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Abstract

Reactive nitrogen species play diverse and essential roles in host-pathogen interactions. Here we 

review selected recent discoveries regarding nitric oxide (NO) in host defense and the 

pathogenesis of infection, mechanisms of bacterial NO resistance, production of NO by human 

macrophages, NO-based antimicrobial therapeutics and NO interactions with the gut microbiota.

Introduction

Since the discovery that mammalian cells can produce large quantitites of nitric oxide (NO) 

in reponse to inflammatory stimuli, the role of reactive nitrogen species in bacterial 

infections has been a focus of intensive investigation.

NO in host defense

NO generated enzymatically by host NOS2 or abiotically in the gastric lumen by 

acidification of salivary nitrite exerts antimicrobial activity against diverse pathogens (figure 

1), including Clostridioides (Clostridium) difficile, Mycobacterium tuberculosis and 

Salmonella enterica [*1–3]. NO and congeners arising from its reaction with O2
.−, O2, iron 

and low-molecular weight thiols have high affinity for Fe3+, Fe2+ and Cu++ in terminal 

cytochromes of the electron transport chain, [4Fe-4S] cluster-containing dehydratases, 

redox-active protein cysteine residues, and tyrosyl and glycyl radicals in ribonucleotide 

reductase [4]. Metabolism is a particularly salient target of this diatomic radical. 

Dihydroxyacid dehydratase, lipoamide dehydrogenase, methionine synthase, aconitase, and 

Address correspondence to: Prof. Ferric C. Fang, Department of Microbiology, University of Washington School of Medicine, 1959 
NE Pacific Street, Box 357735, Seattle, WA 98195-7735 USA, Phone: 1-206-221-6770, Fax: 1-206-616-1575, fcfang@uw.edu. 

Declarations of Interest: None.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Opin Immunol. Author manuscript; available in PMC 2020 October 01.

Published in final edited form as:
Curr Opin Immunol. 2019 October ; 60: 96–102. doi:10.1016/j.coi.2019.05.008.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fructose bisphosphate aldolase are prominent targets of RNS [4–6]. Strict aerobes such as M. 
tuberculosis, Burkholderia spp, and Pseudomonas aeruginosa, which overwhelmingly rely 

on the electron transport chain to satisfy their energy needs, are particularly vulnerable to 

nitrosylation of terminal respiratory cytochromes [5, 7]. Conversely, Staphylococcus aureus 
and S. enterica, which can generate ATP via both oxidative and substrate-level 

phosphorylation, are relatively resistant to the antimicrobial actions of NO engendered by 

the innate immune response [8*, 9]. Detrimental effects of NO on bacterial metabolism, 

DNA replication and repair, and protein quality control underlie the robust and broad-

spectrum antimicrobial actions of RNS.

NO also targets regulatory proteins that coordinate bacterial virulence gene expression. For 

example, S-nitrosylation of AgrA Cys199 interferes with the quorum sensing-dependent S. 
aureus virulence program [10*] (figure 1). Similarly, S-nitrosylation or oxidation of SsrB 

Cys208 prevents transcription of genes encoding the Salmonella pathogenicity island-2 

(SPI-2) type III secretion system, which is of key importance for the pathogenesis of 

nontyphoidal Salmonella infections [11].

In addition to exerting direct antimicrobial activity, NO participates in host defense by 

modulating immunity [12]. It has recently been suggested that NO-mediated resistance to 

tuberculosis results in part from the negative effect of NO on neutrophil recruitment [13**] 

(figure 1). Paradoxically, NOS2 may promote host defense against S. aureus by stimulating 

the accumulation of granulocytes in lungs [10*]. It is presently unclear why NO exerts 

opposing effects on the granulocytic responses to M. tuberculosis and S. aureus.

Bacterial NO resistance and evasion

Given the profound antimicrobial activity of NO, it is not surprising that pathogenic bacteria 

possess a variety of anti-nitrosative defenses [4, 5]. The intracellular pathogens S. enterica 
and M. tuberculosis downregulate NOS2 expression via RNA interference or PPE2-binding 

to the TATA box of the Nos2 gene [14, 15], and Francisella tularensis inhibits NOS2 

expression by suppressing IP-10 production and IFNγ-induced STAT-1 signaling [16]. 

Salmonella also ameliorates RNS exposure by interfering with trafficking of NOS2-

containing vacuoles in a SPI2-dependent manner [5]. NO crosses membranes and enters 

bacterial cells where low molecular-weight thiols such as glutathione and mycothiol, as well 

as cytochrome bd, provide a first line of defense against nitrosative stress [4, 17]. Expression 

of the hmp-encoded flavohemoglobin and cytochrome bd allows the adaptive detoxification 

of NO in E. coli, M. tuberculosis, Salmonella, S. aureus and Yersinia pseudotuberculosis 
[17–21]. Mechanisms of hmp regulation vary among pathogenic bacteria. The hmp gene is 

de-repressed in Gram-negative bacteria such as Salmonella and E. coli upon nitrosylation of 

the NsrR [2Fe-2S] cluster, whereas hmp transcription in S. aureus is under positive 

regulation by the SrrAB two-component regulatory system that monitors the redox status of 

the respiratory chain [18, 22]. Hmp is selectively expressed by bacteria in 

microenvironments where NO is present. Detoxification of NO by Hmp in marginal zones 

protects Yersinia within microcolonies, thereby orchestrating a spatially-dependent 

functional specialization of bacterial cells within infected foci [21].
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Pathogenic bacteria reprogram their metabolism under nitrosative stress. A reduction in 

branched-chain amino acids that follows the nitrosylation of dihydroxyacid dehydratase is 

sensed by ribosomally-bound RelA monitoring the aminoacylation state of incoming tRNAs 

[23*]. Guanosine tetraphosphate synthesized by RelA activates transcription of branched-

chain amino acid biosynthetic genes, not only reestablishing amino acid homeostasis but 

also allowing the translation of NO-consuming Hmp [23*]. Although terminal cytochromes 

of the electron transport chain are some of the most exquisitely-sensitive targets of NO [24], 

the electron transport chain is still important for the anti-nitrosative defenses of pathogenic 

bacteria. By working in reverse, the respiratory F1F0 ATPase maintains an alkaline 

cytoplasm, thereby promoting skin and soft tissue S. aureus infections under conditions such 

as nitrosative stress and hypoxia that limit respiration [19*]. The F1F0 ATPase may serve a 

similar function in Salmonella pathogenesis [8*]. In addition, the acquisition of manganese 

adds to the anti-nitrosative defenses of S. aureus and S. enterica [8*, 19*]. Analogous to its 

antioxidant role [25], manganese may substitute for iron, which is prone to NO toxicity.

S-nitrosylation of cysteine residues mobilizes Zn2+ from zinc metalloproteins involved in 

DNA replication and repair, protein synthesis, and metabolism [26*]. Zn2+ mobilized by NO 

can be detrimental to the cell. Thus, the ZntB and ZitB zinc efflux systems protect 

Salmonella from nitrosative stress [26*]. Nevertheless, Salmonella must reacquire zinc to 

resume growth, and the high-affinity ZnuABC zinc uptake system promotes Salmonella 
pathogenesis during the nitrosative stress engendered by the innate response of macrophages 

and mice [8*]. Given the widespread utilization of zinc metalloproteins, it is somewhat 

surprising that zinc-starved Salmonella tolerates nitrosative stress rather well as long as 

glycolytic fructose bisphosphate aldolase is functional. The metabolism of glucose satisfies 

cellular energy requirements of S. aureus and S. enterica by allowing the synthesis of ATP 

by substrate level phosphorylation in the payoff phase of glycolysis and acetate 

fermentation, while maintaining redox balance by the NADH-consuming fermentation of 

pyruvate to lactate [8*, 9].

NO in infection pathogenesis

Much effort has been focused on elucidating the multiple ways in which NO contributes to 

host defense. However, it is becoming increasingly clear that NO produced endogenously by 

bacteria or exogenously by host phagocytes may also promote bacterial pathogenesis in 

certain settings. NO produced endogenously by bacterial NOS plays a critical role in the 

pathogenesis of S. aureus and Bacillus anthracis infections [27**, 28]. Endogenously-

synthesized NO by bacterial NOS inhibits aerobic respiration while promoting the utilization 

of the oxidative branch of the tricarboxylic acid cycle [27**, 29]. NADH generated by the 

tricarboxylic acid cycle powers reduction of the alternative electron acceptor nitrate, thus 

maintaining the membrane potential during microaerobiosis, which is essential for nasal 

colonization by S. aureus [27, 29]. As bacterial NOS is structurally similar to the oxygenase 

domain of mammalian NOS [30], the regulation of electron transport may represent the 

primordial role of NOS in biology. As with exogenous NO [31–33], NO produced 

endogenously prevents oxidative stress while tolerizing Gram-positive pathogens to 

antibiotics [29, 34, 35].
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NO generated by the host can also paradoxically worsen bacterial infection. E. coli takes 

advantage of the energetic properties of nitrate derived from NOS2-expressing inflammatory 

cells to outcompete members of the resident gut microbiota [36**] (figure 1), whereas 

migration of Salmonella toward nitrate generated constitutively by host cells in the lamina 

propria promotes invasion of Peyer’s patches [37]. Alternatively, NO produced by the innate 

immune response can directly mediate immunopathology. For example, NO synthesized by 

infiltrating macrophages in response to Mycobacterium leprae phenolic glycolipids damages 

mitochondria of nerve cells, triggering demyelination that is pathognomonic of leprosy 

[38**] (figure 1).

NO production by human macrophages

After lipopolysaccharide and IFNγ were shown to stimulate high-output NO production by 

murine macrophages [39, 40], it soon became apparent the human peripheral blood 

mononuclear cell (PBMC)-derived macrophages do not respond similarly. Although some 

studies have found varying levels of NOS2 mRNA, NOS2 protein, NO production or NO-

dependent actions in human macrophages in vitro [41], marked quantitative differences 

compared to mice have suggested that human macrophages may not produce NO as an 

antimicrobial mediator [42].

However, analysis of NOS expression in macrophages from humans with active infections 

suggests that this is not the case [43]. For example, NOS2 protein is visualized within 

macrophages and epithelioid cells in most patients with leprosy [44, 45] where, as 

mentioned above, it may also play an important role in nerve damage [38**]. NOS2 protein 

and mRNA are also observed within submucosal bladder macrophages, in association with 

increased NO formation, in patients undergoing BCG immunotherapy of bladder cancer 

[46]. NOS2 mRNA is found in PBMCs in children with moderately severe falciparum 

malaria but not in those with severe disease [47], suggesting that alternative macrophage 

polarization with loss of NOS expression may contribute to insufficient NO production in 

severe cases, resulting in poorer clinical outcomes [48].

Granulomas from patients with active tuberculosis exhibit a complex spatial organization of 

NO-producing cells, which is also seen in experimentally infected macaques. NOS2 is found 

within macrophages, epithelioid macrophages and neutrophils centrally situated within TB 

granulomas. Epithelioid macrophages, some containing bacteria, express high levels of 

NOS2 and low levels of arginase (Arg1), suggesting that NO is an important component of 

the antimicrobial response [49**]. In contrast, higher arginase expression is evident in the 

surrounding lymphocyte cuff region, consistent with an immunoregulatory function of these 

cells. Even quiescent fibrocalcific granulomas contain NOS-positive cells, suggesting that 

NO may help to maintain microbial latency, as suggested in experimental models [50, 51].

Expression of NOS2 in human macrophages is not limited to infectious conditions. 

Macrophages containing NOS2 are seen in rheumatologic diseases and cancer [52–56]. NO 

production by tumor-associated macrophages can enhance or restrict tumor progression, 

depending upon the NO concentration and redox environment [57]. Whereas NO production 
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by tumor cells is associated with cancer progression and metastasis, NOS2 production by 

macrophages may be required for effective responses to chemotherapy [58, 59].

The recent discovery that the NOS2 gene promoter is highly methylated around the 

transcription start site in human macrophages [60*] suggests that epigenetic regulatory 

mechanisms are of particular importance. This may account for the difficulty in eliciting 

high output NO production in human macrophages from healthy subjects. A better 

understanding of the mechanisms by which NOS2 promoter silencing is relieved during 

infection will be an important focus of future research.

Therapeutic applications of NO in infections

High NO concentrations are inhibitory for a broad range of bacteria, viruses, fungi and 

parasites. Efforts to develop NO-based antimicrobial therapies have primarily focused on 

topical application or local delivery, to avoid unwanted physiological effects of systemic 

administration. Results are promising but still preliminary. A variety of NO-releasing 

scaffolds are in development [61]. Small clinical studies as well as animal and in vitro 

models have demonstrated efficacy of S-nitrosothiols, acidified nitrite or NO-releasing drugs 

in such diverse infections as cutaneous leishmaniasis, bacterial pneumonia and tinea pedis 

[62–65]. Acidified nitrite showed some efficacy in the treatment of viral warts but also 

caused local irritation [66].

The ability of NO to disperse bacterial biofilms by triggering specific sensor proteins [67] 

suggests that NO-based therapies may be useful for difficult-to-treat chronic infections 

involving biofilms, such as wound infections and cystic fibrosis-related lung infections [68] 

(figure 1). Inhaled NO was well tolerated in a phase I study of patients with cystic fibrosis 

and chronic resistant pulmonary infections, with a reduction in microbial burden and 

improved lung function after only 5 days of treatment [69]. Another trial of inhaled NO in 

cystic fibrosis patients observed a reduction in biofilm after 7 days’ treatment [70**]. As 

biofilm bacteria are more resistant to antibiotics [71], NO might be useful in combination 

with conventional antimicrobial agents. Synergy has also been shown against drug-resistant 

enteric bacteria treated with an NO donor, an antimicrobial peptide, and miconazole to 

inhibit the bacterial NO-detoxifying flavohemoglobin [72], although in other settings NO 

has been found to promote antibiotic tolerance [73].

Novel NO-charged materials have been developed as a strategy to create implantable 

catheters that are resistant to infection [74]. This approach could also reduce the incidence of 

thrombotic complications as a result of NO-mediated anti-platelet actions [75]. Yet another 

treatment approach is to stimulate the endogenous production of NO by host cells. Infergen, 

a synthetic interferon, enhances the ability of macrophages to restrict the growth of M. 
tuberculosis, in part via NO production [76]. L-arginine supplementation also augments NO 

production during infection [77] and might be a useful adjunctive therapy.

NO and the gut microbiota

The development of new tools to analyze complex microbial communities is yielding 

exciting new insights into the role of the microbiome in metabolism and immunity. 
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Reduction of dietary nitrate by oral bacteria and reduction of nitrite by the intestinal 

microbiota play important roles in the enterosalivary circulation of nitrogen oxides and 

cardiovascular health [78]. Dysbiosis may contribute to the pathogenesis of hypertension, 

obesity and atherosclerosis. Dietary nitrate supplementation not only reduces systemic blood 

pressure but also alters the composition of the microbiome [79].

Complex interactions between enzymatic NO production and the microbiota have also been 

observed. NOS2 and reactive oxygen species maintain bacterial homeostasis in the gut and 

may limit overgrowth [80]. However, NOS2-driven carbohydrate oxidation [81*] and NOx 

derived from NOS2 [36**] provide a competitive advantage to enteric pathogens (figure 1). 

In turn, organic acids produced by gut bacteria modulate NOS expression to prevent the 

production of nitrate that can be exploited by pathogenic bacteria as a respiratory substrate 

[82**]. Fecal microbiota transplantation is being utilized to restore gut homeostasis in an 

increasing number of conditions and may work in part by effects on NO production [83].

Conclusions

Recent studies have provide new and interesting insights into the role of NO and other 

reactive nitrogen species in host defense and the pathogenesis of infection, as well as 

mechanisms of bacterial NO resistance, the production of NO by human macrophages, NO-

based antimicrobial therapeutics and NO interactions with the gut microbiota.
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Figure 1. Diverse Actions of Nitric Oxide in Host-Bacterial Interactions.
Some important actions of NO are shown. Please refer to the text for details.
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