion of
both monovalent ions (present in excess concentration relative to
divalent cations) and divalent ions explicitly is computationally
demanding, although folding simulations of a 195-nt Azoarcus
ribozyme and pseudoknots have been carried out successfully
(10, 33). Here, we report the folding thermodynamics of RNA
molecules using simulations performed with a hybrid model in
which monovalent ions are implicitly treated but divalent cations
are explicitly included. To develop such a model, we resort to
the reference interaction site model (RISM) theory (34–40) to
obtain the potential of mean force (PMF) between divalent
cations and phosphate groups. We show that this treatment is
necessary to obtain accurate results for RNA thermodynam-
ics, especially for Mg2+ ions, which are involved in both the
inner and outer shell coordination with the negatively charged
phosphate groups. Using our model and simulations, we calcu-
late, with high accuracy, the thermodynamics of RNA folding
in the presence of divalent and monovalent cations for several
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RNA molecules in the folded, intermediate, and unfolded states.
In the process, we establish that divalent ions interact strongly
with RNA molecules in the intermediate structures (41), which
provides a structural interpretation of site-specific interactions
between RNA and ions. Our work also shows that account-
ing for both inner- and outer-sphere coordination of divalent
cations with RNA is necessary to faithfully reproduce divalent
cation–RNA interaction thermodynamics. The general frame-
work, which integrates liquid-state theories with molecular sim-
ulations, is applicable to investigate folding of large RNA
molecules over a broad range of salt concentrations, thus vastly
expanding the scope of simulations to a variety of problems in
RNA biology.

Theory
RNA Model. We adopt the TIS model, in which each nucleotide
is modeled using three interaction sites located at the center of
geometry of phosphate (P), sugar (S), and base (B) (2, 3, 10, 24,
31). The energy function, U =UBA +UEV +UST +UHB +UEL,
takes into account the bond length and angle constraints,
excluded volume interactions, secondary stacking between con-
secutive bases and tertiary stacking (stacking between bases that
are not consecutive in the structure), and both nonnative and
native hydrogen bond interactions. Details of the force field are
given in SI Appendix.

Previously (10), we treated all of the ions (including mono-
valent ions) explicitly, and therefore the phosphate charge was
fixed at Q =−e . Here, we employ the Debye–Hückel (DH)
equation to approximate the screening effect of monovalent ions.
Thus, the electrostatic interactions between the P–P and the
divalent cations are written as

Ue (r) =
1

2ε

∑
i,j

QiQj exp
(
− r
λ

)
r

, [1]

where λ= (8πlBρ1)−
1/2 is the DH screening length that depends

on the number density of monovalent ions, ρ1, and lB = e2

4πεkBT

is the Bjerrum length. For divalent cations Qi = +2e . The renor-
malized charge on the phosphate QP (T ,C1,C2) depends on
the concentrations of both the monovalent (C1) and divalent
ions (C2), which is calculated using the counterion condensa-
tion (CIC) theory (42–44). The electrostatic interaction between
the divalent ions and phosphate groups is treated precisely to
account for water-mediated outer- and inner-shell interactions
(below). Because the X2+–P potential (X is Mg or Ca) includes
the excluded volume interactions, we do not explicitly account
for such interactions in the coarse-grained TIS force field
(SI Appendix).

Phosphate Charge Renormalization. A consequence of CIC is that
the effective charge on the phosphate is reduced from −1e ,
thus softening the overall electrostatic interactions enabling the
compaction and folding of the RNA. Following our earlier stud-
ies (2, 3), we include ion condensation effects for the implicitly
treated monovalent ion. Since we treat divalent ions explicitly
and monovalent ions implicitly, a thermodynamically consistent
treatment of ion effects is needed. As the divalent ion con-
centration increases, the condensed divalent ions outcompete
monovalent ions for the phosphate groups. This occurs because
for each condensed divalent ion, approximately 2 monovalent
ions are released, which is favored because the overall entropy
of the system is increased.

In the mixed ion system, we assume that 1 divalent ion
replaces exactly 2 monovalent ions, and the total RNA charge
neutralized in the process is equal to those in the monovalent
salt alone. In other words, if θ1 and θ2 are the numbers of

condensed monovalent and divalent ions per phosphate group,
respectively, then

θ1 + 2θ2 = θ= 1− b

lB (T )
, [2]

with the mean spacing between phosphate charges, b = 4.4 Å, a
value used in our previous studies (2, 31). Although a more com-
plicated treatment based on the balance between the interaction
energy of ion–phosphate and entropic effects is possible (45), we
find that this simple approximation works well for a broad range
of ion concentrations.

A relation between θ1 and θ2 can be derived by considering
the entropic cost of localizing 1 divalent ion vs. 2 monovalent
ions. By neglecting ion–ion correlation effects, we obtain

ln

(
eθ2
C2V2

)
= 2 ln

(
eθ1
C1V1

)
, [3]

where e is Euler’s number, and Ci and Vi are, respectively, the
bulk concentration and the effective condensation volume of ion
i. We calculated Vi using (43, 45)

Vi = 4πeb3 (1 +Zi)(ξ− 1/Zi), [4]

where Zi is the bare charge of the ions (Z1 = +1, Z2 = +2),
and the Manning parameter, ξ= lB

b
. From Eqs. 2 and 3, one

can determine both θ1 and θ2. Thus, the effective charge on
the phosphate is QP (T ,C1,C2)= 1− θ1, considering only the
monovalent ion condensation. We account for the contributions
from the divalent cations, θ2, by treating them explicitly in the
simulations. The electrostatic interactions involving the P groups
are calculated using QP (T ,C1,C2), as the effective charge on
the phosphate.

Mg2+–P Effective Potential. To compute the Mg2+–P effective
potential, VMg -P (r), the PMF between Mg2+–P derived from
the RISM theory has to be modified because it is dependent
on temperature and concentrations of both the monovalent
and divalent ions. A number of studies have shown that it
is difficult to capture the short-ranged electrostatic interac-
tions, which has prompted others to propose several ways of
separating the Coulomb potential into short- and long-ranged
components (46–49). The short-ranged interactions are usually
determined using molecular simulations. Our approach, which
is closest in spirit to a more rigorous treatment by Weeks
and coworkers (50, 51), is implemented as follows. The short-
ranged part of the VMg -P is taken to be identical to the PMF,
while the long-ranged part is corrected based on the temper-
ature and salt concentrations. We write the effective potential
VMg-P (r) as

VMg-P (r) =W (r) + [UDH (r)−W (r)] exp

(
−a2

r2

)
, [5]

where W (r) is the PMF calculated using the RISM theory
(details are in SI Appendix), and UDH (r) is the DH potential
between Mg2+–P, accounting for the screening effect of mono-
valent ions. (We tried other functional forms to combine W
and UDH and found that Eq. 5 served our purposes in both
maintaining the direct-contact interaction and smoothly merg-
ing V to UDH at r� a .) The constant, a = 5.0 Å, was chosen
to preserve the Mg2+–P direct-interaction energy. Thus, at short
distances a Mg2+ ion (or more generally, any spherical diva-
lent cation) in proximity to the phosphate group would interact
according to the PMF calculated theoretically using RISM. At
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large values of r , the Mg2+ ion would experience a screened
phosphate charge due to the presence of monovalent ions. An
advantage of our approach is that we calculate the fully equi-
librated PMF between the Mg2+ cation and phosphate using
numerical solution of the RISM equations instead of relying
on MD simulations (46–49). This is particularly important for
divalent ions that have slow ion–water exchange rate and can-
not be reliably implemented using conventional all-atom MD
simulations (52–57).

The calculated PMF between Mg2+–P is shown in Fig. 1 for
a solution containing 1.0 mM magnesium monophosphate. It
is worth pointing out that VMg-P (r) (the red curve in Fig. 1)
has 2 minima, one corresponding to the inner-sphere Mg2+

coordination to P, and the other is the outer-sphere coordina-
tion. Accounting for both the direct contact and water-mediated
Mg2+–P interactions using Eq. 5 is necessary to calculate Mg2+-
induced RNA folding accurately since the folding of most large
RNA molecules requires both tightly bound and screening due to
Mg2+ ions (5, 7, 10, 21). We used a similar procedure to obtain
interactions for calcium VCa-P(r).

Results
Determination of the Parameters in the TIS RNA Model. The 2
adjustable parameters in our RNA force field are U 0

hb that
determines the strength of hydrogen bonds and ∆G0 that
dictates the balance between stacking and hydrogen bond-
ing (details described in SI Appendix). Following our previous
study (2), we determined the values of the 2 parameters by
reproducing the experimental heat capacity curves of human
telomerase RNA hairpin and a viral pseudoknot. The melt-
ing temperatures of the 2 RNA motifs are reproduced well
by simulations using the model (largest deviation is <5 ◦C)
(SI Appendix, Fig. S2). In the rest of this paper, we use this
set of parameters, coupled with our treatment of divalent
ion–phosphate interactions, to investigate the effects of a mix-
ture of divalent and monovalent ions on folding of 3 RNA
molecules. It is worth emphasizing that the same set of param-
eters is used for all RNA molecules over a wide range of ion
concentrations.

Fig. 1. Effective (Eq. 5) Mg2+–P potential (red) constructed by combining
the short-ranged part of the PMF (gray dashed line) with the long-ranged
Debye–Hückel potential (blue dashed line). Calculations of the PMF were
performed at 1.0 mM magnesium monophosphate and 25 ◦C using the
RISM theory (for details see SI Appendix). The first minimum represents
the inner-shell interaction, where Mg2+ interacts directly with the phos-
phate groups. The second minimum at r≈ 5 Å represents the outer-shell
interaction, where Mg2+ retains its first hydration shell.

Preferential Interaction Coefficient as a Function of Mg2+ Concentra-
tion. We first performed CG simulations to probe the binding of
divalent cations to the RNA, expressed in terms of the experi-
mentally measurable ion-preferential interaction coefficient, ΓX

(where X is Mg or Ca). In the simulations, a single RNA
molecule was placed in a cubic simulation box in the presence
of explicitly modeled divalent cations. After equilibration, we
calculated ΓX using the Kirkwood–Buff integral (58–63),

ΓX =C2

∫
[gX (r)− 1]dr, [6]

where gX (r) is the 3D distribution function of the divalent
cations, reflecting the excess (or deficit) of X2+ relative to the
bulk ion concentration, C2, in the presence of the RNA.

In Fig. 2, we show ΓMg for beet western yellow virus
pseudoknot (BWYV PK), a 58-nt fragment of the ribosomal
RNA (rRNA), and the aptamer domain of adenine riboswitch
at different concentrations of monovalent and magnesium ions.
The BWYV PK folds in the presence of monovalent ions without
Mg2+. Our simulations show that if the divalent ion concentra-
tion is increased, more of them are attracted to the PK, which is
in quantitative agreement with experimental data. We also cap-
ture a more subtle experimental finding that there is a decrease
of ΓMg if the monovalent ion concentration is increased from
54 mM to 79 mM, thereby effectively enhancing the competition
with Mg2+ binding.

For the rRNA and the riboswitch, the situation is more compli-
cated. Both of them partially unfold at low Mg2+ concentrations
because tertiary interactions are disrupted. For these 2 RNA
molecules, in addition to Mg2+ ion concentration, ΓMg also
strongly depends on the state of the RNA. At low Mg2+ con-
centrations, the equilibrium shifts to extended states, which fur-
ther decreases ΓMg. Interestingly, our simulations quantitatively
reproduce ΓMg (Fig. 2) over a broad range of monovalent and
divalent ion concentrations, for both the rRNA and riboswitch
(see below for additional results for rRNA).

Divalent Ion-Dependent Folding Free Energy of BWYV Pseudo-
knot. In a typical titration experiment, one often measures
ΓX as a function of divalent ion concentrations in the pres-
ence of excess monovalent ions (C2�C1) (41, 67, 70–73). If
the RNA remains in a single state S (F, folded; I, interme-
diate; or U, unfolded) during the titration process, the free
energy change due to the accumulation of divalent ions around
RNA in state S is directly related to ΓX ,S . For concreteness,
consider the following equilibrium reaction RNAS +nX 2+ �
RNAS .nX

2+, showing that there is an uptake of n (need not
be an integer) divalent cations by the RNA in the S state.
Provided C2�C1, the free energy change associated with
the equilibrium reaction given above, ∆GX ,S , is related to
ΓX ,S as

∆GX ,S =−kBT
∫ C2

o

ΓX ,Sd lnC . [7]

Note that Eq. 7 would not be valid if the RNA simultane-
ously populates different states during the titration process. For
instance, if the RNA remains folded at high C2 but unfolds at low
C2 (as in the rRNA and riboswitch cases), there is no obvious way
to relate ΓX and ∆GX ,S , because ΓX reflects the binding affinity
to 2 (or more) states.

To calculate the free energy change upon folding, it is neces-
sary to calculate ∆GX ,S for each state of the RNA separately,
which can be done if the ensemble of RNA conformations
is restricted to S. We choose BWYV PK for illustrative pur-
poses because its (un)folding can be used to clearly distinguish
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Fig. 2. (A–C) Comparison of the calculated and measured values of the
preferential interaction coefficient ΓMg for (A) BWYV pseudoknot (64), (B)
the 58-nt fragment of the large subunit ribosomal RNA (65), and (C) the
aptamer domain of adenine riboswitch (66) at various monovalent salt con-
centrations. Experimental data are taken from refs. 67–69. The results of
simulations are given by colored symbols with standard errors, and the
dashed lines are data from experiments. In most cases, the error bars from
the simulations are smaller than the symbol sizes. Only BWYV remains
folded at all values of the concentrations of Mg2+. The riboswitch and rRNA
partially unfold at low Mg2+ concentrations. At high Mg2+ concentrations
(up to ∼1 mM) the RNA molecules are in the folded states, whose struc-
tures are shown in A–C, Center. Nucleotides are colored from 5′ to 3′ as
red to blue. Secondary structures are shown in A–C, Right, displaying the
sequences.

between the F, I, and U states. Furthermore, the availability
of experimental data allows us to compare directly with our
simulations (67, 74).

The folded structure of the BWYV PK (Fig. 2A) has 2
Watson–Crick stems (S1 and S2) that are connected by 2 small
loops. The F state is stabilized by tertiary interactions between
the 2 loops and the 2 stems. The stem S1 has 5 G-C base pairs,
while S2 has only 3 G-C base pairs. Therefore, we anticipate that
S2 should unfold first upon increasing the temperature or lower-
ing the salt concentration, as predicted by the stability hypothesis
(75). Both experiments (74) and our previous simulations (31)
have shown that BWYV does unfold by 3 sequential equilibrium
transitions as temperature is increased, thus populating 2 inter-
mediates. In one of them, there is a loss of tertiary interactions
but the stems are intact. However, the probability of formation
of such a state is small. Thus, for practical purposes, the over-
all transition to the unfolded state occurs by populating one
intermediate, F→ I→ U.

To calculate the free energies of the folding and unfold-
ing transitions, we first generated an ensemble of unfolded
structures. We performed simulations of the I state by disal-
lowing interactions between base pairs in S2, while preserv-
ing the full interaction for S1, as shown in previous stud-
ies (31, 74). The ensemble of such structures coincides with
what we observed in our thermal unfolding simulations (SI

Appendix, Fig. S2). We surmise that the simulated ensemble
is the one probed in the experiments (67), where all of the
nine 3′-terminal nucleotides were mutated to uracil, thus pre-
venting the formation of S2. In the U state, both the stems
are unfolded, which can be mimicked by disrupting all of
the specific interactions within the PK. This renders the PK
essentially a polyelectrolyte dominated by Coulomb repulsions
between the phosphate charges and secondary stackings between
consecutive bases.

With the simulated ensemble of U and I structures, we cal-
culated ΓMg,I and ΓMg,U . The results are shown in Fig. 3 at
two different KCl concentrations. The uptake of Mg2+ in the
I and U states is less compared to the F state because they
adopt more expanded conformations with spatially separated
phosphate groups, thus weakening the electrostatic attraction.
The calculations of ΓMg,S are in quantitative agreement with
the experimental data. The difference ∆ΓMg = ΓMg,F −ΓMg,I

between the 2 states is the number of Mg2+ uptake in the I→F
transition, which is shown in Fig. 3B, Insets at 2 monovalent
concentrations. We find a slight increase in ∆ΓMg as the Mg2+

concentration increases, in agreement with the direct measure-
ment of ∆ΓMg from the fluorescence dye method (67). This is
in accord with other experiments, which have shown that ∆Γ for
monovalent ions also exhibits a dependence on the salt concen-
tration (44, 76). Our calculations, therefore, do not support the
Wyman linkage analysis used to determine ∆ΓMg, as this method
yields a constant value for ∆ΓMg over the Mg2+ concentration
range (67).

We then calculated the free energy changes for all of the states
using Eq. 7, and the results are shown in Fig. 3. Interestingly,
Mg2+ ions are also localized near the U and I states, albeit to a
lesser extent, demonstrating that it is important to characterize
Mg2+–RNA interactions not only in the F state but also in other

A

B

Fig. 3. (A and B) Ion preferential interaction coefficient ΓMg,S (Left) and
free energy of Mg2+–pseudoknot interaction ∆GMg,S (Right) for BWYV in
54 mM KCl (A) and 79 mM KCl (B), at T= 25 ◦C. The calculations were per-
formed for the folded, intermediate, and unfolded states (S = F, I, or U)
(see main text and Fig. 4 for definition of the states). Experimental data
for the F and I states are plotted as dashed lines (67). The results for the U
state serve as a prediction of the simulations. The differences between the
F and I states, ∆ΓMg = ΓMg,F −ΓMg,I and ∆∆GI−F = ∆GMg,F −∆GMg,I, are
plotted in B, Insets. ∆ΓMg (Left Inset) represents the number of Mg2+ ions
released when BWYV transitions from the F to the I state. ∆∆GI−F (Right
Inset) is the change in the free energy of the F state relative to the I state
upon addition of Mg2+ ions. The error bars in Insets are relatively large.
However, it is clear that ∆ΓMg and ∆∆GI−F are not constant in the range
of [Mg2+] here.

Nguyen et al. PNAS | October 15, 2019 | vol. 116 | no. 42 | 21025

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911632116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1911632116/-/DCSupplemental


relevant states along the folding pathway. For example, at 1 mM
Mg2+ and 54 mM KCl, ∆GMg,U ∼−2 kcal/mol, ∆GMg,I ∼−4
kcal/mol, while ∆GMg,F ∼−7 kcal/mol. One way to quantify
the effect of Mg2+ addition on the folding process is to com-
pute ∆∆G . For instance, for the I → F transition, ∆∆GI−F =
∆GMg,F −∆GMg,I . The stabilization of the F state relative to
the I state or U state caused by Mg2+ addition (∆∆GI−F or
∆∆GU−F ) is therefore ∼ −3 and −5 kcal/mol, respectively.
The relatively small value of the Mg2+ dependence on the fold-
ing free energy is likely due to the small size of this PK, whose
folded state is stable even in the absence of Mg2+ (SI Appendix,
Figs. S2B and S5).

Free Energy of BWYV Pseudoknot Using Thermodynamic Cycle. In
Fig. 4, we illustrate how the free energy data shown in Fig. 3 in
conjunction with the RNA folding free energy data obtained by
varying the temperature could be used to construct a folding free
energy diagram for BWYV at 0.2 mM Mg2+. Similar diagrams
at arbitrary concentration of Mg2+ can be generated. The ver-
tical free energy differences (Fig. 4) are from WHAM analysis
of multiple-temperature simulations with or without Mg2+ (see
SI Appendix for additional details). The horizontal free energy
differences are Mg2+–RNA free energies as in Fig. 3. The Mg2+-
dependent free energy of stabilization is evaluated by 2 ways
using the thermodynamic cycle,

∆∆GI−F = ∆GMg,F −∆GMg,I = ∆GI−F ,Mg−∆GI−F [8]

∆∆GU−I = ∆GMg,I −∆GMg,U = ∆GU−I ,Mg−∆GU−I ,

where ∆Gα−β,Mg and ∆Gα−β are, respectively, the free energy
difference between the α and β states (α,β is F, I, or U) in the
presence and absence of Mg2+. The calculated free energies are
in remarkable agreement with experiments and are consistent

Fig. 4. Folding free energy (kcal/mol, 25 ◦C) diagram of BWYV pseudoknot
at 54 mM KCl in the absence (Left) or presence (Right) of 0.2 mM Mg2+. The-
oretical values are in red and experimental values are in blue. Experimental
data for ∆GU-I (no Mg2+) and ∆GMg,U are not available. For ∆GU-I, data for
40 mM and 74 mM KCl are reported with the hope that they should bracket
the 54 mM KCl data. ∆GMg,U for experiment is then evaluated based on
the other free energies in the cycle. Folding free energies (black arrows) are
calculated from thermal denaturation simulations. Mg2+–RNA free energies
(blue arrows) are taken for each state at 0.2 mM Mg2+ from Fig. 3.

with each other (∆∆G values estimated by 2 different meth-
ods give similar values, with the errors ±0.4 kcal/mol). Given
that they are independently determined, it shows that our theory
can be reliably used to study thermodynamics of Mg2+-induced
RNA folding.

Mg2+-Induced Folding of the 58-nt rRNA. We investigated the fold-
ing of the 58-nt rRNA, which, although folds at high (∼1.6 M)
monovalent ion concentrations, requires Mg2+ (68). We carried
out simulations of the 58-nt rRNA as a function of different
combinations of monovalent and divalent ion concentrations.
Fig. 2B already shows that we can quantitatively account for
the dependence of ΓMg as a function of both monovalent and
divalent ion concentrations. To fully characterize the folding of
the rRNA fragment, we calculated the radius of gyration, Rg ,
as a function of Mg2+ concentration at 4 concentrations of KCl.
Fig. 5A shows that Rg values decrease continuously from ∼25 Å
at [Mg2+] ∼2 µM to ∼16 Å at high Mg2+ concentrations, which
is consistent with experimental measurements at 40 mM KCl
(shown as red bars in Fig. 5) (68). Interestingly, our calcula-
tions show that the concentration of KCl has minimal effect on
the dependence of Rg on Mg2+, even at low Mg2+ concentra-
tions at which the RNA is partially unfolded. This is because at
these KCl concentrations, the secondary structure of the rRNA
is fully formed (Fig. 5B). Therefore, adjusting the monovalent
ion concentration does not considerably assist folding since it
requires Mg2+ for tertiary structure formation. Fig. 5B shows
the average fraction of native contacts for the rRNA, Q, as a
function of Mg2+ concentrations. In accord with the Rg anal-
ysis, the Q values at low [Mg2+] are small, fluctuating around
∼0.35. At these Mg2+ concentrations, the secondary structure
of the rRNA is completely stabilized without forming tertiary
interactions. At high [Mg2+], Q increases and reaches ∼0.7.
Just as found for Rg , we also observe a negligible dependence
of Q on monovalent ion concentration. Thus, both the order
parameters (Rg and Q) show that rRNA formation, which does
not depend much on KCl concentrations, is only moderately
cooperative.

Free Energy Changes upon Folding. To obtain the folding ther-
modynamics of rRNA we calculated ∆GMg,S for each state of
the 58-nt rRNA by assuming that the folding transition occurs
sequentially, U → I → F, where the I state is composed only of
secondary structure of 3 stems connected by small loops (Fig. 6).
It is possible that for such a complex RNA, more than one
intermediate state could be populated during the (un)folding
process. However, we chose only one intermediate state to
separate the effect of divalent cations on secondary and ter-
tiary interaction formation. The transition U → I involves only
secondary structure formation, while I → F requires the for-
mation of only tertiary interactions. As before, we performed
simulations for each state by constraining the ensemble of
RNA structures in such state. We emphasize that these simula-
tions are completely different from the simulations above (from
which we calculated ΓMg, Rg , and Q), which were performed
using all of the sampled conformations. The constrained sim-
ulations were used only to calculate ΓMg,S , Mg2+–RNA free
energies, ∆GMg,S , and ∆∆Gα−β (where S, α, and β are F, I,
and U).

In Fig. 6, we show the results for the stabilization free energies
of the folding transitions upon addition of Mg2+ ions, ∆∆Gα−β ,
calculated using Eq. 8. Data for ΓMg,S and ∆GMg,S , which were
used to compute ∆∆Gα−β , can be found in SI Appendix, Fig. S7.
∆∆Gα−β shows the change of the relative stability of the 2
states α and β upon addition of Mg2+ on the α↔β transition.
We explicitly show only ∆∆GU−I and ∆∆GU−F curves, but
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Fig. 5. Mg2+-induced folding of the 58-nt fragment of ribosomal RNA. (A)
Compaction of rRNA as the Mg2+ concentration increases. The colors corre-
spond to 4 monovalent ion concentrations (shown in B). RF is the value of Rg

for the F state, calculated from the PDB structure (PDB ID 1HC8). Experimen-
tal measurements of Rg in 40 mM KCl are plotted as vertical red error bars
(68). Some representative structures from the simulations are also shown.
(B) Average fraction of native contacts vs. Mg2+ concentration. The horizon-
tal dashed line at around Q≈ 0.35 indicates complete secondary structure
formation with no tertiary interactions.

∆∆GI−F can be calculated as the difference between these 2
curves, as ∆∆GI−F = ∆∆GU−F −∆∆GU−I . It is obvious that
the higher the [Mg2+] is, larger is the effect of Mg2+ ions on all
3 transitions since all ∆∆G values decrease (increase in magni-
tude) as [Mg2+] rises. Therefore, higher [Mg2+] induces a shift
in the equilibrium toward more compact states (U → I → F).
The magnitude of ∆∆G for rRNA is quite large compared
to BWYV, indicating the dramatic dependence of the rRNA
folding on Mg2+. For rRNA in 60 mM KCl, adding 0.1 mM
Mg2+ leads to ∆∆GI−F ≈−8 kcal/mol and ∆∆GU−F ≈−13
kcal/mol. In comparison, for BWYV at 54 mM KCl, those values
are ∆∆GI−F ≈−1.4 kcal/mol and ∆∆GU−F ≈−2.2 kcal/mol,
respectively. On the other hand, if one instead increases the
concentration of monovalent ions, the values of ∆∆G become
smaller (Fig. 6), which also happens in the BWYV PK (shown
in Fig. 3B, Insets). At 150 mM KCl, adding 0.1 mM Mg2+ into
the solution of rRNA leads only to ∆∆GI−F ≈−4 kcal/mol and
∆∆GU−F ≈−6 kcal/mol, respectively.

Comparison between Mg2+ and Ca2+ Ions. We also studied the
effect of the cation size (Mg2+ vs. Ca2+) on RNA folding. We
computed the Ca2+–P effective potential, VCa-P (r), using the
same procedure used to obtain VMg -P (r). Fig. 7A compares the
effective potentials of the 2 ions. A major difference between
VCa-P (r) and VMg-P (r) is that the barrier separating the inner-
shell and outer-shell binding in Ca2+ is much lower than in Mg2+.
This difference arises because the charge density of Mg2+ is
much higher than that of Ca2+, which results in orders of magni-
tude difference in the water exchange kinetics between Mg2+ and
Ca2+ (77). It is also in accord with the observation that the inter-
action of Mg2+ with water in the first hydration shell is stronger
than in Ca2+ (SI Appendix, Fig. S10).

Fig. 7B shows the radial distribution function, gX-P (r),
between the divalent ions and phosphate groups in BWYV PK.
It is obvious that our model accounts for both types of bind-
ing. The presence of inner- and outer-shell binding of Mg2+ to
P is indicated by 2 visible peaks in gMg -P (r). The first peak is
located at r ∼ 2.4 Å and the second one is at r ∼ 4.8 Å. The slow
decay of gMg-P (r) toward 1 is due to the presence of other phos-
phates in the RNA. The peaks for Ca2+ are very similar and
are shifted slightly upward toward longer distance (2.7 Å and
5.1 Å), indicating that Ca2+ has a comparable affinity for the
phosphate groups.

We also investigated the folding of the rRNA in the presence
of Ca2+ ions. Due to the similar affinity of the 2 ions toward phos-
phate groups, there is little difference in the folding behavior of

rRNA between Ca2+ and Mg2+ in terms of ion accumulation,
fraction of native contacts, and global size (Fig. 7 C and D). It
is possible that the difference between the 2 ions is apparent
only in the case of more complex RNAs, such as group I intron
ribozyme (10), where the folded state is highly compact and there
is not sufficient room in the core of the RNA to accommodate
larger ions, and therefore replacing Mg2+ by Ca2+ in these cases
would destabilize the folded state. Nonetheless, we find an inter-
esting difference in the nature of binding of the 2 ions: Ca2+

dehydrates readily due to its lower charge density and binds the
phosphate groups directly in the inner shell, while Mg2+ coordi-
nation, with a higher charge density, is roughly similar between
the inner and outer shells. A more detailed study will be reported
in a subsequent publication.

In addition, we also show in Fig. 7 data for Mg2+ assum-
ing that the Mg2+–P interaction is given by the DH potential
(green curves). In the gMg-P (r) plot (Fig. 7B), the DH poten-
tial completely misses the second peak and the first peak is
also much lower compared to our model. This leads to lower
affinity with the phosphate groups, resulting in fewer ions accu-
mulated around the RNA. When applying the DH potential to
rRNA folding, we find that the RNA does not fold, but rather
adopts much more extended conformations, which is directly
related to the small uptake of ions, at all Mg2+ concentrations
(Fig. 7 C and D). Our model thus reveals the importance of
treating Mg2+–P interaction accurately to faithfully capture both
structural and thermodynamic features of Mg2+-assisted RNA
folding.

Importance of Outer-Sphere Mg2+-P Coordination. One of the key
predictions of this work is that accurate predictions of RNA
folding thermodynamics require a consistent description of both
the inner- and outer-sphere coordination of divalent cations to
phosphate groups. To assess the importance of the outer-sphere
coordination, we created a potential that retains the inner-shell
interaction between Mg2+–P, while smoothly joining the outer-
shell interaction with the DH potential (Fig. 8A). In so doing
all of the outer-shell interactions between Mg2+–P are elimi-
nated. The barrier between inner sphere and outer sphere in
the modified potential is lower than in the original potential. We
believe that the smaller barrier would only alter the kinetics of
water and ion exchange around Mg2+ and should not affect the
folding thermodynamics quantities. The outer-sphere coordina-
tion interaction is only weakened ∼0.2 kcal/mol in the modified
potential.

The simulations using the modified potential reveal a large
impact on Mg2+–RNA interactions and RNA folding. The

Fig. 6. Stabilization free energies, ∆∆G (defined in Eq. 8), of the inter-
mediate state (dashed lines) or the folded state (solid lines) relative to the
unfolded state upon addition of Mg2+ ions for rRNA. ∆∆GI−F is the differ-
ence between these 2 free energies ∆∆GI−F = ∆∆GU−F −∆∆GU−I. In the
I state, secondary structures are formed. Therefore, ∆∆GU−I and ∆∆GI−F

are, respectively, the stabilization free energies of Mg2+ on secondary and
tertiary structure formation.
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Fig. 7. Comparison between Mg2+ and Ca2+ binding to phosphate groups
and RNA. (A) Effective potentials for Mg2+ and Ca2+ with the phosphate
group show that the transition barrier between inner-shell–outer-shell coor-
dination for Ca2+ is considerably lower than for Mg2+. However, the depths
of the inner- and outer-shell minima are comparable. (B) Radial distribution
function between the ions and phosphate groups in BWYV. Also shown are
the results for Mg2+ ions in which Mg2+–phosphate interactions are modeled
using the Debye–Hückel potential (green). (C and D) Preferential interaction
coefficient ΓX (C) and radius of gyration Rg (D) computed for 58-nt rRNA.
Only data for 150 mM KCl are presented here; data for other KCl concen-
trations can be found in SI Appendix, Fig. S6. The rRNA reaches its native
states at high divalent ion concentrations using our model, but does not
easily fold at any Mg2+ concentration should the Debye–Hückel potential
be used.

substantial changes are illustrated in Fig. 8B, comparing the
values of ΓMg for BWYV in 54 mM KCl. A seemingly small
softening of the outer-sphere coordination interaction leads to
a significant decrease in ΓMg. This shows, rather vividly, that
the Mg2+–RNA interaction, and therefore the Mg2+–RNA free
energy, is extremely sensitive to the Mg2+–P interaction. In
rRNA, the situation is even more pronounced (Fig. 8C). Because
the folding of the rRNA depends dramatically on Mg2+, weaken-
ing the outer-sphere coordination interaction modestly prevents
the folding of rRNA even at high [Mg2+] due to an insuffi-
cient number of condensed Mg2+. Interestingly, the use of the
modified potential results in insignificant compaction of rRNA
even at the highest Mg2+ concentration (Fig. 8C, Lower). Sur-
prisingly, there is negligible difference in the predictions for Rg

between the predictions using the DH potential and the modi-
fied potential. The results in Fig. 8 B and C show that accurate
predictions for RNA folding thermodynamics require account-
ing for both inner- and outer-sphere coordination of Mg2+ with
phosphates.

Discussion
In this study, we have introduced a method to capture the impact
of a solution containing a mixture of monovalent and divalent
cations on RNA folding. In our model, based in part on liquid-
state theory, divalent cations are treated explicitly while the
screening effect of monovalent salt is treated implicitly. We rea-
soned that since the DH theory works well at long range (in
fact, the DH theory gives asymptotically correct results at long
distances), we could improve the divalent cation interactions by
using theory to describe the short-ranged interactions. To obtain
the short-ranged interactions, we used RISM theory to com-
pute the PMF between the divalent cation–phosphate group and
combined it with the long-ranged part of the DH potential to
obtain the effective potential VX-P (r). Applications to 3 RNA

molecules, with different sequences and structures, illustrate
that our theory quantitatively reproduces the Mg2+ preferential
interaction coefficients and Mg2+–RNA free energies for dif-
ferent combinations of ion concentrations. The transition free
energies, as the RNA traverses along the folding pathway, are
also in remarkable agreement with experimental data. The sim-
ulations not only reproduce the thermodynamics of divalent
cation binding to RNA but also recapitulate the correlation
between divalent cation concentration and RNA folding. In addi-
tion, we presented the effects of divalent cations on secondary
and tertiary structure formations for an RNA construct and its
dependence on monovalent concentrations.

The difference in the divalent cation–RNA interactions
between our model and the DH theory occurs only in the
short-ranged part, rX−P≤ 10 Å (little difference exists from r ∼
6−10 Å in Fig. 1). Nonetheless, such a difference proves to be
very crucial in obtaining the correct divalent cation binding free
energies, as it translates to at least ∼2.0 kcal/mol deviation of
∆GMg,F for BWYV (SI Appendix, Fig. S9). We also show that
to obtain the correct divalent ion–RNA binding free energies,
it is important to take into account both inner- and outer-shell
interaction accurately. A deviation of only 0.2 kcal/mol in the
divalent cation–P potential could lead to a substantial decrease
in the number of bound ions. In complex RNAs whose folding
depends on divalent ions, loss of bound ions could even cause
the RNAs to be thermodynamically unstable even at elevated
ion concentrations. It is also worth stating that since our model
treats monovalent ions implicitly, it has a large advantage over
fully explicit ion models in terms of simulation performance and
could be used to study much larger RNA molecules including
RNA–protein interactions. Indeed, our theory is sufficiently gen-
eral that it can be applied to calculate ion (with arbitrary valence
and size) effects on DNA as well as synthetic polyelectrolytes and
polyampholytes.

A B

C

Fig. 8. Importance of treating both inner- and outer-sphere coordination.
(A) Modified effective potential for Mg2+ with softened outer-sphere coor-
dination interaction, while keeping the inner-sphere coordination interac-
tion intact. (B and C) Comparison of (B) preferential interaction coefficient
ΓMg for BWYV PK at 54 mM KCl and (C) ΓMg and Rg for 58-nt rRNA at
150 mM KCl using the modified potential. Despite a tiny difference in the
outer-sphere coordination (∼0.2 kcal/mol), the values of ΓMg decrease sig-
nificantly from those of the original model. In rRNA, the modified potential
even cannot fold the rRNA at relevant Mg2+ concentrations, as can be seen
in the high values of Rg.
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Although no other existing computational model can be used
to calculate ion-dependent folding thermodynamic properties
of RNA of arbitrary size and sequence accurately, as we have
done here, our theory is not without limitations. For example,
we considered only the divalent ion–phosphate interaction and
neglected interactions with the bases, which might be important
as the size of RNA molecules increases. It is suspected that the
Mg2+ ion interacts with electronegative atoms in the base moi-
ety (both inner shell and outer shell) (21, 22). However, it is
unknown whether such interactions are relevant for RNA fold-
ing thermodynamics. In addition, our RNA force field includes
nonnative interactions only in a limited manner. Nevertheless,
the remarkable agreement between the theoretical predictions
and experiments opens entirely different ways to quantitatively
probe ion-induced folding of RNAs regardless of their sizes and
sequences.

Conclusions
We have proposed a theory of divalent ion–phosphate inter-
actions, based on concepts in liquid-state physics, for use in
coarse-grained simulations of RNA folding in the presence of
explicit divalent cations while the screening effect of monovalent

salt is treated implicitly. Because our model accounts for both the
inner- and outer-sphere coordination of divalent cations with the
RNAs using RISM, the theory quantitatively reproduces diva-
lent cation-dependent free energies for folding transitions and
the correlation between the divalent cation binding and RNA
folding. The success of our general method, which integrates
liquid-state theories and a coarse-grained TIS model for RNA,
is widely applicable to a variety of problems in RNA biology
in which divalent cations play an important role. Finally, the
theory could also be used to treat the effects of spherical and
nonspherical ions on the conformations of RNA as well as DNA.

Materials and Methods
Full details of RISM theory, the calculation of divalent cation–phosphate
potential, the RNA coarse-grained force field, and simulation details are
provided in SI Appendix.
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