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On the multibin logarithmic score used in the

FluSight competitions

Johannes Bracher®"

The FluSight challenges (1) represent an outstanding
collaborative effort and have “pioneered infectious dis-
ease forecasting in a formal way” (ref. 2, p. 2803). However, |
wish to initiate a discussion about the employed evaluation
measure.

The competitions feature discrete or discretized
targets related to the US influenza season. E.g., for the
peak timing Y, a forecast distribution F consists of
probabilities py, ..., pr for the T =33 wk of the season.
Such forecasts can be evaluated using the log score (3, 4)

logS(F, Yobs) =log(py...).

where y,ps is the observed value. This score is strictly
proper; i.e., its expectation is uniquely maximized
by the true distribution of Y. In the FluSight com-
petitions the log$ is applied in a multibin version,

d
MBlog$S (F, yobs) =log <Z Pyobs+f) '

i=—d

to measure "accuracy of practical significance” (ref.
1, p. 3153). Depending on the target, d is either 1 or 5.
Following the competitions, this score has become widely
used (5-10), even though as also mentioned in ref. 1, it is
improper. This may be problematic as improper scores
incentivize dishonest forecasts. Assume T > 2d and

p1="=pP4d=pPr-gt1= """ =pr=0, [

i.e., probability O for the 2d extreme categories. Now
define a “blurred” distribution F with

d
S~ Zf:_dpt‘f'i

po=Slt =1, LT, [2]

where p;=0for t<1and t>T and Eq. 1 ensures
SoL.pr=1. This implies

MBIogS (F, Yobs) =10gS(F, yobs) +log(2d +1);

i.e., the MBlogS is essentially the logS applied to a
blurred version of F. To optimize the expected
MBlogS under their true belief F, forecasters should
therefore not report F, but a sharper forecast G so
that the blurred version G (with pg1, ..., PG de-
rived from pg 1, ... pg,rasin Eq. 2)is close or equal
to F. This follows from the propriety of the logS. An
optimal G is found by maximizing ELpt -log(pat)
with respect to pg 1, - ... PG,T-

This optimal G can differ considerably from
the original F, as Fig. 1 shows for forecasts of the
2016 to 2017 national-level peak timing by the
Los Alamos National Laboratory (LANL) team (9)
(downloaded from https://github.com/FluSightNetwork/
cdc-flusight-ensemble/). The optimized Gs (with d=1)
often have their mode shifted by 1 wk and tend to be
multimodal, even for unimodal F. Averaged over the
2016 to 2017 season they yield improved MBlogS
for the peak timing (—=0.434 vs. —0.484). This illus-
trates that the MBlogS may be gamed, even though
we strongly doubt participants have tried to. The
logS, like any other proper score, could avoid such
pitfalls.
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Fig. 1. Forecasts F for the peak week, submitted by the LANL team in weeks 6 to 7, 2017, and optimized versions G. Diamonds mark the observed
peak week. Expected scores are computed under F.
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