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On the multibin logarithmic score used in the
FluSight competitions
Johannes Brachera,1

The FluSight challenges (1) represent an outstanding
collaborative effort and have “pioneered infectious dis-
ease forecasting in a formal way” (ref. 2, p. 2803). However, I
wish to initiate a discussion about the employed evaluation
measure.

The competitions feature discrete or discretized
targets related to the US influenza season. E.g., for the
peak timing Y, a forecast distribution F consists of
probabilities p1, . . . ,pT for the T = 33 wk of the season.
Such forecasts can be evaluated using the log score (3, 4)
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where yobs is the observed value. This score is strictly
proper; i.e., its expectation is uniquely maximized
by the true distribution of Y. In the FluSight com-
petitions the logS is applied in a multibin version,
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to measure “accuracy of practical significance” (ref.
1, p. 3153). Depending on the target, d is either 1 or 5.
Following the competitions, this score has becomewidely
used (5–10), even though as also mentioned in ref. 1, it is
improper. This may be problematic as improper scores
incentivize dishonest forecasts. Assume T > 2d and

p1 = · · · =pd =pT−d+1 = · · · =pT = 0, [1]

i.e., probability 0 for the 2d extreme categories. Now
define a “blurred” distribution ~F with

~pt =
Pd

i=−d
pt+i

2d + 1
, t = 1, . . . ,T , [2]

where pt =0 for t < 1 and t >T and Eq. 1 ensuresPT
t=1~pt = 1. This implies
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i.e., the MBlogS is essentially the logS applied to a
blurred version of F. To optimize the expected
MBlogS under their true belief F, forecasters should
therefore not report F, but a sharper forecast G so
that the blurred version ~G (with ~pG,1, . . . , ~pG,T de-
rived from pG,1, . . . ,pG,T as in Eq. 2) is close or equal
to F. This follows from the propriety of the logS. An
optimal G is found by maximizing

PT
t=1pt · logð~pG,tÞ

with respect to pG,1, . . . ,pG,T.
This optimal G can differ considerably from

the original F, as Fig. 1 shows for forecasts of the
2016 to 2017 national-level peak timing by the
Los Alamos National Laboratory (LANL) team (9)
(downloaded from https://github.com/FluSightNetwork/
cdc-flusight-ensemble/). The optimized Gs (with d = 1)
often have their mode shifted by 1 wk and tend to be
multimodal, even for unimodal F. Averaged over the
2016 to 2017 season they yield improved MBlogS
for the peak timing (−0.434 vs. −0.484). This illus-
trates that the MBlogS may be gamed, even though
we strongly doubt participants have tried to. The
logS, like any other proper score, could avoid such
pitfalls.
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Fig. 1. Forecasts F for the peak week, submitted by the LANL team in weeks 6 to 7, 2017, and optimized versionsG. Diamondsmark the observed
peak week. Expected scores are computed under F.
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