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Abstract

The late Ediacaran Dengying Formation (ca. 551.1–538.8 Ma) in South China is one of two 

successions where Ediacara-type macrofossils are preserved in carbonate facies along with skeletal 

fossils and bilaterian animal traces. Given the remarkable thickness of carbonate-bearing strata 

deposited in less than 12.3 million years, the Dengying Formation holds the potential for a 

relatively continuous chemostratigraphic profile for the terminal Ediacaran stage. In this study, a 

detailed sedimentological and chemostratigraphic (δ13Ccarb, δ18Ocarb, δ13Corg, δ34Spyrite, and 
87Sr/86Sr) investigation was conducted on the Dengying Formation at the Gaojiashan section, 

Ningqiang County of the southern Shaanxi Province, South China. Sedimentological results reveal 

an overall shallow marine depositional environment. Carbonate breccia, void-filling botryoidal 

precipitates, and aragonite crystal fans are common in the Algal Dolomite Member of the 

Dengying Formation, suggesting that peritidal facies were repeatedly karstified. The timing of 

karstification was likely early, probably soon after the deposition of the dolomite sediments. The 

presence of authigenic aragonite cements suggests high alkalinity in the terminal Ediacaran ocean. 
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Geochemical analysis of micro-drilled samples shows that distinct compositions are registered in 

different carbonate phases, which should be considered when constructing chemostratigraphic 

profiles representative of true temporal variations in seawater chemistry. Integrated 

chemostratigraphic data suggest enhanced burial of organic carbon and pyrite, and the occurrence 

of extensive marine anoxia (at least in the Gaojiashan Member). Rapid basinal subsidence and 

carbonate accumulation during a time of elevated seawater alkalinity and increased rates of pyrite 

burial may have facilitated the evolutionary innovation of early biomineralizing metazoans.
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1. Introduction

The Ediacaran Period (ca. 635.2–538.8 Ma) witnessed the first rise of macroscopic, mobile, 

and biomineralizing animal life in Earth’s history (Narbonne et al., 2012; Xiao et al., 2016). 

Ediacara-type macrofossils are primarily preserved as soft-bodied impressions in fine-

grained siliciclastic rocks (Narbonne, 2005). However, these lithologies offer limited 

opportunities for paleoenvironmental analysis using geochemical tools. Two rare Ediacara-

type macrofossil assemblages have thus far been found in well-preserved marine carbonate 

successions: the Khatyspyt Formation in Arctic Siberia (Fedonkin, 1990; Knoll et al., 1995; 

Grazhdankin et al., 2008; Rogov et al., 2012; Rogov et al., 2013a; Rogov et al., 2013b; 

Nagovitsin et al., 2015; Rogov et al., 2015; Cui et al., 2016a) and the middle Dengying 

Formation (Gaojiashan or Shibantan members) in South China (Sun, 1986; Xiao et al., 2005; 

Chen et al., 2014; Cui et al., 2016b; Mason et al., 2017; Shen et al., 2017; Chen et al., 2018). 

Insofar as both exhibit extraordinary fossils with exceptional preservation, these Lagerstätten 

provide unique windows into terminal Ediacaran ecosystems.

One of the foci of ongoing research in the Ediacaran Period is its subdivision using 

integrative stratigraphic tools (Narbonne et al., 2012; Xiao et al., 2016; Zhou et al., 2018). In 

particular, defining the terminal Ediacaran stage (TES) and its GSSP (Global Boundary 

Stratotype Section and Point) is a priority for the Subcommission on Ediacaran Stratigraphy 

(Xiao et al., 2016). In this regard, the terminal Ediacaran Dengying Formation at the 

Gaojiashan section (referred to “DYF@GJS” hereafter) can offer key insights leading to the 

eventual establishment of the TES, and may represent a viable candidate for the GSSP (see 

details in Section 2).

In this study, we conducted a high-resolution chemostratigraphic investigation of the 631.5 

m thick DYF@GJS, including the Algal Dolomite and Beiwan members that we have not 

investigated in detail in previous studies (Figs. 1–12), in order to (1) complete its 

chemostratigraphic profile (Fig. 13) based on our earlier publication (Cui, 2015; Cui et al., 

2016b); (2) evaluate the impact of diagenesis on various lithofacies preserved in the 

succession; (3) better constrain the environmental context of the carbonate platform, and (4) 

explore the potential causal link between paleoenvironmental change and early animal 

biomineralization during the terminal Ediacaran stage.
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2. Significance the Dengying Formation

The Dengying Formation in this region has a number of features that may aid in the eventual 

establishment of the terminal Ediacaran stage (TES), which are summarized below.

Biomineralizing animal fossils and trace fossils

The Gaojiashan Member of the middle Dengying Formation hosts the Gaojiashan biota, 

including the earliest biomineralizing animal fossils Cloudina and Sinotubulites (Hua et al., 

2007; Cai et al., 2010; Cai et al., 2011; Cai et al., 2013; Cai et al., 2014; Cai et al., 2015; Cai 

et al., 2017), other calcareous fossils such as Pmtolagena (Cai et al., 2010), 

nonbiomineralizing tubular fossils such as Shaanxilithes, Gaojiashania, and Conotubus (Cai 

et al., 2010), as well as trace fossils made by mobile bilaterian animals (Lin et al., 1986; 

Zhang, 1986; Ding et al., 1992). Cloudina and Sinotubulites also extend into the overlying 

Beiwan Member at the Gaojiashan and nearby Lijiagou sections (Cai et al., 2010). The first 

appearance datum (FAD) of biomineralizing animals has been regarded as a key datum for 

the definition of the Terminal Ediacaran Stage (Xiao et al., 2016; Narbonne, 2018).

Chemostratigraphy

The dominance of well-preserved carbonates in the thick Dengying Formation enables 

global correlations via chemostratigraphy. For example, the carbonate carbon isotope 

(δ13Ccarb) profile reveals a positive excursion in the Gaojiashan Member of the Dengying 

Formation (Cui et al., 2016b), which is likely correlative with a similar magnitude excursion 

in the basal Khatyspyt Formation in Siberia (Cui et al., 2016a). In addition, large isotopic 

fluctuations in nitrogen (δ15N), pyrite sulfur (δ34Spyrite), and uranium (δ238U) isotopes have 

been documented from the Gaojiashan Member of the DYF@GJS (Fig. 13) (Guo et al., 

2012; Gamper, 2014; Zhang et al., 2014b; Cui, 2015; Cui et al., 2016b; Zhang et al., 2018). 

Individually or in unison, these secular stable isotope variations provide potential markers 

for chemostratigraphic correlations.

Ediacara-type macrofossils

The DYF@GJS has not yet yielded soft-bodied Ediacara-type macrofossils. However, 

Ediacara-type fossils such as Pteridinium, Rangea, Charniodiscus, Hiemalora, and many 

others have been found in the equivalent Shibantan Member of the Dengying Formation in 

the Yangtze Gorges area (Sun, 1986; Xiao et al., 2005; Shen et al., 2009; Chen et al., 2014; 

Mason et al., 2017; Shen et al., 2017).

Age constraints

Based on a U-Pb zircon age of 551.1 ± 0.7 Ma from a volcanic ash at the Doushantuo-

Dengying boundary in the Yangtze Gorges area (Condon et al., 2005), and based on a new 

radiometric constraint of 538.8 Ma from Namibia (Linnemann et al., 2019) for the 

Ediacaran-Cambrian boundary, the Dengying Formation represents the last 12.3 million 

years of the Ediacaran Period. In addition, a youngest detrital zircon age of 548 ± 8 Ma 

(interpreted as the maximum possible depositional age) was reported from the lower 

Gaojiashan Member of the DYF@GJS (Cui et al., 2016b), which is consistent with the 

previously published geochronological framework in this region.
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Accessibility

The DYF@GJS is located near the Gaojiashan village in the southern Shaanxi Province of 

South China (Fig. 1), which is easily accessed with field vehicles. From the major city of 

Hanzhong the drive is ~75 km on the Jingkun Highway (G5) to Hujiaba Town where the 

vehicles can continue on for an additional 5 km on unpaved road to the base of the section at 

Huangjia Mountain.

In summary, we regard that the Dengying Formation in South China offers a clear window in 

which to view the terminal Ediacaran stage. This study builds upon an earlier study (Fig. 13) 

(Cui, 2015; Cui et al., 2016b) and aims at obtaining high-resolution integrative 

chemostratigraphic profiles of δ13Ccarb, δ18Ocarb, δ13Corg, and δ34Spyrite throughout the 

formation.

3. Geologic settings

The Dengying Formation at the Gaojiashan section (DYF@GJS) is geographically located 

near Gaojiashan village in southern Shaanxi Province of South China, and 

paleogeographically is part of the northwestern Yangtze Block (Fig. 1A–C). It should be 

noted that the word “Gaojiashan” is used to refer to both the locality (e.g., the Gaojiashan 

village, the Gaojiashan section, DYF@GJS) and the stratigraphic unit (i.e., the Gaojiashan 

Member).

Stratigraphically, the Dengying Formation (ca. 551.1–538.8 Ma) is sandwiched between the 

Ediacaran Doushantuo Formation (ca. 635–551 Ma) and the basal Cambrian Kuanchuanpu 

Formation (Fig. 1D) (Zhu et al., 2007; Jiang et al., 2011). The Dengying Formation in the 

studied region is typically subdivided into three members including, in ascending order, the 

Algal Dolomite (dolostones), the Gaojiashan (limestones and calcareous siltsones), and the 

Beiwan (dolostones). These three members are generally correlated with the Hamajing, 

Shibantan, and Baimatuo members, respectively, in the Yangtze Gorges area of South China 

(Zhou and Xiao, 2007; Zhu et al., 2007; Duda et al., 2015).

The DYF@GJS is at least 631.5 m in thickness, with the Algal Dolostone Member measured 

at 0–202 m, the Gaojiashan Member at 202–257 m, and the Beiwan Member at 257–631.5 

m (Fig. 1D). The basal Algal Dolomite Member and hence the Doushantuo-Dengying 

boundary are faulted out, indicating that the Dengying Formation is probably thicker than 

the measured thickness of 631.5 m. The Beiwan Member of the DYF@GJS is overlain by 

limestones of the Kuanchuanpu Formation and then shales of the Guojiaba Formation. The 

Kuanchuanpu Formation in southern Shaanxi Province and northeastern Sichuan Province 

contain basal Cambrian small shelly fossils (SSFs) (Steiner et al., 2004) and the oldest 

known priapulid-like and kinorhynch-like scalidophoran animals (Liu et al., 2014b; Zhang et 

al., 2015; Han et al., 2017).

4. Analytical methods

In total 270 rock samples were continuously collected at high stratigraphic resolution from 

exposed outcrop of the DYF@GJS for systematic sedimentological and chemostratigraphic 
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investigation. These include 45 samples from the Algal Dolomite Member, 113 samples 

from the Gaojiashan Member (35 samples collected during the 2009 field season and 78 

samples collected during the 2014 field season), and 112 samples from the Beiwan Member. 

Samples were analyzed for carbonate carbon (δ13Ccarb) and oxygen (δ18Ocarb) isotopes, 

organic carbon isotopes (δ13Corg), strontium isotopes (87Sr/86Sr), and sulfur isotopes (δ34S) 

of total sulfur in acidified residues. Sample preparation (including sample cutting, crushing, 

acidification, and leaching) and geochemical analyses were conducted using standard 

operation procedures (e.g., Cui et al., 2015; Cui et al., 2018a) in the Department of Geology, 

University of Maryland.

4.a. Fabric-specific sampling strategy using micro-drills

Many samples in the Dengying Formation comprise multiple generations of diagenetic 

textures, which likely record isotopic signatures reflecting different sources of alkalinity. To 

better evaluate the impact of diagenesis on bulk rock carbonate compositions, micro-drilling 

was guided by petrographic fabrics so that different phases (e.g., cements, intraclasts, 

micritic matrix, crystal fans, microbial laminae, carbonate veins, nodules, vug fills) were 

sampled separately on polished slabs using a micro-drilling apparatus, in order to 

characterize the isotopic signatures of different stages of diagenesis. For the 

chemostratigraphic purpose, powders for carbonate carbon (δ13Ccarb), oxygen (δ18Ocarb), 

and strontium (87Sr/86Sr) isotope analyses were only sampled from the least-altered and 

least-recrystallized phases in order to minimize the impact of post-depositional process on 

geochemical signals.

4.b. Carbon and oxygen isotope analysis

Carbonate carbon and oxygen isotopes were measured by continuous flow isotope ratio mass 

spectrometry in the University of Maryland Paleoclimate Laboratory using a refined method 

for the analysis and correction of carbon (δ13Ccarb) and oxygen (δ18Ocarb) isotopic 

compositions of 100 μg carbonate samples (Spötl, 2011; Evans et al., 2016). Up to 180 

samples loaded into 3.7 mL Labco Exetainer vials and sealed with Labco septa were flushed 

with 99.999% Helium and manually acidified at 60 °C. The CO2 analyte gas was isolated 

via gas chromatography, and water was removed using a Nafion trap prior to admission into 

an Elementar Isoprime stable isotope mass spectrometer fitted with a continuous flow 

interface. Data were corrected via automated MATLAB scripting on the Vienna PeeDee 

Belemnite and LSVEC Lithium Carbonate (VPDB-LSVEC) scale (Coplen et al., 2006) 

using periodic in-run measurement of international reference carbonate materials and/or in-

house standard carbonates, from which empirical corrections for signal amplitude, 

sequential drift, and one or two-point mean corrections were applied. Precision for both 

isotopes is routinely better than 0.1‰ (Evans et al., 2016).

4.c. Organic carbon and pyrite sulfur isotope analyses

The organic carbon (δ13Corg) and total sulfur (δ34STS) isotope compositions were measured 

by combustion of the decalcified residues to CO2 or SO2 with a Eurovector elemental 

analyzer in-line with a second Elementar Isoprime isotope ratio mass spectrometer. Around 

15 g of bulk crushed sample was acidified with 3 M HCl to achieve quantitative removal of 

carbonates. These acidified residues were washed with ultra-pure Milli-Q (18MΩ) water, 
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centrifuged, decanted, and dried. The residues were packed into folded tin cups for 

combustion (0.1 to 0.3 mg of V2O5 were added to the sulfur samples to aid in combustion), 

and released CO2 and SO2 were used for the analysis of δ13Corg and δ34STS, respectively. 

Due to the negligible amount of organic sulfur in the acidified residues, the dominant sulfur 

species is pyrite. Thus, δ34STS values are regarded as a proxy for pyrite sulfur isotope 

compositions (δ34Spyrite). Uncertainties for carbon and sulfur isotope measurements 

determined by multiple analyses of standard materials during analytical sessions are better 

than 0.1‰ and 0.3‰, respectively.

4.d. Strontium isotope analysis

For strontium isotope (87Sr/86Sr) analysis, only limestone samples from the Gaojiashan 

Member were selected for extraction and measurement. Micro-drilled powders (ca. 10 mg) 

were leached three times in 0.2 M ammonium acetate (pH ~8.2) to remove exchangeable Sr 

from non-carbonate minerals, and then rinsed three times with Milli-Q water. The leached 

powder was centrifuged, decanted, and acidified with doubly distilled 0.5 M acetic acid 

overnight to remove strontium from the carbonate crystal structure. The supernatant was 

centrifuged to remove insoluble residues, and then decanted, dried, and subsequently 

dissolved in 200 μl of 3M HNO3. Strontium separation by cation exchange was carried out 

using small polyethylene columns containing ~1 cm of Eichrom®Sr specific resin. The 

column was rinsed with 400 μl of 3 M HNO3 before the dissolved sample was loaded onto 

the column. After loading, the sample was sequentially eluted with 200 μl of 3 M HNO3, 

600 μl of 7 M HNO3, and 100 μl of 3 M HNO3 to remove the Ca, Rb and REE fractions; the 

Sr fraction adsorbs strongly to the resin in an acidic environment. The Sr fraction was 

removed by elution with ~800 μl of 0.05 M HNO3 and the resultant eluate was collected and 

dried. Approximately 200–300 ng of the dried sample was transferred onto a degassed and 

pre-baked (~4.2 A under high vacuum) high purity Re filament with 0.7 μl of Ta2O5 

activator. Filaments were transferred to a sample carousel, heated under vacuum (~10−7 to 

10−8 atm) to a temperature between 1450 °C and 1650 °C, and analyzed when a stable signal 

(>1.0 V) was detected on the mass 88 ion beam. The measurements were conducted on a VG 

Sector 54 thermal ionization mass spectrometer in the TIMS facility of the University of 

Maryland Geochemistry Laboratories. Approximately 100 87Sr/86Sr ratios were collected 

for each sample. The data have been corrected for fractionation using the standard value 
86Sr/88Sr = 0.1194. The fraction of 87Sr resulting from in situ decay from 87Rb was removed 

by measurement of rubidium abundance at mass 85. Repeated analyses of the NBS SRM987 

standard yielded an average value of 87Sr/86Sr = 0.710245 ± 0.000011 (2σ) during the 

analytical window.

5. Sedimentology of the Dengying Formation

Sedimentological observations of the Dengying Formation at the Gaojiashan section 

(DYF@GJS) can provide direct paleoenvironmental context for the depositional basin. 

Various lithofacies with distinct sedimentary textures can be identified in each of the three 

members of the DYF@GJS, which are summarized below.
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5.a. Lithofacies of the Algal Dolomite Member

The Algal Dolomite Member (0–202 m of the DYF@GJS) is dominated by bedded 

dolostones (including thrombolites) with abundant karstification textures (e.g., botryoidal 

dolostones, carbonate breccias, authigenic carbonate crystal fans) and other post-

depositional alteration (e.g., saddle dolomite cements).

Botryoidal dolostones—Diagnostic karst carbonates are abundant in the outcrop, 

including void-filling botryoidal dolostone (Fig. 2) and karst breccia (Fig. 3). Botryoidal 

dolostone typically shows concentric layers around a core in mm to cm scale, suggesting 

centrifugal precipitation (Fig. 2F, G). Based on their distinct textures, including growth 

discontinuities and square crystal termination (Fig. 2G–I), it is likely that they were initially 

aragonite in mineralogy, and were subsequently replaced by calcite and dolomite (e.g., 

Ginsburg and James, 1976; Aissaoui, 1985; Sandberg, 1985). The occurrences of botryoidal 

aragonites are typically parallel with the primary bedding.

Carbonate breccias—Closely associated with botryoidal dolostones, carbonate breccia is 

abundant in the Algal Dolomite Member (Fig. 3A–C). Isopachous cements in botryoidal 

dolostone were broken into cm-sized breccia and were then cemented after final deposition 

(Fig. 3). Some primary pores between the carbonate breccias are still not yet fully cemented 

(Fig. 3B). Petrographic observations reveal that these carbonate breccias are mostly 

composed of isopachous cements growing on dolomite intraclasts or botryoidal dolostone 

(Fig. 3D–F).

Authigenic carbonate crystal fans—Distinct authigenic crystal fans in cm size have 

been found in the Algal Dolomite Member (Fig. 4). These crystal fans were initially 

misidentified as algal fossils in previous studies (Cao and Zhao, 1978b; Cao and Zhao, 

1978a), and then re-interpreted as inorganic carbonate precipitates (Cai et al., 2010). The 

sharp square crystal terminations and growth discontinuities within the crystal fan (Fig. 4D, 

E, H, I) suggest that these authigenic cements were initially aragonite in mineralogy (e.g., 

Mazzullo and Cys, 1979; Mazzullo, 1980; Sandberg, 1985; Corsetti et al., 2004; Pruss et al., 

2008; Loyd et al., 2013) and then converted to dolomite (no fizz in acid test) (Aissaoui, 

1985; Lin et al., 2015; Peng et al., 2017).

Thrombolites—Thrombolites with distinct clotted texture are abundant in the Algal 

Dolomite Member (Fig. 4B, Fig. 5A–C). The occurrence of thrombolites in the Dengying 

Formation (Fang et al., 2003; Li et al., 2013b; Liu et al., 2015; Wang et al., 2016; Chen et 

al., 2017; Luo et al., 2017; Wen et al., 2017), along with other Ediacaran occurrences in the 

Ara Group of Oman (Grotzinger et al., 2000; Grotzinger et al., 2005; Grotzinger and Al-

Rawahi, 2014) and the Blueflower Formation in the Mackenzie Mountains of Northwestern 

Canada (Aitken and Narbonne, 1989), suggests that thrombolites were abundant in 

Ediacaran shallow marine environments.

Saddle dolomite cements—Petrographic observations reveal that many late-stage 

voidfilling cements are composed of large saddle dolomite crystals, which are characterized 

by distinct cleavage and sweeping extinction under cross polarized light (Fig. 5D–F). These 
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saddle dolomite cements are typically interpreted as precipitates from hydrothermal fluids 

during deep burial (Davies and Smith Jr, 2006; Shi et al., 2013; Liu et al., 2014a; Zhu et al., 

2014a), thus should be avoided in chemostratigraphic studies.

5.b. Lithofacies of the Gaojiashan Member

The fossiliferous Gaojiashan Member (202–257 m of the DYF@GJS) is 55 m in thickness, 

including a siltstone interval in the lower part, repetitious siltstone-mudstone-limestone 

facies with crinkly and microbially laminated limestone in the middle part, and a coarse 

sandstone/conglomerate interval at the top (Fig. 6) (Cai et al., 2010; Cui et al., 2016b). 

Sedimentological observations suggest that the Gaojiashan Member is mainly deposited in a 

subtidal marine setting between the fair weather and storm wave bases. Limestones with 

abundant microbial laminae (Fig. 6D–H) and intraclasts in this member (Fig. 6I) suggest 

sediment reworking by episodic storm events (Cai et al., 2010).

Bedded siltstones or silty limestones (Lower Gaojiashan Member, 202–222 m 
of the DYF@GJS)—The lower Gaojiashan Member is mainly composed of thinly bedded 

siltstones or silty limestones without cross bedding textures, suggesting a relatively deep 

environment. The enigmatic body fossil Shaanxilithes ningqiangensis is found in the 

siltstone facies of this member (Meyer et al., 2012).

Bedded limestones or silty limestones (Middle Gaojiashan Member, 222–254 
m of the DYF@GJS)—The middle Gaojiashan Member contains Conotubus 
hemiannulatus and Gaojiashania cyclus preserved in thin, normally graded calcisiltite-

siltstone beds interpreted as distal event deposits (Cai et al., 2010). Further up section, the 

first appearance of the biomineralizing animal Cloudina occurs in intraclastic limestone 

facies approximately 40 m above the base of the Gaojiashan Member (Fig. 7A–F) (Hua et 

al., 2007; Cai et al., 2010). Notably, Cloudina fossils at the DYF@GJS are typically 

associated with microbial laminae (Cai et al., 2014). Similar observations have also been 

made in the Nama Group of Namibia (Grotzinger and James, 2000; Adams et al., 2004; 

Grotzinger et al., 2005), the Byng Formation of the Miette Group in British Columbia 

(Hofmann and Mountjoy, 2001), the Tamengo Formation of the Corumbá Group in 

Southwest Brazil (Becker-Kerber et al., 2017), and the Itapucumi Group in Paraguay 

(Warren et al., 2011), where intimate association of Cloudina with microbialites have also 

been reported.

Gypsum (Middle Gaojiashan Member, at 251.5 m of the DYF@GJS)—It is notable 

that a distinct gypsum (now replaced by calcite) horizon (ca. 2–3 cm in thickness) occurs 

within the limestone intervals in 5.5 meters below the conglomerate and sandstone interval 

of the upper Gaojiashan Member (Fig. 7G–I). In this layer, calcite pseudomorphs with 

distinct gypsum crystal shape suggests the dissolution and replacement of pre-existing 

gypsum. This gypsum layer, along with sedimentary structures indicative of shallow-water 

depositional environments, suggests an evaporative environment with high concentrations of 

seawater sulfate. The presence of gypsum in the DYF@GJS is also consistent with published 

sedimentological observations in other localities across the Yangtze Block, where evaporites, 

including halite, gypsum, and anhydrite, have also been widely reported from the Dengying 
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Formation (Xi, 1987; Siegmund and Erdtmann, 1994; Meng et al., 2011; Lu et al., 2013; 

Duda et al., 2015; Liu et al., 2015; Luo et al., 2017).

Sandstones and conglomerates (Upper Gaojiashan Member, 254–257 m of the 
DYF@GJS)—A distinct interval of coarse sandstones and conglomerates occurs in the 

uppermost Gaojiashan Member, suggesting increasingly shallower depositional 

environment. This conglomerate and sandstone interval is dominated by pure quartz grains 

at the DYF@GJS, and shows large-scale cross bedding in the nearby Shiziya section (Cai et 

al., 2010).

5.c. Lithofacies of the Beiwan Member

The Beiwan Member (257–631.5 m of the DYF@GJS) is dominated by thick-bedded 

dolostones with void-filling bitumen (Fig. 8). At the outcrop scale, bitumen-rich layers can 

be parallel to or cross-cut the primary bedding. Petrographic observations in thin sections 

(Fig. 8) reveal that the pores in the Beiwan dolostones are often surrounded by quartz rims 

(Fig. 8E, F, H, I, K), suggesting that silicification in low pH conditions may have promoted 

the dissolution of primary dolostones and contributed to the genesis of secondary porosity. 

These secondary pores or vugs consequently facilitated oil migration that resulted in the 

infilling of bitumen in the voids.

5.d. A synthetic depositional model

Based on the above sedimentological observations, the deposition of the DYF@GJS can be 

divided to multiple stages as described below (Fig. 9).

Stage 1 (Algal Dolomite Member)—The Algal Dolomite Member of the Dengying 

Formation was rapidly deposited in a relatively warm peritidal environment (Fig. 9A). In 

light of the repeating occurrences of botryoidal carbonates in parallel with the primary 

beddings, sea levels were likely low and the carbonate deposits were subject to frequent 

subaerial exposure, so that syn-depositional or very early post-depositional karstification 

occurred repeatedly. The void-filling authigenic aragonite cements and crystal fans in this 

formation may have formed penecontemporaneous with sedimentation when sea level 

fluctuated and the carbonate sediments were repeated exposed and submerged.

Stage 2 (Lower Gaojiashan Member)—The lower Gaojiashan Member represents 

deposition below storm wave base, as evidenced by the thinly-bedded siltstone and silty 

limestones in this unit.

Stage 3 (Middle and upper Gaojiashan Member)—Deposition mostly occurred in an 

environment above the storm wave base (Cai et al., 2010) (Fig. 9B). Towards the upper 

Gaojiashan Member, the relative sea level dropped progressively, leading to the deposition 

of gypsum, carbonate intraclasts, and conglomerate and sandstones.

Stage 4 (Beiwan Member)—The Beiwan Member represents another period of carbonate 

deposition in peritidal environment with a high sedimentation rate (Fig. 9C).
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The overall shallowing trend from the Gaojiashan to the Beiwan Member may have been 

controlled by regional tectonic uplift (Xue et al., 2001; Wang et al., 2014b; Zhu et al., 

2014b; Li et al., 2015; Zhu et al., 2015; Yang et al., 2017). The repeated karstification of the 

Algal Dolomite Member, on the other hand, may be related to minor sea level fluctuations in 

a peritidal environment.

6. Geochemical results of the Dengying Formation

6.a. Fabric-specific δ13Ccarb and δ18Ocarb data

Samples in the dolostone-dominated Algal Dolomite Member and Beiwan Member typically 

show complex textures, including dolomicrite matrix, large aragonite (now dolomite) crystal 

fans, and void-filling aragonite (now dolomite) or quartz cements. Fabric-specific 

geochemical analysis via micro-drilling shows different isotopic signatures among 

individual phases (Fig. 10). It is notable that the aragonite (now dolomite) crystal fans record 

the highest δ18Ocarb values (−0.9‰ in Fig. 10A and −1.8‰ in Fig. 10C) among the data 

measured from the microdrilled carbonates. In contrast, late-stage hydrothermal saddle 

dolomite cements typically show the lowest δ18Ocarb values (−10.3‰ in Fig. 10A).

During the field investigation, multiple calcite-filled vugs and veins were found in the 

limestone intervals of the upper Gaojiashan Member (1–2 meters below the conglomerate/

sandstone interval) (Fig. 11A–C). Both the calcite veins and micritic limestone host rock 

were micro-drilled and analyzed for δ13Ccarb and δ18Ocarb compositions (Fig. 11D–G). The 

data show that the δ13Ccarb and δ18Ocarb values measured from the calcite vugs and veins 

are consistently lower than those of the limestone host rock.

6.b. Chemostratigraphic profiles of the Dengying Formation

For chemostratigraphic purpose, only data measured from the least-altered micritic 

carbonate matrix were compiled when constructing the chemostratigraphic profiles (Figs. 

12, 13). Carbonate percentage (carbonate wt%) of the DYF@GJS are mostly >90% except 

for a few siltstone intervals in the Gaojiashan Member (Fig. 12A). The δ13Ccarb profile of 

the DYF@GJS shows a positive excursion (up to +6‰) in the Gaojiashan Member (Fig. 

12B, 13B) and two broad positive excursions (up to +4‰) in the Algal Dolomite Member 

and Beiwan Member, respectively (Figs. 12B,14A). The δ18Ocarb data of the DYF@GJS 

mostly range between −5‰ and 0‰, with the exception of the Gaojiashan Member (down to 

ca. −8‰, Fig. 13B), the uppermost Beiwan Member, and the Kuanchuanpu Member (Fig. 

12B). The organic carbon isotope (δ13Corg) data of the DYF@GJS mostly range between 

−30‰ and −25‰, with more negative values (down to ca. −35‰) in the Gaojiashan and the 

Kuanchuanpu members (Figs. 12C, 13C). Calculated values of carbon isotope fractionation 

(Δδ13C = δ13Ccarb − δ13Corg) between carbonate carbon and organic carbon of the 

DYF@GJS mostly range between +25‰ and +35‰, with higher values in the Gaojiashan 

Member and some horizons of the Beiwan Member (Fig. 12D).

Given the potential impact by dolomitization, 87Sr/86Sr analysis of the DYF@GJS was only 

conducted for selected limestone samples from the Gaojiashan Member. Considering that 
87Sr/86Sr values in carbonates typically increase during burial diagenesis due to the 
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influence of Rb-rich fluids (Banner, 1995; Jacobsen and Kaufman, 1999), the lowest value 

likely better represents the primary seawater signals (e.g., Li et al., 2013a). In this study, the 

lowest 87Sr/86Sr value is 0.7084 measured from the limestone sample 09GJS-11 (collected at 

the stratigraphic height of 246 m of the DYF@GJS, Figs. 12, 13), which is consistent with 

the published 87Sr/86Sr data (ca. 0.7084) measured from the equivalent Shibantan Member 

in the Yangtze Gorges area (Fig. 14B) (Jiang et al., 2007).

Pyrite sulfur isotope (δ34Spyrite, measured from acidified residues) data of the DYF@GJS 

show positive values ranging between +10‰ and +40‰ through most of the section, except 

for two remarkable negative anomalies (down to −30‰) in the siltstone and silty limestone 

intervals of the middle and lower Gaojiashan Member (Figs. 12E, 13F). The δ34Scas data of 

carbonate-associated sulfate (CAS) have only been analyzed for the Gaojiashan Member and 

have been published previously (Cui et al., 2016b).

7. Discussion

7.a. Timing of the karstification event

The bedded dolostones in the Algal Dolostone Member are mostly composed of dolomicrite 

matrix and multiple stages of void-filling carbonate cements (Figs. 4, 5). The dolomicrite 

matrix is very fine grain sized, therefore likely formed as primary precipitates in seawater or 

during very early diagenesis in a dolomite ocean (Tucker, 1982; Tucker, 1983; Lei and Zhu, 

1992; Wang and Xiang, 1999; Corsetti et al., 2006). Notably, the Algal Dolomite Member of 

the DYF@GJS shows abundant karstification textures. The occurrence of botryoidal 

dolostones, carbonate breccia, and distinct carbonate crystal fans in this member suggests 

pervasive karstification followed by void-filling carbonate authigenesis (Figs. 2–4, 10).

Field investigation reveals that the karstification textures in the DYF@GJS are restricted to 

the lower half of the Algal Dolomite Member, with botryoidal aragonites in parallel with the 

primary beddings. Based on the stratigraphic relationship, the karstification events of the 

Algal Dolomite Member should have occurred relatively early, probably 

penecontemporaneous with the deposition of dolomite sediments in response to sea level 

fluctuations in a peritidal environment. Sea levels may have been subject to frequent 

fluctuations so that early karstification could occur repeatedly.

7.b. Origin of the authigenic aragonite cements

Although the authigenic carbonates in the Algal Dolomite Member of the DYF@GJS have 

already been completely dolomitized, diagnostic textures that suggest an original aragonite 

mineralogy are retained. Supporting evidence includes large carbonate crystal fans with 

discontinuities and square termination, botryoidal carbonates and fibrous isopachous 

cements (Figs. 4, 10), which are all distinct from typical dolomite cements formed during 

postdepositional diagenesis (Purser et al., 2009; Tucker, 2009).

The origin of the authigenic aragonites in the Algal Dolomite Member remains debated. In 

geological records, botryoidal aragonites of both marine origin (Ginsburg and James, 1976; 

Mazzullo and Cys, 1979; Aissaoui, 1985; Jiang et al., 2006a) and non-marine origin 

(Mazzullo, 1980; Aissaoui, 1985) have been reported. Proposed interpretations for the 
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Dengying aragonites include primary-syndepositional seafloor precipitates (Zhang, 1980; 

Cao, 2002; Zhang et al., 2014a; Lin et al., 2015; Peng et al., 2017), authigenic carbonates 

formed in meteoric waters (Wang et al., 2010; Shi et al., 2011), authigenic carbonates 

formed in marine environments (Si et al., 2014; Hao et al., 2015; Mou et al., 2015; Tan et al., 

2015), and late authigenic carbonates formed during burial diagenesis (Wang et al., 2000).

Based on multiple lines of evidence, an early authigenic marine origin for the Dengying 

aragonites is preferred in this study. First, the botryoidal aragonites in the Dengying 

Formation are mostly void-filling, distributed mostly in parallel with the primary 

sedimentary beddings. Therefore, a syndepositional origin, instead of a syngenetic (in water 

columns) origin, is more likely.

Second, fabric-specific δ18Ocarb values of different carbonate phases reveal that the 

authigenic aragonite crystal fans show higher δ18Ocarb values than the host dolostones (Fig. 

10A, C). Considering that meteoric waters typically have much lower δ18O signals than 

seawater (Knauth and Kennedy, 2009; Bishop et al., 2014; Oehlert and Swart, 2014), the 

impact by meteoric waters on these authigenic cements should be minimized. Therefore, an 

evaporitic marine origin, instead of a karst-related meteoric water origin, is more likely.

Third, published studies show that the late Ediacaran botryoidal aragonites in the Dengying 

Formation (Zhang et al., 2014a; Lin et al., 2015; Mou et al., 2015; Peng et al., 2017), as well 

as correlative strata in the Nama Group of Namibia (Grant et al., 1991), typically show dull 

or non-luminescent color under the cathodoluminescence (CL) light, which is consistent 

with marine carbonates, instead of late diagenetic carbonates that typically show bright CL 

colors. In addition, aragonite is unstable in meteoric or late diagenetic fluids, so it is not 

likely that these aragonite cements formed through late diagenetic processes.

Taken together, based on sedimentological and geochemical results, the botryoidal aragonite 

textures, aragonite crystal fans, and karstification features in the Algal Dolomite Member of 

the DYF@GJS were formed during frequent sea level fluctuations and repeated exposure 

and submergence in a peritidal environment. Thus, although the botryoidal aragonite 

textures and aragonite crystal fans are technically early post-depositional in origin, they still 

appear to record seawater signals.

7.c. A high-alkalinity ocean in the terminal Ediacaran Period

If our interpretation of these authigenic aragonite (now dolomite) cements is correct, then 

the ocean chemistry may have witnessed the occurrence of a high-alkalinity ocean during 

the terminal Ediacaran Period. The existence of a high-alkalinity ocean at that time is 

consistent with the sedimentological observations that authigenic aragonites have also been 

found in the correlative late Ediacaran strata in Namibia (Grant, 1990; Grant et al., 1991; 

Grotzinger et al., 2000; Wood et al., 2002; Grotzinger et al., 2005; Hall et al., 2013; Penny et 

al., 2014; Wood, 2016) and the Siberia Platforms (Wood et al., 2017b).

Supporting evidence for a high-alkalinity ocean in the terminal Ediacaran Period also comes 

from the strontium concentration data. Published geochemical data show elevated 

concentrations of strontium in the carbonates of the Dengying Formation in South China 
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(Fig. 13G) (Sawaki et al., 2010; Cui et al., 2016b) and the Nama Group of Namibia (Grant et 

al., 1991; Ries et al., 2009). Considering that strontium has a crystal ionic radius larger than 

that of Ca2+ and thus prefers the more open octahedral crystal structure of aragonite over the 

smaller hexagonal structure of calcite (Wray and Daniels, 1957; Lorens, 1981), the 

precipitation of aragonites in a high-alkalinity ocean during deposition could account for the 

enrichment of strontium concentrations in marine carbonates during the late Ediacaran 

Period.

Taken together, it is likely that a high-alkalinity ocean occurred in the late Ediacaran Period. 

This inferred high-alkalinity ocean was evidenced by the authigenic aragonites in the Algal 

Dolomite Member and high Sr concentrations in the Gaojiashan Member of the Dengying 

Formation.

7.d. Evaluating the impact of authigenesis

Given the significant heterogeneity of carbonates in the studied samples, fabric-specific 

δ13Ccarb and δ18Ocarb analysis of different phases and textures the DYF@GJS was adopted 

as the sampling strategy. Guided by detailed sedimentological observations, we evaluated 

the impact of authigenesis for each of the three members.

Authigenesis of the Algal Dolomite Member—Authigenic aragonite (now dolomite) 

crystal fans from the Algal Dolomite Member have been investigated for δ13Ccarb and 

δ18Ocarb values by micro-drilling analysis (Fig. 1). The δ18Ocarb values of the dolomitized 

crystal fans (−0.9‰ in Fig. 10A and −1.8‰ in Fig. 10C) are notably enriched in 18O 

compared with other carbonate phases, suggesting high-alkalinity evaporative conditions 

during precipitation (Ufnar et al., 2008; Gomez et al., 2014; Guo and Chafetz, 2014; Horton 

et al., 2015; Leleu et al., 2016). On the contrary, isotope data of the late carbonate cements, 

particularly the hydrothermal saddle dolomite, show much lower δ18Ocarb values (ca. 

−10‰) than early crystal fans and dolomitic matrix, which is consistent with a high-

temperature origin during deep burial. Similar observations of hydrothermal dolomite in the 

Dengying Formation in the Sichuan Basin (Shi et al., 2013; Liu et al., 2014a; Jiang et al., 

2016) suggest that the occurrence of saddle dolomite in the Dengying Formation may result 

from a basin-scale geothermal event during deep burial.

Authigenesis of the Gaojiashan Member—Multiple calcite-filled vugs and veins were 

found in the limestone intervals of the upper Gaojiashan Member (1–2 meters below the 

conglomerate/sandstone interval) (Fig. 11A-C). We micro-drilled and analyzed the δ13Ccarb 

and δ18Ocarb values of both the calcite veins and micritic limestone phases in order to 

evaluate the impact of diagenesis (Fig. 11D-G). The δ13Ccarb and δ18Ocarb values of the 

calcite veins show more negative values compared with the host limestone rocks (Fig. 11). 

Two interpretations could possibly explain this observation: (1) These calcite veins may be 

early authigenic carbonates formed by microbial sulfate reduction (MSR) in pore waters 

(e.g., Campbell et al., 2002; Jiang et al., 2003; Jiang et al., 2006a; Jiang et al., 2006b; Schrag 

et al., 2013; Zhou et al., 2016; Cui et al., 2017a), or (2) these calcite veins may result from 

intrusions of late diagenetic fluids (e.g., Bristow et al., 2011; Lin et al., 2011). Based on the 

sharp contact between these white calcite phases and the host carbonates, which sometimes 

Cui et al. Page 13

Geol Mag. Author manuscript; available in PMC 2020 June 17.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



cut across the primary sedimentary beddings, a late diagenetic origin for these calcite phases 

is preferred in this study.

Recently, largely based on a newly discovered δ13Ccarb negative excursion in the upper 

Gaojiashan Member, Gamper et al. (2015) placed the Ediacaran-Cambrian boundary in the 

middle Dengying Formation. However, it should be noted that this δ13Ccarb negative 

excursion occurs in the conglomerate/sandstone interval of the uppermost Gaojiashan 

Member, which more likely reflects late diagenetic signals instead of primary seawater 

signals. Therefore, the Gamper et al.’s (2015) placement of the Ediacaran-Cambrian 

boundary should be treated with caution. Our observation of late diagenetic calcite veins 

with negative δ13Ccarb values around this interval casts doubt on the fidelity of the proposed 

δ13Ccarb negative excursion and its relationship with the Ediacaran-Cambrian boundary.

Authigenesis of the Beiwan Member—Bitumen-bearing dolostones in the Beiwan 

Member have also been tested to evaluate the impact of bitumen on the δ13Ccarb and 

δ18Ocarb values. Potential oxidation of the bitumen may have caused a significant decrease 

in δ13Ccarb values (e.g., Bristow et al., 2011). However, no strongly negative δ13Ccarb values 

have been found in the bitumen-bearing samples (Fig. 8L), suggesting little impact of 

bitumen on the δ13Ccarb compositions. That being said, it is notable that the δ13Corg data in 

the Beiwan Member show large variations (Fig. 12C), which may be caused by the influence 

of bitumen in the dolostone samples.

In summary, the texture-specific micro-drilling method employed in this study demonstrates 

that coupled petrographic and isotope analysis is an informative tool for the evaluation of 

diagenetic influences in chemostratigraphic studies. Late diagenetic signatures should be 

identified and treated with caution in paleoenvironmental interpretations.

7.e. Biogeochemical carbon cycles

The chemostratigraphic δ13Ccarb profile of the DYF@GJS show a positive excursion up to 

+6‰ in the Gaojiashan Member (Figs. 1D, 12B, 13B). Comparisons of the δ13Ccarb profile 

with other Dengying or equivalent sections at regional and global scales show both 

similarities and differences (Fig. 14). In the Yangtze Block, similar δ13Ccarb positive 

excursions have also been reported from correlative Ediacaran sections at Shipai (Jiang et 

al., 2007), Jiulongwan (Wang et al., 2014a), Lianghekou (Chen et al., 2015), Lianghong 

(Wang et al., 2012), and Huajipo (Zhang et al., 2004) (Fig. 14). The difference in the 

chemostratigraphic δ13Ccarb profiles of these sections may result from difference in local 

redox conditions, sedimentation rates, stratigraphic hiatus, or sampling resolutions. 

Regardless, most of the sections show a δ13Ccarb excursion up to +6‰.

Viewed at a global scale, the finding of a δ13Ccarb excursion up to +6‰ in the Dengying 

Formation is also consistent with published chemostratigraphic profiles of the roughly 

correlative late Ediacaran strata in Namibia (Saylor et al., 1998; Wood et al., 2015; Tostevin 

et al., 2017) and Arctic Siberia (Knoll et al., 1995; Pelechaty et al., 1996b; Cui et al., 2016a; 

Vishnevskaya et al., 2017) where δ13Ccarb positive excursions with similar magnitude (up to 

+6‰) have also been reported.
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Two hypotheses may be able to explain this δ13Ccarb positive excursions. Frist, canonical 

models of the global carbon cycle suggests that δ13Ccarb positive anomalies likely result 

from an enhanced organic carbon burial rate because organic carbon is strongly enriched in 
12C (Broecker, 1970; Hayes et al., 1999). Alternatively, a δ13Ccarb positive excursion can 

also result from the mixing of high-δ13Ccarb authigenic carbonates during early diagenesis. 

This is possible if residual carbon after fermentation (methanogenesis) led to the formation 

of authigenic carbonates (Claypool and Kaplan, 1974; Irwin et al., 1977; Talbot and Kelts, 

1986; Meister et al., 2007; Wehrmann et al., 2011; Birgel et al., 2015; Pierre et al., 2016). 

Such processes may have been particularly prevalent in the Precambrian ocean where the 

seawater was mostly anoxic and therefore may promote authigenic carbonate precipitation 

on the seafloor (Higgins et al., 2009; Schrag et al., 2013).

Based on multiple lines of evidence, we prefer the former hypothesis (i.e., enhanced organic 

carbon burial) for this δ13Ccarb positive excursion. Frist, no extremely high or low δ13Ccarb 

signals that are indicative of the existence of methane have been found based on our detailed 

geochemical analysis of micro-drilled samples. Therefore, there is no supporting evidence 

for the occurrence of methane generation or oxidation in the DYF@GJS. Second, the 

presence of a gypsum layer near the height of the δ13Ccarb positive excursion at the middle 

Gaojiashan Member of the DYF@GJS suggests that the sulfate concentration was high 

during the δ13Ccarb excursion. Considering that methanogens are typically outcompeted for 

substrates (e.g. lactate and acetate) by sulfate reducers in sulfate-rich environments 

(Jørgensen and Kasten, 2006), methanogenesis would not have played a considerable role in 

generating this δ13Ccarb positive excursion. Third, the recent investigations by N and U 

isotopes (Fig. 13) suggest that extensive oceanic anoxia occurred during the late Ediacaran 

(Wei et al., 2018; Zhang et al., 2018). This oceanic anoxia event may have promoted organic 

carbon burial and led to the δ13Ccarb positive excursion.

In summary, a δ13Ccarb excursion up to +6‰ has been found in the Dengying Formation and 

many other correlative late Ediacaran sections. Based on multiple lines of evidence, we 

regard that enhanced organic carbon burial may have caused this excursion.

7.f. Biogeochemical sulfur cycles

Sulfur isotope chemostratigraphy of the DYF@GJS shows overall positive δ34Spyrite values 

ranging between +20‰ and +30‰ through most of the section, except for two episodes of 

anomalous negative excursions down to ca. −30‰ in the lower and middle Gaojiashan 

Member (Figs. 12E, 13F). The occurrence of highly positive δ34Spyrite values in the late 

Ediacaran strata has also been reported from the roughly equivalent strata in Oman (Fike and 

Grotzinger, 2008), Namibia (Ries et al., 2009; Tostevin et al., 2017), Arctic Siberia (Cui et 

al., 2016a), and Newfoundland (Canfield et al., 2007; Hantsoo et al., 2018), suggesting a 

global phenomenon. The origin of the low δ34Spyrite signals in the Gaojiashan Member has 

been fully discussed in our earlier paper (Cui et al., 2016b), we will mainly focus on the 

overall high δ34Spyrite signals below.

Four hypotheses can be proposed to explain the overall positive δ34Spyrite signals in the 

studied section. They are discussed below.
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First, thermochemical sulfate reduction (TSR)—The high δ34Spyrite values may 

result from Rayleigh fractionations during TSR of hydrothermal fluids in post-depositional 

processes. Such scenario has recently been proposed for the Cryogenian Datangpo 

Formation, where extremely high δ34Spyrite values (up to +70‰) have been found (Cui et al., 

2017b; Cui et al., 2018b; Cui et al., 2018c). However, our field observation revealed no clear 

evidence for a significant impact by hydrothermal fluids. Moreover, assuming a seawater 

δ34Ssulfate value of +40‰ for the late Ediacaran ocean based on gypsum or carbonate-

associated sulfate (CAS) analyses (Fike and Grotzinger, 2008; Bergmann, 2013; Cui et al., 

2016b), these δ34Spyrite values, though positive, still can be explained by microbial sulfate 

reduction with normal (rather than reversed) fractionations (i.e., Δ34Ssulfate-pyrite = δ34Ssulfate 

− δ34Spyrite > 0). Therefore, a TSR origin for the overall high δ34Spyrite values in the 

DYF@GJS is not preferred in this study.

Second, low sulfate concentrations of seawater—The positive δ34Spyrite values 

may reflect limited S isotope fractionation in seawaters with very low concentrations of 

sulfate (Habicht et al., 2002; Loyd et al., 2012). However, given the presence of gypsum in 

the Dengying Formation across the Yangtze platform and the overall shallow and 

evaporative environments inferred from the lithofacies, seawater sulfate concentration 

should not be a limiting factor for microbial sulfate reduction. Therefore, this hypothesis is 

not favored here.

Third, higher proportions of pyrite burial—The overall positive δ34Spyrite signals in 

the late Ediacaran Period may be caused by enhanced rates of pyrite burial. This scenario 

has been proposed based on an earlier study of the late Ediacaran strata in Oman (Fike and 

Grotzinger, 2008). More recent studies of the Dengying Formation have shown notably high 

δ15N signals and low δ238U signals (Fig. 13) indicative of a significant ocean anoxic event 

with enhanced denitrification and U removal from the ocean into the sediments (Gamper, 

2014; Wei et al., 2018; Zhang et al., 2018). This inferred ocean anoxic event at that time 

may have promoted organic carbon and pyrite burial, leading to the high δ34Spyrite signals.

Fourth, high sedimentation rates—It is also possible that enhanced sedimentation 

rates may have contributed to the overall positive δ34Spyrite signals in the studied section. It 

has been found that higher sedimentation rate could cause higher δ34Spyrite in marine 

sediments (Pasquier et al., 2017; Liu et al., 2019). Although karstification may have eroded 

the Algal Dolomite Member, compared with the well-studied Doushantuo Formation in the 

Yangtze Block (Zhou and Xiao, 2007; Zhu et al., 2007; McFadden et al., 2008; Jiang et al., 

2011; Zhu et al., 2013; Cui et al., 2015), the Dengying Formation is remarkably thick (Fig. 

15). The general thickness of the Doushantuo Formation (ca. 635.2–551.1 Ma) is <300 m in 

thickness for over 80 million years (Condon et al., 2005; Zhou and Xiao, 2007; Zhu et al., 

2007), while the studied DYF@GJS (ca. 551.1–538.8 Ma) is >630 m in thickness for only 

~12.3 million years (Fig. 15). Given the exceptionally high sedimentation rate of the 

Dengying Formation compared with the underlain Doushantuo Formation, it is likely that 

high sedimentation rate may have also played a role in generating the positive δ34Spyrite 

signals.
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Taken together, based on multiple lines of sedimentological and geochemical evidence, we 

regard that enhanced rates pyrite burial may be the main cause of the overall positive 

δ34Spyrite values. High sedimentation rates may have also contributed to the high δ34Spyrite 

values, but more information is needed to specifically test this hypothesis.

7.g. Implications on early metazoan evolution

The contrasting thickness between the Dengying Formation and the underlying Doushantuo 

Formation can provide useful insights into the changing environment. This sharp contrast 

suggests that the depositional environment during the late Ediacaran Period has been subject 

to significant change, which is possibly characterized by overall shallower water depth, 

higher alkalinity, and higher accommodation space. Such conditions are suitable for 

continuous production and accumulation of marine carbonates.

Sedimentological observations suggest that the karstification events of shallow carbonate 

platforms may be widespread in the late Ediacaran Period. Notably, similar karstification 

textures of carbonate breccia, aragonite crystal fans and botryoidal aragonites have also been 

found from other correlative sections, including the other Dengying sections in South China 

(Zhang, 1980; Cao and Xue, 1983; Siegmund and Erdtmann, 1994; Xiang et al., 2001; Wang 

et al., 2010; Shi et al., 2011; Liu et al., 2012; Wang et al., 2012; Mo et al., 2013; Zhang et 

al., 2014a; Lin et al., 2015; Mou et al., 2015; Lian et al., 2016; Lian et al., 2017), the 

Qigebulake Formation in the Tarim basin in Northwestern China (Qian et al., 2017), the 

Buah Formation in Oman (Gorin et al., 1982; Cozzi and Al-Siyabi, 2004; Bergmann, 2013), 

the K3 and K4 units of the Katakturuk Dolomite succession in Arctic Alaska (Macdonald et 

al., 2009), and the Turkut Formation in the Siberia Platform (Knoll et al., 1995; Pelechaty et 

al., 1996a; Nagovitsin et al., 2015; Rogov et al., 2015; Cui et al., 2016a). These observations 

suggest widespread karstification of shallow carbonate platforms at a global scale.

The overall shallow marine environment may be caused by regional tectonic uplift in the 

depositional basin (Xue et al., 2001; Wang et al., 2014b; Zhu et al., 2014b; Li et al., 2015; 

Zhu et al., 2015; Yang et al., 2017). The extensive karstification of shallow carbonate 

platforms during the late Ediacaran Period was probably triggered by fluctuations of relative 

sea level at that time. This scenario is in agreement with an overall increase in seawater 87Sr/
86Sr and decrease in seawater Nd isotopes through the Proterozoic-Phanerozoic transition 

(Halverson et al., 2007; Halverson et al., 2010; Peters and Gaines, 2012; Cox et al., 2016). 

The breakup of the Rodinia supercontinent and assembly of the Gondwana supercontinent 

may have profoundly reshaped the Earth surface’s lithosphere and hydrosphere and triggered 

the evolutionary innovation of the biosphere.

Although the precise mechanism is still unclear, the geochemistry of late Ediacaran oceans 

may have played a role in early animal biomineralization. Considering that the skeletons of 

the late Ediacaran biomineralizing animal are mostly composed of aragonite or high-Mg 

calcite (Grant, 1990; Fedorov and Zhuravlev, 1993; Grotzinger et al., 2000; Zhuravlev and 

Wood, 2008; Zhuravlev et al., 2012), the occurrence of a high-alkalinity ocean — evidence 

by authigenic aragonite cements — may have influenced the composition of the earliest bio-

minerals of early animals. It is likely that the high concentration of alkalinity and nutrient 

influx in the ocean may have caused the supersaturation of marine carbonates and facilitated 
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the early animal biomineralization in this critical period (Zhuravlev and Wood, 2008; Peters 

and Gaines, 2012; Cui et al., 2016b; Wood et al., 2017a).

8. Conclusions

Integrated sedimentological and chemostratigraphic study was conducted for the late 

Ediacaran Dengying Formation at the Gaojiashan section (DYF@GJS), Ningqiang County 

of southern Shaanxi Province, South China. Multiple types of lithofacies and diagenesis 

have been identified and summarized based on detailed field observations, petrographic 

studies, and isotope measurements of micro-drilled spots.

1. (1) The DYF@GJS was deposited in a largely shallow marine platform with 

dynamic sea level changes and overall high accommodation space, though the 

lower Gaojiashan Member may represent a temporary deeper and more anoxic 

environment. Sedimentological evidence suggests that extensive karstification of 

shallow marine platforms occurred soon after the deposition of the lower part of 

the Algal Dolomite Member.

2. (2) We propose that the finding of authigenic aragonites in the Algal Dolostone 

Member may have significant implications on the Ediacaran ocean chemistry. 

The micro-drilling δ18Ocarb data of the authigenic aragonites (now dolomites) 

suggest that meteoric waters have little impact on the genesis of these authigenic 

aragonites. Instead, the Dengying authigenic aragonites may form in marine 

environments during repeated sea level fluctuations in a peritidal environment, 

which resulted in karstification features formed during subaerial exposure, 

followed by void-filling aragonite botryoids formed during submergence. These 

Dengying authigenic aragonites reflect the existence of a high-alkalinity ocean at 

that time.

3. (3) Geochemical analysis of micro-drilled samples reveals different compositions 

among depositional, early authigenic, and late diagenetic components. The post-

depositional phases should be excluded when conducting chemostratigraphic 

profiles.

4. (4) Chemostratigraphic data show a δ13Ccarb positive excursion (up to +6‰) in 

the Gaojiashan Member and overall positive δ34Spyrite values in most of the 

Dengying Formation. Based on multiple lines of sedimentological and 

geochemical evidence, enhanced burial of organic matter and pyrite in shallower 

environments is proposed for the studied basin. High concentrations of seawater 

alkalinity and nutrient may have facilitated the evolutionary innovation of early 

metazoan biomineralization.
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Figure 1. 
Simplified tectonic map, geological map, litho- and chemo-stratigraphy of the terminal 

Ediacaran Dengying Formation at the Gaojiashan section, South China. (A) Tectonic 

framework of China, with the Yangtze Craton highlighted in yellow. (B) Ediacaran 

depositional environments on the Yangtze Craton (Jiang et al., 2007). Rectangle showing the 

location of the Ningqiang area in the northwestern margin of the Yangtze Platform. (C) 

Geological map of the Gaojiashan area in southern Shaanxi Province, modified after Cai et 

al. (2014). Red star indicates the studied section at the Gaojiashan village, Niqiang county, 

Hanzhong city, southern Shaanxi Province. (D) Simplified stratigraphy of the Dengying 

Formation at Gaojiashan (Cui et al., 2016b). Source of age data: (Condon et al., 2005; Cui et 

al., 2016b; Linnemann et al., 2019). Abbreviations: Cam = Cambrian Period, GJS = 

Gaojiashan Member, KCP = Kuanchuanpu Formation, GJB = Guojiaba Formation.
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Figure 2. 
Field and microscopic views of the authigenic botryoidal dolostones that are typical in the 

lower half of the Algal Dolomite Member of the Dengying Formation at the Gaojiashan 

section. (A-C) Outcrops showing distinct botryoidal textures with concentric lamina. Pen for 

scale. (D-E) Hand samples showing the distinct botryoidal texture. Note the part and 

counterpart in D. (F) Fresh fracture surface showing radial fabrics diverging from the core. 

(G) Microscopic images of the authigenic botryoidal dolostone showing needle-shaped 

crystals with growth discontinuities and square terminations. Note the needle-shaped 

crystals as the first-stage cements and the sparry dolomite as the second-stage cements. (H-
I) Closer views of the needle-shaped crystals with discontinuities and square terminations, 

indicating originally aragonite in mineralogy. PPL = plane polarized light.
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Figure 3. 
Field samples and microscopic views of the carbonate breccia and isopachous overgrowth 

that are typical in the lower half of the Algal Dolomite Member of the Dengying Formation 

at the Gaojiashan section. (A-C) Karst breccia cemented by carbonates in the vugs between 

breccias. Scale in millimeters. (D-F) Petrographic images of sample 14AD-3, showing 

isopachous void-filling carbonate cements with concentric textures (brown color) 

surrounding coarse dolomite sediments (white color). PPL: plane polarized light.
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Figure 4. 
Hand samples and microscopic views of the thrombolite and authigenic aragonite (now 

dolomite) crystal fans that are typical in the lower half of the Algal Dolomite Member of the 

Dengying Formation at the Gaojiashan section. (A) Sample slab 14AD-1, showing 

thrombolite sediments in the lower part and two generations of crystal fans in the middle and 

upper parts, respectively. Scale in millimeters. (B-C) Closer views of thrombolitic texture in 

labelled rectangles in A. Note the coarse dolomite cements within a large void of the 

thrombolitic dolomite matrix. (D-E) Authigenic crystal fans in labelled rectangles in A. 

Note the crystals with growth discontinuities (arrows). Although the entire rocks have been 

dolomitized, the relic fabrics of the original aragonite crystals are retained. (F) Divergent 

fabrics of dolomite crystals with sweeping extinction under XPL in labelled rectangles in A. 

(G) Dolostone slab 14AD-4 with crystal fans growing above dolomitic sediments. Scale in 

millimeters. (H-I) Closer views of crystal fans in labelled rectangles in G, showing growth 

discontinuities (arrows in I) within the aragonite crystals. PPL: plane polarized light; XPL: 

cross polarized light.
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Figure 5. 
Thrombolitic dolostone and void-filling hydrothermal dolomite cements in the Algal 

Dolomite Member, Dengying Formation, at the Gaojiashan section. Sample 09AD-167.2 

with a stratigraphic height of 89.8 m in Fig. 12. (A-B) Dolostone slabs showing thrombolitic 

dolomite matrix with vug-filling dolomite cements. Fabric-specific δ13C (left) and δ18O 

(right) data are provided in A. Scale in B in millimeters. (C) A closer view of the 

thrombolitic dolomite matrix under plane polarized light. (D) A closer view of coarse 

dolomite cements in the thrombolitic dolomite matrix under cross polarized light. (E, F) 

Closer views of hydrothermal saddle dolomites with two distinct sets of cleavages and 

sweeping extinction. PPL: plane polarized light; XPL: cross polarized light.
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Figure 6. 
Typical lithofacies and geochemical data of the Gaojiashan Member, Dengying Formation, 

at the Gaojiashan section. Stratigraphic height numbers representing the distance above the 

Algal Dolomite/Gaojiashan boundary. (A) Thinly bedded siltstones and silty limestones at 

the lower/middle transition of the Gaojiashan Member. (B) Dark-colored thin-bedded 

limestones in the middle Gaojiashan Member that records a δ13Ccarb positive excursion up 

to +6‰ (Cui et al., 2016b). (C) A conglomerate/sandstone interval in the upper Gaojiashan 

Member. (D-I) Photos of freshly cut slabs of samples from the Gaojiashan Member with 

microbial laminae and intraclasts. These slabs represent greenish grey dolostone (D), 

limestones with microbial laminae (E-H), and intraclastic limestone (I). The numbers in the 

sample IDs represent distance (in meters) below the conglomerate interval in the upper 

Gaojiashan Member. For example: sample 14GJS-10 is 10 m below the conglomerate 

interval in the Gaojiashan Member. The δ13Ccarb and δ18Ocarb values of micro-drilled 

carbonate powders are marked on the slab. The δ34Spyrite and δ13Corg values of each slab 

were analyzed from bulk acidified residues.
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Figure 7. 
Fossils and gypsum pseudomorphs in the Gaojiashan Member, Dengying Formation, at the 

Gaojiashan section. (A) Limestone slab 14GJS-10 (collected at 42 m in Fig. 13) with the 

terminal Ediacaran fossil Cloudina. (B) Thin section of 14GJS-10 stained by Alizarin Red S, 

confirming its limestone lithology. Note abundant detrital quartz in this sample (arrow). (C-
F) Transverse cross sections of Cloudina (arrows) in thin sections of the sample 14GJS-10. 

(G) Rock slab of sample 14GJS-5.5 (collected at 46.5 m in Fig. 13), showing calcite 

pseudomorphs after gypsum in the Gaojiashan Member. (H-I) Closer views of the calcite 

pseudomorphs after gypsum rosettes. The right half of image I shows a red color after being 

stained by Alizarin Red S, confirming the calcite composition of the pseudomorphs. PPL: 

plane polarized light; XPL: cross polarized light. ARS: stained by Alizarin Red S.
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Figure 8. 
Petrographic observations of dolostones in the Beiwan Member, Dengying Formation, at the 

Gaojiashan section. (A-C) Slab and petrographic photos of sample 09BW-79.5 (collected at 

339.5 m in Fig. 12) showing dolomicrite with abundant algal fabrics (?). (D-F) Slab and 

petrographic photos of sample 09BW-126 (collected at 386 m in Fig. 12) showing dolostone 

with vugs and quartz cements. (G-I) Slab and petrographic photos of sample 09BW-146.5 

(collected at 406.5 m in Fig. 12). Note the vugs with bitumen in H and I, and the quartz 

cements (arrows) in F and I under cross polarized light. (J) Outcrop photograph showing 

dolostones (white) with abundant bitumen (black). (K, L) Photographs of hand samples, 

showing bitumen in dissolution vugs. Note the void-filling quartz (arrow) in K. Micro-
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drilling geochemical δ13C (left) and δ18O (right) data are provided in L. PPL: plane 

polarized light; XPL: cross polarized light.
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Figure 9. 
A depositional model of the terminal Ediacaran Dengying Formation based on studies of the 

Gaojiashan section. See main text for a detailed discussion.
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Figure 10. 
Carbonate δ13C (left) and δ18O (right) values of micro-drilled samples from the Algal 

Dolomite Member, Dengying Formation, at the Gaojiashan section. (A-D) Freshly cut 

dolostone slabs showing authigenic crystal fans. A and B also illustrated in Fig. 4A–F; C 

and D also illustrated in Fig. 4G–I. Although all samples have been dolomitized, relic 

fabrics of aragonite are retained. (E-F) Freshly cut dolostone slabs showing thrombolite 

matrix, botryoidal dolomite, isopachous cements, and late-stage dolomite cements. Note the 

relatively high δ18Ocarb values in the aragonite crystal fans (−0.9‰ in A and −1.8‰ in C) 

and the relatively low δ18Ocarb values in the late-stage coarse dolomite cements (−9.2‰ in A 

and −9.0‰ in E).
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Figure 11. 
Carbonate δ13C (left) and δ18O (right) values of micro-drilled samples from the Gaojiashan 

Member, Dengying Formation, at the Gaojiashan section. (A-C) Calcite-filled vugs and 

veins (arrows) at ca. 50–51 m in Fig. 13. Pencil for scale. (D-G) Carbonate δ13C (left) and 

δ18O (right) values of micro-drilled samples from the Gaojiashan Member. Note that the 

δ13C and δ18O values (in yellow) of the vug-filling calcite are consistently lower than those 

(in white) measured from the host carbonate rocks. Numbers in sample IDs represent 

distance (in meters) below the conglomerate/sandstone interval of the upper Gaojiashan 

Member. The stratigraphic height values in D-G representing the distance above the 

Gaojiashan/Algal Dolomite boundary.
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Figure 12. 
Integrated litho-, bio-, and chemo-stratigraphy of the terminal Ediacaran Dengying 

Formation at the Gaojiashan section. Geochemical profiles showing the data of carbonate 

contents, carbonate carbon isotopes (δ13Ccarb, ‰ V-PDB), carbonate oxygen isotopes 

(δ18Ocarb, ‰ V-PDB), organic carbon isotopes (δ13Corg, ‰ V-PDB), carbon isotope 

fractionations (Δδ13Ccarb-org), pyrite sulfur isotopes (δ34STS, ‰ V-CDT), carbonate 

associated sulfate (CAS) sulfur isotopes (δ34SCAS, ‰ V-CDT), total organic carbon content 

(TOC), and total sulfur content (TS, dominated by pyrite with trace amount of organic S) of 
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acidified residues. The gray lines representing the five-point running average of the 

chemostratigraphic data. The lowest 87Sr/86Sr value (0.7084) measured from a limestone 

sample in the Gaojiashan Member is also makred in the δ13Ccarb profile (at 246 m in 

stratigraphic height). The stratigraphic positions of some figures have been marked on the 

lithology column. Note that δ13Ccarb and δ18Ocarb data plotted here and in Figs. 13, 14 only 

include micro-drilled samples of the least-altered micritic carbonate matrix, whereas δ13Corg 

and δ34STS data were measured from bulk samples after a complete acidification of 

carbonates. TS and TOC data are generally low due to significant carbobonate dilutions. 

Source of the detrital ziron age: (Cui et al., 2016b). Abbreviations: GJS = Gaojiashan 

Member, KCP = Kuanchuanpu Formation, GJB = Guojiaba Formation. See the online 

supplementary material for the complete data.
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Figure 13. 
Integrated litho-, bio-, and chemo-stratigraphy of the Gaojiashan Member of the middle 

Dengying Formation at the Gaojiashan section. Geochemical profiles showing the data of 

carbonate contents (wt. %), carbonate carbon isotopes (δ13Ccarb, ‰ V-PDB), carbonate 

oxygen isotopes (δ18Ocarb, ‰ V-PDB), organic carbon isotopes (δ13Corg, ‰ V-PDB), 

nitrongen isotopes (δ15N, ‰ AIR), uranium isotopes (δ238U, ‰ CRM145), sulfur isotopes 

(δ34STS, ‰ V-CDT) of total sulfur (TS, dominated by pyrite with trace amount of organic S) 

after a complete acidification of carbonates, carbonate associated sulfate (CAS) sulfur 

isotopes (δ34SCAS, ‰ V-CDT), Sr and Ca concentration (in ppm) ratios (Sr/Ca). Gray lines 

represent three-point running average of the chemostratigraphic data. 87Sr/86Sr values 

measured from limestone beds or limestone nodules in the Gaojiashan Member are also 

makred along the δ13Ccarb profile. Data source: δ13C, δ18O, δ34S, Sr/Ca data (Cui, 2015; 

Cui et al., 2016b), 87Sr/86Sr values (this study), δ15N data (Gamper, 2014), δ238U data 

(Zhang et al., 2018). Modified from (Cui et al., 2016b).
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Figure 14. 
Chemostratigraphic δ13Ccarb (‰, V-PDB) and δ18Ocarb (‰, V-PDB) profiles of multiple 

terminal Ediacaran sections in South China. Data source: (A) Gaojiashan section (this 

study); (B) Shipai section (Jiang et al., 2007); (C) Jiulongwan section (Wang et al., 2014a); 

(D) Lianghekou section (Chen et al., 2015); (E) Lianghong section (Wang et al., 2012); (F) 

Huajipo section (Zhang et al., 2004). Source of the lowest 87Sr/86Sr values (0.7084): 

Gaojiashan section (this study) and Shipai section (Jiang et al., 2007). Abbreviations: 

Shuram Ex = Shuram Excursion. AD = Algal Dolomite Member, GJS = Gaojiashan 

Member, XHP = Xihaoping Member, MDP = Maidiping Formation, YJH = Yanjiahe 

Formation, K = Kuanchuanpu Formation, G = Guojiaba Formation, Cam = Cambrian, E = 

Ediacaran, <MI> = Cambrian.
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Figure 15. 
δ13Ccarb (‰, V-PDB) chemostratigraphic data of the Ediacaran Period in South China 

plotted against (A) stratigraphic height and (B) estimated geological time. Data source: 

Doushantuo Formation at the Jiulongwan section (Jiang et al., 2007; McFadden et al., 2008); 

Denging Formation at the Gaojiashan section (Cui, 2015; Cui et al., 2016b). Abbreviations: 

K = Kuanchuanpu Formation, <MI> = Cambrian, Cryog. = Crogenian Period. EN = 

Ediacaran δ13Ccarb Negative excursions. See the main text for detailed discussion.
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