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Abstract

Artificial neural networks have been successfully applied to a variety of machine learning tasks, 

including image recognition, semantic segmentation, and machine translation. However, few 

studies fully investigated ensembles of artificial neural networks. In this work, we investigated 

multiple widely used ensemble methods, including unweighted averaging, majority voting, the 

Bayes Optimal Classifier, and the (discrete) Super Learner, for image recognition tasks, with deep 

neural networks as candidate algorithms. We designed several experiments, with the candidate 

algorithms being the same network structure with different model checkpoints within a single 

training process, networks with same structure but trained multiple times stochastically, and 

networks with different structure. In addition, we further studied the over-confidence phenomenon 

of the neural networks, as well as its impact on the ensemble methods. Across all of our 

experiments, the Super Learner achieved best performance among all the ensemble methods in this 

study.
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1. Introduction

Ensemble learning methods train several baseline models, and use some rules to combine 

them together to make predictions. The ensemble learning methods have gained popularity 

because of their superior prediction performance in practice. Consider a prediction task with 

some fixed data generating mechanism. The performance of a particular learner depends on 

how effective its searching strategy is in approximating the optimal predictor defined by the 

true data generating distribution, thus it is generally impossible to know a priori which 

learner would perform best given the finite sample data set and prediction problem [42]. One 

widely used method is to use cross-validation to give an “objective” and “honest” 

assessment of each learners, and then select the single algorithm that achieves best 

validation-performance. This is known as the discrete Super Learner selector [32, 41, 42], 

which asymptotically performs as well as the best base learner in the library, even as the 

number of candidates grows polynomial in sample size.
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Instead of selecting one algorithm, another approach to guarantee the predictive performance 

is to compute the optimal convex combination of the base learners. The idea of ensemble 

learning, which combines predictors instead of selecting a single predictor, is well studied in 

the literature: [3] summarized and referred several related studies [1, 10, 15, 33, 34] about 

the theoretical properties of ensemble learning. Two widely used ensemble techniques are 

bagging [2] and boosting [11–13]. Bagging uses bootstrap aggregation to reduce the 

variance for the strong learners, while boosting algorithms “boost” the capacity of the weak 

learners. [3, 45] proposed a linear combination strategy called stacking to ensemble the 

models. [42] further extended stacked generalization with a cross-validation based 

optimization framework called Super Learner, which finds the optimal combination of a 

collection of prediction algorithms by minimizing the cross-validated risk. Recently, the 

super learner have showed great success in variety of areas, including precision medicine 

[27], mortality prediction[5, 31], online learning [? ], and spatial prediction[8].

In recent years, deep artificial neural networks (ANNs) have led to a series of break-

throughs in a variety of tasks. ANNs have shown great success in almost all machine 

learning related challenges across different areas, like computer vision [17, 23, 40], machine 

translation [6, 28], and social network analysis [16, 30]. Due to their high capacity/

flexibility, deep neural networks usually have high variance and low bias. In practice, model 

averaging with multiple stochastically trained networks is commonly used to improve the 

predictive performance. [23] won the first place in the image classification challenge of 

ILSVRC 2012, by averaging 7 CNNs with same structure. [36] won the first place in 

classification and localization challenge in ILSVRC 2014 with averaging of multiple deep 

CNNs. [17] won the first place using six models of Residual Network with different depth to 

form an ensemble in ILSVRC 2015. In addition, [17] also won the ImageNet detection task 

in ILSVRC 2015 with the ensemble of 3 residual network models.

However, the behavior of ensemble learning with deep networks is still not well studied and 

understood. First, most of the neural networks literature focuses mainly on the design of the 

network structure, and only applies naive averaging ensemble to enhance the performance. 

To the best of our knowledge, no detailed work investigates, compares and discusses 

ensemble methods for deep neural networks. Naive unweighted averaging, which is largely 

used, is not data-adaptive and thus vulnerable to a “bad” library of base learners: it works 

well for networks with similar structure and comparable performance, but it is sensitive to 

the presence of excessively biased base learners. As the deep neural networks are usually 

sensitive to hyper-parameters and vulnerable to overfitting, it is reasonable to expect that 

some base learners in library may fail. This issue could be easily addressed by a cross-

validation based data-adaptive ensemble like the Bayes Optimal Classifier and the Super 

Learner. In later sections, we investigate and compare the performance of several commonly 

used ensemble methods on an image classification task, with deep convolutional neural 

networks (CNNs) as base learners.

This study mainly focuses on the comparison of ensemble methods of CNNs for image 

recognition. We use the CIFAR10 dataset [22], a commonly used benchmark dataset, for 

experiments and prediction accuracy as criterion to evaluate the performance. The dataset 

has predetermined training and testing set, so there is little concern of the selection bias in 
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training/testing splitting. For readers who are not familiar with deep learning, each CNN 

could be just viewed as a black-box estimator, with an image as input, and outputs the 

probability vector for each possible class. We refer the interested reader to [14, 25] for more 

details about deep learning.

2. Background

In this paper, “algorithm candidate”, “hypothesis”, and “base learner” refer to an individual 

learner (here a deep CNN) used in an ensemble. The term ’library’ refers to the set of the 

base learners for the ensemble methods.

2.1. Unweighted Average

Unweighted averaging is the most common ensemble approach for neural networks. It takes 

unweighted average of the output score/probability for all the base learners, and reports it as 

the predicted score/probability.

Due to the high capacity of deep neural networks, simple unweighted averaging improves 

the performance substantively. Taking the average of multiple networks reduces the 

variance, as deep ANNs have high variance and low bias. If the models are uncorrelated 

enough, the variance of models could be dramatically reduced by averaging. This idea 

inspires Random Forest [4], which builds less correlated trees by bootstrapping observations 

and sampling features.

We could average either directly the score output, or the predicted probability after softmax 

transformation:

pi j = so f tmax s i [ j] =
s i[ j]

∑k = 1
K exp si[k]

,

where score vector s i is the output from the last layer of the neural network for i-th unit, 

s i[k] is the score corresponding to k-th class/label, and pij is the predicted probability for 

unit i in class j. It is more reasonable to average after the softmax transformation, as the 

scores might have varying scales of magnitude across the base learners, as the score output 

from different network might be in different magnitude. Indeed, adding a constant to scores 

for all the classes leaves predicted probability unchanged. In this study, we compared both 

naive averaging of the scores and averaging of their softmax transformed counterparts (i.e. 

the probabilities)

Unweighted averaging might be a reasonable ensemble for similar base learners of 

comparable performance, as the deep learning literature suggests [17, 36, 40]. However, 

when the library contains heterogeneous networks, the naive unweighted averaging may not 

be a smart choice. It is vulnerable to the weaker learners in the library, and sensitive to the 

over-confident candidate (We will explain further the over-confidence phenomenon in later 

sections.). A good meta-learner should be intelligent enough to combine the strength of base 

learners data-adaptively. Heuristically, some networks might have weak overall prediction 
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strength, but can be good at discriminating certain subclasses (e.g. fine-grained classifier). 

We hope the meta-learner could combine the strengths of all the base learners, thus yielding 

a better strategy.

2.2. Majority Voting

Majority voting is similar to unweighted averaging. But instead of averaging over the output 

probability, it counts the votes of all the predicted labels from the base learners, and makes a 

final prediction using label with most votes. Or equivalently, it takes an unweighted average 

using the label from base learners and chooses the label with the largest value.

Compared to naive averaging, majority voting is less sensitive to the output from a single 

network. However, it would still be dominated if the library contains multiple similar and 

dependent base learners. Another weakness of majority voting is the loss of information, as 

it only uses the predicted label.

[24] showed pairwise dependence plays an an important role in majority voting. For image 

classification, shallow networks usually give more diverse prediction compared to deeper 

networks[7]. Thus we hypothesize majority voting would yield a greater improvement over 

base learners with a library of shallow networks than with a library of deep networks.

2.3. Bayes Optimal Classifier

In a classification problem, it can be shown that the function f of the predictors x that 

minimizes the misclassification rate 𝔼I( f (x) ≠ y) is the so-called Bayes classifier. It is given 

by f(x) = argmaxyP[y|x]. It fully characterized by the data-generating distribution P.

In the Bayesian voting approach, each base learner hj is viewed as an hypothesis made on 

the functional form of the conditional distribution of y given x. More formally, denoting 

Strain our training sample, and (x, y) a new data-point, we denote hj(y|x) = P[y|x, hj, Strain]. It 

means the value of the hypothesis hj, which is trained on Strain, evaluated at (y, x). The 

Bayesian voting approach requires a prior distribution that, for each j, models the probability 

P(hj) that the hypothesis hj is correct. Using the Bayes rule, one readily obtains that

P(y |x, Strain) ∝ ∑
h j

P[y |h j, x, Strain]P[Strain |h j]P[h j] .

(1)

This motivates the definition of the Bayesian Optimal classifier as
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argmaxy∑
h j

h j(y |x)P[Strain |h j]P[h j] .

(2)

Note that P Strain h j = ∏(y, x) ∈ Strain
h j(y x) is the likelihood of the data under the 

hypothesis hj. However this quantity might not reflect well the quality of the hypothesis 

since the likelihood of the training sample is subject to overfitting. To give an “honest” 

estimation, we could split the training data into two sets, one for model training, and the 

other for computing P[Strain|h]. For neural networks, a validation set (distinct from the 

testing set) is usually set aside only to tune a few hyper-parameters, thus the information in it 

is not fully exploited. We expect that using such a validation set would provide a good 

estimation of the likelihood P[Strain|h]. Finally, we would assess the model using the 

untouched testing set.

The second difficulty in BOC is choosing the prior probability for each hypothesis p(hi). For 

simplicity, the prior is usually set to be the uniform distribution [29].

[9] observed that, when the sample size is large, one hypothesis typically tends to have a 

much larger posterior probability than others. We will see in the later section that when the 

validation set is large, the posterior weight is usually dominated by only one hypothesis 

(base learner). As the weights are proportional to the likelihood on the validation set, if the 

weight vector is dominated dominated by a single algorithm, BOC would be the same 

selector as the discrete Super Learner selector with negative likelihood loss function [42].

2.4. Stacked Generalization

The idea of stacking was originally proposed in [45], which concludes stacking works by 

deducing the biases of the generalizer(s) with respect to a provided learning set. [3] also 

studied stacked regression by using cross-validation to construct the ’good’ combination.

Consider a linear stacking for the prediction task. The basic idea of stacking is to ’stack’ the 

predictions f1, · · · , fm by linear combination with weights ai, i ∈ 1, · · · , m:

f stacking(x) = ∑
i = 1

m
ai f i(x)

where the weight vector a is learned by a meta-learner.

3. Super Learner: a Cross-validation based Stacking

Super Learner [42] is an extension of stacking. It is a cross-validation based ensemble 

framework, which minimizes cross-validated risk for the combination. The original paper 
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[42] demonstrated the finite sample and asymptotic properties of the Super Learner. The 

literature shows its application to a wide range of topics, e.g. survival analysis [19], clinical 

trial [37], and mortality prediction [31]. It combines the base learners by cross-validation. 

Here is an example of SL with V -fold cross-validation with m base learners for binary 

prediction. We first define the cross-validated loss for j-th base learner:

RCV
( j) = ∑

v = 1

V
∑

i ∈ val(v)
l yi, p ji

−v

where 𝜐al(𝜐) is the set of indices of the observations in the 𝜐-th fold, and p ji
−v is defined as 

the prediction for the i-th observation, from the j-th base learner that trained on the whole 

data except the 𝜐-th fold. Then we have

RCV( a ) = ∑
v = 1

V
∑

i ∈ val(v)
l yi, ∑

j = 1

m
a jp ji

−v

where a = a1, ⋯, am  is the weight vector. The optimal weight vector given by the Super 

Learner is then

a = argmin
a

RCV( a )

For simplicity, we consider the binary classification task, which could be easily generalized 

to multi-class classification and regression. We first study a simple version of the Super 

Learner with m single algorithms, using negative (Bernoulli) log-likelihood as loss function:

l(y, p) = − [ylog(p) + (1 − y)log(1 − p)] .

Thus the cross-validated loss is:

RCV( a ) = − ∑
v = 1

V
∑

i ∈ val(v)
[yilog( ∑

j = 1

m
a jp ji

−v) + 1 − yi log(1 − ∑
j = 1

m
a jp ji

−v)]

where p ji
−v is the predicted probability for i-th unit from j-th base learner which is trained on 

the whole data except v-th fold.

In addition, stacking on the logit scale usually gives much better performance in practice. In 

other words, we use the optimal linear combination before softmax transformation:

RCV( a ) = ∑
v = 1

V
∑

i ∈ val(v)
l(yi, expit( ∑

j = 1

m
a jlogit(p ji

−v)))
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For K-class classification with softmax output like neural networks, we could also ensemble 

in the score level:

pi
z( a ) = − log(

exp ∑ j = 1
m a j ⋅ si[ j, z]

∑k = 1
K exp ∑ j = 1

m a j ⋅ si[ j, k]
)

where pi
z( a ) is the ensemble prediction for i-th unit and z-th class with weight vector a . si is 

an m by K matrix, and si[j, k] stands for the score of j-th model and k-th class.

We can impose restrictions on a, such as constraining it to lie in a probability simplex:

a 1 = 1, ai ≥ 0,  for i = 1, ⋯, m .

This would drive the weights of some base learners to zero, which would reduce the variance 

of the ensemble and make it more interpretable. This constrain is not a necessary condition 

to achieve the oracle property for SL. In theory, the oracle inequality requires bounded loss 

function, so the LASSO constraint is highly advisable (e.g. ∑ j a j < M, for some fixed M). 

In practice, we found imposing large M leads to better practical performance.

For small data sets, it is recommended to use cross-validation to compute the optimal 

ensemble weight vector. However this takes a long time when the data set and the library are 

large. Usually people just set aside a validation set, instead of cross-validation, to assess and 

tune the models for deep learning. Similarly, instead of optimizing the V-fold cross-validated 

loss, we could optimize on the single-split cross-validation loss instead to get the ensemble 

weights, which is so called “single split (or sample split) Super Learner”. Figure 1 shows the 

details of this variation of Super Learner. [21] shows the success of such single split Super 

Learner in three large healthcare databases. In this study, we compute the weights of the 

Super Learner by minimizing the single-split cross-validated loss. This procedure 

necessitates almost no additional computation: only one forward pass for all validation 

images and then solving a low-dimensional convex optimization.

3.1. Super Learner From a Neural Network Perspective

Lots of neural network structures could be considered as ensemble learning. One of the 

commonly used regularization methods for deep neural network, dropout [38], randomly 

removes certain proportion of the activations (the output from the last layer) during the 

training and uses all the activations in the testing. It could be seen as training multiple base 

learners and ensemling them during prediction. [43] discusses ResNet, a state-of-the-art 

network structure, could be understood as an exponential ensembles of shallow networks. 

However, such ensembles might be highly biased, as the meta-learner computes the weights 

based on the prediction of the base learner (e.g. shallow network) on the training set. These 

weights might be biased as the base-learners might not make objective prediction on the 

training set.
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In contrast, the Super Learner computes an honest ensemble weight based on the validation 

set. A validation set is commonly used to train/tune a neural network. However, it is usually 

only used to select a few tuning parameters (e.g. learning rate, weight decay). For most 

image classification data sets, the validation set is very large in order to make the validation 

stable. We thus conjecture that the potential of the validation information has not been fully 

exploited.

The Super Learner could be considered as a neural network with 1 by 1 convolution over the 

validation set, with the scores of the base learners as input. It learns the 1 × 1 × m kernel 

either by back-propagation, or through directly solving the convex optimization problem.

4. Experiment

4.1. Data

The CIFAR-10 data set [22] is a widely used benchmark data set for image recognition. It 

contains 10 classes of natural images, with 50, 000 training images and 10, 000 testing 

images. Each image is an RGB image of size 32 × 32. There are 10 classes in the data set: 

airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck. Each class has 5000 

images in the training data and 1000 images in the testing data.

4.2. Network description

In this section we introduce several popular neural networks as our base learners. For each 

learner, we used the hyper-parameters used in the paper that originally introduced it.

4.2.1. Network in Network—The network in network (NIN) structure [26] consists of 

mlpconv (MLP) layers, which use multilayer perceptrons to convolve the input. Each MLP 

layer is made by one convolution layer with larger kernel size followed by two 1 × 1 

convolution layer and max pooling layer. In addition, it uses a global average pooling layer 

as a replacement for the fully connected layers in conventional neural networks.

4.2.2. GoogLeNet—GoogLeNet [40] is a deep convolutional neural network 

architecture based on the inception module, which improved the computational efficiency. In 

each inception module, a 1 × 1 convolution is applied as dimension reduction before 

expensive large convolutions. Within each inception module, the propagation splits into 4 

flows, each with different convolution size, and is then concatenated.

4.2.3. VGG Network—VGG net [36] is a neural network structure using an architecture 

with very small (3×3) convolution filters, which won the first and the second places in the 

localization and classification tracks for ImageNet Challenge 2014 respectively. Each block 

is made by several consecutive 3 × 3 convolutions and followed by a max pooling layer. The 

number of filters for each convolution increases as the network goes deeper. Finally there are 

three fully connected layers before the softmax transformation.

In this study, we only used VGG net D with 16 layers [36]. We denote it as VGG net for 

simplicity in the later sections.
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4.2.4. Residual Network—Residual Network [17] is a network structure that stacked by 

multiple “bottleneck” building blocks. Figure 5 shows an example of so called bottleneck 

building block, stacked by two regular layer (e.g. convolution layers). In the original study 

[17], each bottleneck building block is made by three convolutional layers, with kernel size 

1, 3, and 1. Similar to NIN and GoogLeNet, it uses 1 × 1 convolution as dimension reduction 

to reduce the computation. There is a parameter-free identity shortcut from the starting layer 

to the final output for each bottleneck block. It solves the degradation problem for deep 

networks and makes training a very deep neural network possible.

In later sections, we follow the same structure from the original paper for CIFAR-10 data: 

we use a stack of 6n layers with 3×3 convolutions. The sizes of the feature maps are {32, 16, 

8} respectively, with 2n layers for each feature map size [17]. There would be 6n + 2 layers 

including the softmax layer. For example, ResNet with n = 5 has 32 layers in total.

4.3. Training

For all the models, we split the training data into training (first 4, 5000 images) and 

validation set (last 5, 000 images). There are 10K testing data.

For the Network-in-Network model, we used Adam with learning rate 0.001. We followed 

the original paper [26], tuning the learning rate and initialization manually. The training was 

regularized by L-2 penalty with predefined weight 0.001 and two dropout layers in the 

middle of the network, with rate 0.5.

For VGG net, we slightly modified the training procedure in the original paper [36] for 

ILSVRC-2013 competitions [35, 46]. We used SGD with momentum 0.9. We started with 

learning rate 0.01 and decay divide it by 10 at every 32k iterations. The training is 

regularized by L-2 penalty with weight 10−3 and two dropout layers for the fitst two fully 

connected layer, with rate 0.5.

For GoogLeNet, we set base learning rate to be 0.05, weight decay 10−3, and momentum 

0.9. We decreased the learning rate by 4% every 8 epochs. We set the rate to 0.4 for the 

dropout layer before the last fully connected layer.

For the Residual Network, we follow the training procedures in the original paper [17]: we 

applied SGD with weight decay of 0.0001 and momentum of 0.9. The weight was initialized 

following the method in [18], and we applied batch normalization [20] without dropout. 

Learning rate started with 0.1, and was divided by 10 at every 32k iterations. We trained the 

model with 200 epochs.

All the networks were trained with mini-batch size 128 for 200 epochs.

4.4. Results

In this section, we compare the empirical performance for all the ensemble methods we 

mentioned before, including: Unweighted Averaging (before/after softmax layer), Majority 

Voting, Bayes Optimal Classifier, Super Learner (with negative log-likelihood loss). We also 

include discrete SL, with negative log-likelihood loss and 0–1 error loss.. For comparison, 
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we list the base learner which achieved best performance on the testing set, as an empirical 

oracle.

4.4.1. Ensemble of Same Network with Different Training Checkpoints—Table 

1 shows the prediction accuracy for the ResNet 8 and 110 after different epochs. As ResNe 8 

is much shallower, thus more adaptive during training, we set the smaller interval with epoch 

10. Notice there is a great accuracy improvement around epoch 100, due to the learning rate 

decay.

For ResNet 8, the SL is substantively better than naive averaging and majority voting. 

Earlier stage learners would have worse performance, which causes the deterioration of the 

performance for naive averaging. The performance of majority voting is even worse than the 

best base learner, as the majority of the base learners are under-optimized.

For ResNet 110, the performance for all the meta-learners is similar. One possible 

explanation is that deeper network is more stable during training.

In this experiment, the weights of BOCs are dominated by one model, which gives the best 

performance on the validation set. Thus the BOC is equivalent to the discrete Super Learner 

with negative likelihood as loss function. In the experiments, BOC performed only as well as 

the best base learner. In the subsequent experiments, all the BOCs showed the similar 

dominated weight pattern. Given the practical equivalence with the discrete Super Learner, 

we don’t elaborate further on BOCs, and we will report only the discrete Super Learner’s 

performance.

4.4.2. Ensemble of Same Network Trained Multiple Times—Unlike other 

conventional machine learning algorithms, deep neural networks solve a high-dimensional 

non-convex optimization problem. Mini-batch stochastic gradient descent with momentum 

is commonly used for training. Due to non-convexity, networks with same structure but 

different initialization and training vary a lot. [7] studied the distribution of loss on the 

testing set for a certain network structure trained multiple times with SGD. It shows the 

distribution of loss is more concentrated for deeper neural network. This suggest deep neural 

networks are less sensitive to randomness in the initialization and training. If so, ensemble 

learning would be less helpful for the deeper nets.

To help understand this property, we trained 4 ResNet with 8 layers and 4 ResNet with 110 

layers.

We trained 4 networks for ResNet 8 and 110 respectively. Table 3 shows the performance of 

the networks. We further studied the performance of all the meta-learners. Shallow networks 

enjoyed more improvement (2.54%) compared to deeper networks 1.43% after ensembled 

by the Super Learner. Due to the similarity of the models, the SL did not show great 

improvement compared to naive averaging. Similarly, majority voting did not work well, 

which might also be due to the diversity of the base learners. The discrete SL with negative 

log-likelihood loss successfully selected the best single learner in the library, while the 

discrete SL with error loss selected a slightly weaker one. This suggests that for finite 
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samples, the Super Learner using the negative log likelihood loss performs better w.r.t. 

prediction accuracy, than the Super Learner that uses prediction accuracy as criterion.

4.4.3. Ensemble of Networks with Different Structure—In this section, we studied 

ensemble of networks with different structure. We trained NIN, VGG,and ResNet with 32, 

44, 56, 110 layers. Table 5 shows the performance of each net on the testing set.

4.4.4. Over-confident Model—As the 0 − 1 loss for classification is not differentiable, 

cross-entropy loss is commonly used as surrogate loss in neural network training. We could 

see from table 6 that the cross-entropy is usually negatively correlated with the prediction 

accuracy. However, we could see that Network-in-Network model has much lower cross-

entropy loss compared to all the other models, while it gives worse prediction accuracy. This 

due to its prediction behavior: we look at the predicted probability of the true labels for the 

images in the testing set:

It is interesting to observe the high-confidence phenomenon for the Network-in-Network 

model, where most of the predictions are made with high confidence (predicted probability). 

Such high-confident networks usually achieve much smaller surrogate loss (negative log-

likelihood loss in our example) on the testing set, but not necessary smaller 0–1 error loss. 

Though all the networks suffered from over-fitting, only the NIN net showed the over-

confidence. In addition, NIN has higher training cross-entropy loss (0.13104) compared to 

VGG (0.02233). Thus it is not reasonable to blindly attribute the over-confidence to the 

over-fitting.

When several base learners suffer from the over-confidence issue, the performance of model 

averaging would be seriously deteriorated: the unweighted average score/probability would 

be dominated by the over-confident models. When all the models are over-confident, the 

unweighted average is identical to the majority vote.

In addition, the VGG net and the ResNet with 32 layers had very similar predicted 

probability, even though their structure is totally different (agree on first 3 digits on most 

observations). However, this special pattern is beyond the scope of this study.

We empirically study the impact of over-confident network candidates for ensemble 

methods: we have five candidates in the ensemble library: NIN, VGG, ResNet 32, ResNet 

44, and ResNet 56. We compare the performance with/without adding NIN, which is the 

only over-confident net.

Table 8 shows the performance of the ensemble algorithms on the testing set. The 

unweighted average model was weakened by the NIN net: over-confidence made NIN 

dominate the others, and led to 0.23% (before softmax) and 5% (after softmax) decrease in 

the prediction accuracy. The naive average before softmax was less influenced as the scale of 

networks are different. The majority vote algorithm was not influenced too much by the 

extra candidate, which is not surprising. The over-confident network only weakened the 

discrete SL with negative log-likelihood loss, while did not influence the discrete SL with 

error loss. The Super Learner successfully harnessed the over-confident model: adding NIN 

helped increase the prediction accuracy from 0.9405 to 0.9414.
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4.4.5. Learning from Weak Learner—We hope our ensemble method could learn 

from all the models, even though there might be base learners with weaker overall 

performance compared to the other learners in the library. In this experiment, we used under-

trained GoogLeNets [40] as the weak candidates. The original paper [40] did not describe 

explicitly how to automatically train/tune the network in CIFAR 10 data set. We set the 

initial learning rate to be 0.05, with momentum 0.96, and decreased the learning rate by 4% 

every 8 epochs. This did not give satisfactory performance: the prediction accuracy on the 

testing set is around 0.83. To avoid the impact of over-confidence, we removed the NIN net. 

Thus the weakest base learner in the library is the VGG net, which achieved 0.8914 accuracy 

on the testing set. We observe that the difference in prediction accuracy for the VGG net and 

the GoogLeNet is around 6%, which means our GoogLeNet model is substantially weaker 

than other candidates.

We trained the GoogLeNet 5 times and then compare the performance of different ensemble 

methods with/without such 5 googLeNets in the library.

In the experiment, adding many weaker candidates deteriorated the performance of the 

unweighted average. The majority voting was slightly influenced when there were only few 

weak learners, while would be dominated if the number of the weak learner was large. 

Unweighted averaging also failed in this case. BOCs remained unchanged as the likelihood 

on the validation set is still dominated by the same base learner. Super Learner shows 

exciting success in this setting: the prediction accuracy remained stable with the extra weak 

learning.

4.4.6. Prediction with All Candidates—As the number of base learners is usually 

much smaller than the sample size and there is usually no apriori which learner would 

achieve best performance, it is encouraged to apply as rich library as possible to improve the 

performance of Super Learner. In this experiment, we simply put all the networks mentioned 

before into the library of all the ensemble methods.

Table 10 shows the performance of all the ensemble methods as well as the base learner with 

the best performance. Due to the large proportion of weak learners (e.g. under-fitted 

GoogLeNet, and the networks trained with less iterations in the first experiment) and the 

over-confident learners (NIN), all the other ensemble methods have much worse 

performance compared to Super Learner. This is another strength of the Super Learner: by 

simply putting all the potential base learners into the library, the Super Learner computes the 

weights data-adaptively, which does not require any tedious pre-selecting procedure based 

on human experience.

4.5. Discussion

We studied the relative performance, on the CIFAR 10 dataset, of several widely used 

ensemble methods, using convolutional neural networks as base networks.

• The unweighted averaging proved surprisingly successful when the performance 

of the base learners is comparable. It outperformed majority voting in almost all 

the experiments. However, in section 4.4.4 we found that the unweighted 
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averaging proved to be sensitive to over-confident candidates. The Super Learner 

adresses the over confidence issue by optimizing learners’s weights on a 

validation set.

• In section 4.4.1, we observe that ensembling several instances of the same model 

with learning stopped at different checkpoints yields little gain over using the 

base model itself. On the contrary, we see that the ensemble methods prove most 

beneficial when using a diverse set base learners. In practice, we recommand to 

use networks with different structures to enhance the diversity of the base 

learners.

• In all experiments, the SL performs better than unweighted averaging, but the 

improvement is small. However, such improvement is practically important: we 

see the improvement for the SL compared to the best learner is consistent in our 

experiments. In real machine learning applications where we usually need to 

process millions of images, such consistent improvement can make real impact. 

In addition, another benefit of the SL is that it can make the machine learning 

system more robust, as it automatically down weights the base learners with bad 

performance. It is easy to imagine if some of the base learners fail and make 

random prediction, it would highly influence the performance for unweighted 

averaging, while less influence the SL.

In table 11, we consider the library consists two failed classifier, which only 

output random prediction, and the first two ResNet 110 in table 3. We can see the 

Super Learner has superior performance compared to all the other ensemble 

methods.

• Super Learner was initially proposed as a cross-validation based ensemble 

method. However, since training CNNs is computationnally intensive and that 

validation sets are typically large in image recognition tasks, we used the 

validation set of the neural networks for computing the weights of Super Learner 

(single-split cross-validation), instead of using conventional cross-validation 

(multiple-fold cross-validation). The structure is simple and could be easily 

extended. One potential extension of the linear-weighted Super Learner would be 

stacking several 1 × 1 convolutions with non-linear activation layers in between. 

This structure could mimic the cascading/hierarchical ensemble [39, 44]. Due to 

the small number of parameters, we expect this meta-learner would not overfit 

the validation set and thus would help improve the prediction. However this in-

volves non-convex optimization and the results might not be stable. We leave this 

as future work.

• In this study, we focusd on the prediction accuracy for image classification, as it 

is easy to understand and is widely studied in the computer vision society. There 

are many other important tasks: for example, for medical imaging, people may 

be interested in estimating the proportion of abnormal tissues, instead of simply 

classifying images. In this setting, the task changed from classification to 

regression, and the ensemble methods may have different behavior. This is 

another important direction for future research.
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Figure 1. 
Single Split (Sample Split) Super Learner, which computes the weights on the validation set.
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Figure 2. 
Super Learner from convolution neural network perspective. The base learners are trained in 

the training set, and 1 by 1 convolutional layer is trained in the validation set. The simple 

structure of SL avoids the overfitting on the validation set.

Ju et al. Page 17

J Appl Stat. Author manuscript; available in PMC 2019 October 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
An example of MLP layer in the NIN structure. Notice each convolution are followed by 

ReLU layer.
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Figure 4. 
An example of Inception module for GoogLeNet. Notice each convolution are followed by 

ReLU layer.
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Figure 5. 
An example of Inception module for GoogLeNet. Notice each convolution are followed by 

ReLU layer.
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Table 1.

Left: Prediction accuracy on the testing set for ResNet 8 trained by 80, 90, 100, 110 epochs. Right: Prediction 

Accuracy on the testing set for ResNet 110 trained by 70, 85, 100, 115 epochs.

Training Epoch Prediction Accuracy Training Epoch Prediction Accuracy

70 77.90% 70 88.96%

80 82.45% 85 89.99%

90 81.97% 100 93.18%

100 86.59% 115 93.54%
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Table 2.

Prediction accuracy on the testing set for ResNet 8 and 110

Ensemble ResNet 8 ResNet 110

Best Base Learner 86.59% 93.54%

SuperLearner 86.79% 93.58%

Discrete SuperLearner (nll) 86.59% 93.54%

Discrete SuperLearner (error) 86.59% 93.54%

Unweighted Average (before softmax) 86.11% 93.54%

Unweighted Average (after softmax) 86.14% 93.54%

BOC (before softmax) 86.59% 93.18%

BOC (after softmax) 86.59% 93.18%

Majority Voting 84.85% 93.19%
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Table 3.

Prediction Accuracy on the testing set for ResNet with 8 and 110 layers

Model Prediction Accuracy Model Prediction Accuracy

ResNet 8 0 87.85% ResNet 110 0 93.99%

ResNet 8 1 88.19% ResNet 110 1 93.64%

ResNet 8 2 87.58% ResNet 110 2 93.49%

ResNet 8 3 87.61% ResNet 110 3 93.95%
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Table 4.

Prediction accuracy on the testing set for ensemble methods. The algorithm candidates are the ResNets with 

same structure but trained several times, where the differences come from randomized initialization and SGD.

Ensemble ResNet 8 ResNet 110

Best Base Learner 88.20% 93.99%

SuperLearner 90.73% 95.42%

Discrete SuperLearner (nll) 88.20% 93.95%

Discrete SuperLearner (error) 87.61% 93.95%

BOC (before Sotmax) 88.20% 93.95%

BOC (after Sotmax) 88.20% 93.95%

Unweighted Average (before Sotmax) 90.68% 95.42%

Unweighted Average (afterbefore Sotmax) 90.68% 95.41%

Majority Vote 90.00% 95.10%
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Table 5.

Prediction Accuracy on the testing set for networks with different structure

Model Prediction Accuracy

NIN 86.77%

VGG 89.14%

ResNet 32 91.81%

ResNet 44 92.43%

ResNet 56 92.72%

ResNet 110 93.99%
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Table 6.

Cross-entropy on the testing set for Networks with different structure

Model Cross-entropy

NIN 0.5779

VGG 1.5649

ResNet 32 1.5442

ResNet 44 1.5341

ResNet 56 1.5327

ResNet 110 1.5242
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Table 7.

Cross-entropy on the testing set for networks with different structure

Model Image 1 Image 2 Image 3 Image 4 Image 5

NIN 0.9999 0.9999 0.09985 0.5306 1.000

VGG 0.2319 0.2319 0.2319 0.2302 0.2314

ResNet 32 0.2319 0.2318 0.2317 0.2316 0.2317
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Table 8.

Prediction accuracy on the testing set for ensemble methods. The algorithm candidates include NIN, VGG, 

ResNet 32, ResNet 44, and ResNet 56. We compare the performance with/without the over-confident NIN 

network.

Ensemble Without NIN With NIN

Best Base Learner 93.99% 93.99%

SuperLearner 94.69% 94.75%

Discrete SuperLearner (nll) 93.99% 86.77%

Discrete SuperLearner (error) 93.99% 93.99%

BOC (before softmax) 93.99% 86.77%

BOC (after softmax) 93.99% 86.77%

Unweighted Average (before softmax) 94.56% 92.23%

Unweighted Average (after softmax) 94.55% 89.74%

Majority Vote 94.33% 94.13%
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Table 9.

Prediction accuracy on the testing set for ensemble methods. The algorithm candidates include VGG, ResNet 

32, ResNet 44, and ResNet 56. We compared the performance with/without five under-optimized 

GoogLeNets.

Ensemble Without GoogLeNet With 3 GoogLeNets With 5 GoogLeNets

Best Base Learner 93.99% 93.99% 93.99%

SuperLearner 94.75% 94.77% 94.77%

Discrete SuperLearner (nll) 93.99% 93.99% 93.99%

Discrete SuperLearner (error) 93.99% 93.99% 93.99%

BOC (before softmax) 93.99% 93.99% 93.99%

BOC (after softmax) 93.99% 93.99% 93.99%

Unweighted Average (before softmax) 94.56% 93.26% 90.01%

Unweighted Average (after softmax) 94.55% 93.29% 90.07%

Majority Vote 94.33% 92.63% 87.20%
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Table 10.

Prediction accuracy on the testing set for all the ensemble methods using all the networks mentioned in this 

study as base learners.

Ensemble Accuracy

Best base learner 93.99%

SuperLearner 95.02%

Discrete SuperLearner (nll) 93.95%

Discrete SuperLearner (error) 93.95%

BOC (before softmax) 93.95%

BOC (after softmax) 93.95%

Unweighted Average (before softmax) 94.44%

Unweighted Average (after softmax) 94.48%

Majority Vote 94.10%
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Table 11.

Prediction accuracy on the testing set for ensemble methods with two ResNet 110 and 2 random classifier.

Ensemble Testing Accuracy

Best Base Learner 93.99%

SuperLearner 94.90%

Discrete SuperLearner (nll) 93.99%

Discrete SuperLearner (error) 93.99%

BOC (before Sotmax) 93.99%

BOC (after Sotmax) 93.99%

Unweighted Average (before Sotmax) 86.54%

Unweighted Average (afterbefore Sotmax) 86.33%

Majority Vote 89.16%
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