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Abstract

Log-layer mismatch refers to a chronic problem found in wall-modeled large-eddy simulation 

(WMLES) or detached-eddy simulation, where the modeled wall-shear stress deviates from the 

true one by approximately 15%. Many efforts have been made to resolve this mismatch. The often-

usedfixes, which are generally ad hoc, include modifying subgridscale stress models, adding a 

stochastic forcing, and moving the LES–wall-model matching location away from the wall. An 

analysis motivated by the integral wall-model formalism suggests that log-layer mismatch is 

resolved by the built-in physics-based temporal filtering. In this work we investigate in detail the 

effects of local filtering on log-layer mismatch. We show that both local temporal filtering and 

local wall-parallel filtering resolve log-layer mismatch without moving the LES–wall-model 

matching location away from the wall. Additionally, we look into the momentum balance in the 

near-wall region to provide an alternative explanation of how LLM occurs, which does not 

necessarily rely on the numerical-error argument. While filtering resolves log-layer mismatch, the 

quality of the wall-shear stress fluctuations predicted by WMLES does not improve with our 

remedy. The wall-shear stress fluctuations are highly underpredicted due to the implied use of LES 

filtering. However, good agreement can be found when the WMLES data are compared to the 

direct numerical simulation data filtered at the corresponding WMLES resolutions.

I. INTRODUCTION

Turbulence is comprised of fluid motions of many scales. Resolving all such scales leads to 

direct numerical simulation (DNS). Direct numerical simulation provides the highest-fidelity 

solution to fluid problems, but its cost quickly goes beyond the capacity of the current 

supercomputers when deployed for practical high-Reynolds-number applications. Large-

eddy simulation (LES) has been considered as a predictive and affordable alternative to 

DNS, as it resolves the flow-dependent large-scale motions directly, but models the small, 

less-energetic eddies that are more amenable to universal and calibration-free 

parametrization [1–3]. In wall turbulence, however, the requirement that LES must resolve 

the energy-containing motions everywhere makes LES only a little cheaper than DNS [4,5], 

because the size of the energy-containing eddies in the near-wall region becomes 

progressively comparable to the smallest dissipative eddies toward the wall [6]. The problem 

is more exacerbated by the fact that the currently available subgrid-scale (SGS) models 

underperform on coarse near-wall grids [7–9]. For application of LES to technologically 

relevant problems, one therefore requires an additional way of compensating for the lack of 

modeled stresses on coarse grids. This leads to wall-modeled LES (WMLES), where the 

grid spacing is chosen to scale with the local boundary-layer thickness [10,11], and an 
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auxiliary way of augmenting the turbulent stress in the near-wall region is introduced. 

Following the taxonomy given in Ref. [12], WMLES is further categorized into two different 

types of approaches: wall-stress modeling and a hybrid of Reynolds-averaged Navier-Stokes 

(RANS) and LES. In the former, a formal LES framework is maintained everywhere in the 

LES domain, while the momentum transport in the unresolved near-wall region is modeled 

through the modified wall-boundary condition. In the latter, the turbulence model switches 

from a RANS parametrization within the entire boundary layer to a LES-like one in the 

outer region [7]. The two approaches, at first glance, may look similar. However, the key 

difference is in how LES is coupled to the low-dimensional representation of the near-wall 

turbulence, and this difference leads to near-wall flow patterns and modeling challenges 

unique to each approach. References [11,12] provide detailed discussions on this subtle but 

important distinction between the two approaches. Despite such difference, a chronic 

problem has been found commonly in the two approaches, which is log-layer mismatch [13–

15].

The discussion from this point on focuses solely on wall-stress modeling and henceforth we 

use the terms WMLES and wall-stress modeling interchangeably. In a typical WMLES, the 

grid spacing (especially in the wall-normal direction) is chosen to be a fraction of the local 

boundary-layer thickness δ, typically at δ/Δ ≈ 20–[16–20]. The lack of turbulent stress in 

this coarse near-wall grid is compensated for by the modeled wall-stress boundary condition, 

which augments the total stress in the innermost region of boundary layers. Modeling the 

wall stress based on the nearest neighboring LES velocity has often led to underpredicted 

[21,22] or overpredicted [23,24] stresses and this mismatch between the modeled and the 

real skin friction leads to the so-called log-layer mismatch (LLM). Many efforts have been 

made to resolve this mismatch. Earlier works have focused on modifying the SGS stress 

models [25–30]. Later investigations suggest that LLM is not solely due to an inaccurate 

SGS stress model. Kawai and Larsson [21] argued that the flow in the near-wall region of 

WMLES is inevitably underresolved, making the input to the wall model (traditionally from 

the wall-adjacent LES data) contaminated by the truncation and SGS modeling errors. They 

then proposed that in order to resolve LLM, one needs to abandon the practice of using the 

first off-wall grid point for wall modeling and instead use the LES information slightly away 

from the wall.

This remedy by Kawai and Larsson has been useful for its robustness. However, its nonlocal 

nature appears to render this method impractical for flows involving complex wall geometry, 

by incurring significant user overhead in LES mesh preparation and wall-model 

implementation. First, ensuring the existence of a proper matching location (with a 

prescribed wall distance or number of elements below it) at the meshing stage is almost 

always impossible when complex geometries are meshed with unstructured elements. This 

situation was encountered in the recent applications of WMLES to a three-dimensional (3D) 

aircraft configuration involving multiple wall junctures [31] and an industry-scale gas-

turbine combustor [32]. Second, data exchange between the wall faces and their proper 

matching locations in parallel, unstructured-grid flow solvers requires nonlocal search and 

message passing at each time step, which degrades parallel performance of the flow solver. 

Finally, this method unphysically detaches the wall stress from the closest LES velocity, 

failing to properly account for sharp turning angles or skewed velocity profiles commonly 
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found in external aerodynamics applications [31]. Therefore, it is imperative that a local 

wall-modeling approach using the wall-adjacent LES data has to be developed, while 

resolving LLM appropriately. In addition to such practical concerns, the interpretations of 

how LLM is caused and subsequently resolved by the traditional remedy have been unclear, 

as it is based largely on a qualitative length-scale argument [21]. Although it is well 

demonstrated and understood that the near-wall solution in WMLES is underresolved, how 

this further develops into LLM has not been explored systematically.

This study aims at developing an alternative remedy for LLM that is better suited for 

complex-geometry applications and also providing a more comprehensive explanation of 

how LLM is caused and can be resolved through a quantitative analysis. The starting point 

of this work is the recent work of Yang et al. [33], where it was observed that the physics-

based time filtering of the wall-model input (taken from the wall-adjacent LES solution) 

effectively resolves LLM in their integral wall-model framework, without using the LES 

information away from the wall for wall modeling. The paper is organized as follows. In 

Sec. II, flow configuration, wall models, and computational method are described briefly. 

Log-layer mismatch and its resolution with a prevailing remedy are reproduced in Sec. III 

and a method for resolving LLM is proposed and tested in Sec. IV. Section V provides an 

alternative explanation of how LLM is caused and resolved by the remedies. Section VI 

discusses briefly the prediction of wall-shear stress fluctuations in WMLES with respect to 

the filtered DNS. A summary is given in Sec. VII.

II. COMPUTATIONAL DETAILS

We use the open-source code LESGO to investigate the LLM problem. The code solves the 

filtered Navier-Stokes equations in a half channel with a staggered grid. The size of the 

computational domain is 2πδ × δ × 2πδ in the streamwise (x), wall-normal (y), and 

spanwise (z) directions, respectively, where δ is the half channel height. The code uses a 

pseudospectral approach in the wall-parallel directions, with a second-order accurate central 

finite-difference scheme used in the wall-normal direction. Details of this code can be found 

in Ref. [34] and the references cited therein. A symmetric condition is used at the top 

boundary. Periodic boundary conditions are applied in the homogeneous directions (x and 

z). The channel is driven by a constant pressure gradient. The scale-dependent Lagrangian-

dynamic Smagorinsky model [34] is used for subgrid-scale stress modeling. While not 

reported here, no significant difference in computed flow statistics was found when 

employing different dynamic SGS models (at least for the statistics of interest here).

In WMLES, the no-slip wall boundary condition is replaced with the shear-stress boundary 

condition and the eddy viscosity is zero at the wall. For the channel configuration 

investigated in the present study, a simple logarithmic-law-like equilibrium wall model is 

employed,
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τx = ρ
κu

ln hwm/y0

2uwm
u ,  τz = ρ

κu
ln hwm/y0

2wwm
u ,

(1)

where τ is the wall-shear stress, uwm and wwm are the LES velocities at the matching 

location (a distance y = hwm away from the wall) in the x and z directions, respectively, 

u = uwm
2 + wwm

2  is the modulus of the LES velocity at the matching location projected on 

the wall-parallel plane, and κ = 0.4 is the von Kármán constant. In addition, y0 ≡ v/uτeκB is 

the effective roughness length and is kept constant at 1 × 10−4δ and 6.77 × 10−5δ depending 

on the cases, corresponding to the friction Reynolds numbers Reτ ≈ 1400 and Reτ ≈ 2000, 

respectively. Here B = 5.0 is the intercept in the logarithmic velocity profile and uτ is the 

mean friction velocity in the channel flow, which is known a priori in the present study. With 

the wall boundary condition provided by Eq. (1), the LES equations in the bulk region are 

integrated. At the next time step, the updated uwm and wwm are used in Eq. (1) again to 

supply the wall boundary condition for LES. Unless noted otherwise, lengths and velocities 

are normalized by the half channel height and the friction velocity.

III. THE LLM AND PREVAILING REMEDY FOR ITS RESOLUTION

We first reproduce the LLM problem in a turbulent channel flow and show its resolution 

using a commonly used method. It has long been known that wall models operating on the 

raw LES velocity at the first off-wall grid point give rise to the so-called log-layer mismatch 

problem, leading to up to 15% deviation of the modeled wall-shear stress from the correct 

value, independent of the spatial discretization used, the SGS model employed, and the flow 

configuration of interest [21,35]. This LLM is reproduced in the present half channel 

calculation in Fig. 1 (the NFil case). The two cases in Fig. 1 use a grid of size 643, with the 

grid spacing being uniform in each direction. As the present channel flow is driven by a 

fixed pressure gradient, the mean wall-shear stress is always correct and LLM here 

manifests itself as an erroneous upward shift of the mean-velocity profile (positive LLM). 

Note that LLM is not a problem specific to the simple wall model deployed in the present 

study. It is known to persist in WMLES using more comprehensive wall models as reported 

in Refs. [19,21]. A prevailing remedy for LLM is to use the LES information slightly away 

from the wall (e.g., uwm equals uLES at the second, third, or fourth off-wall grid point). The 

hypothesis is that the LES solution at the first off-wall point is likely contaminated by the 

numerical and SGS modeling error. Based on this reasoning, Kawai and Larsson [21] 

showed that LLM is resolved when providing the LES data at the nth off-wall point to the 

wall model (n ≥ 2). We reproduce the same result in Fig. 1 (the 2nd pt case) as well. Using 

the LES data from the third or fourth off-wall points produces essentially the same result, 

consistent with the findings in Ref. [21]. It should be noted that the shape of the mean-
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velocity profiles in the bulk region is a function of the wall boundary condition, and changes 

in the wall condition can lead to changes in the mean profile in the wake region.

Porté-Agel et al. [28] also reported that LLM can be resolved through a proper modification 

of the SGS model in the near-wall region. They argued that because the flow field is 

underresolved, the momentum flux through the top face of the first LES computational cell 

should be based on the imposed law of the wall du/dy = (uτ/κy)(uwm/u∥) and dw/dy = (uτ/

κy)(wwm/u∥), instead of evaluating velocity derivatives directly with a finite-difference–

finite-volume scheme. Because the velocity derivatives enter the SGS stress model and also 

the filtered Navier-Stokes equations, evaluating derivatives according to the imposed 

logarithmic law essentially reformulates the SGS model [36]. However, our numerical 

experiments show that this reformulation has limited impact on LLM (not shown).

IV. REMEDY FOR LLM

In this section we propose a simpler remedy for LLM, in which the wall model operates with 

the filtered LES data at the first off-wall grid point. This is motivated by an observation in 

Ref. [33], where LLM is avoided by providing the time-filtered LES signal at the first off-

wall grid point to a wall model, according to

uwm
n = (1 − ϵ)uwm

n − 1 + ϵuLES
n .

(2)

The wwm is obtained similarly by filtering the spanwise LES velocity. Here uwm is the 

velocity used in the wall model, the superscript n is the LES time step index, and uLES is the 

instantaneous streamwise LES velocity at the first off-wall grid point (y = hwm = Δy/2). The 

weight of time averaging is defined as ϵ = Δt/Tf, where Δt is the LES computational time 

step and Tf is a filtering time scale to be specified. We examine the effect of the filtering 

time scale on the WMLES prediction by considering the computational time step (Tf = 2Δt), 
a convective time scale at the matching location [Tf = Δtc ≡ Δx/〈u(y = Δy/2)〉], and the 

characteristic time scale for the wall-normal turbulent transport at the matching location (Tf 

= Ti ≡ hwm/κuτ). As can be seen in Fig. 2, increasing the filtering time scale reduces the 

strength of LLM and the mismatch is essentially resolved (becomes sufficiently weak) with 

the filtering time scales Tf > Δtc. Figure 3 quantifies the strength of LLM as a function of the 

filtering time scale. The strength of LLM is quantified here as (ΔULES – ΔUlog)/U2, log, 

where ΔULES = 〈u(y = 1.5Δy)〉 – 〈u(y = 0.5Δy)〉 is the velocity difference between the first 

and second LES grid points,) ΔUlog/uτ = 1/κ ln(1.5Δy/y0) – 1/κ ln(0.5Δy/y0) is the velocity 

increment expected from the log law, and U2, log/uτ = 1/κ ln(1.5Δy/y0) is the expected 

velocity at the second LES grid point. A few observations can be made. Log-layer mismatch 

persists when using a raw LES signal (Tf = Δt, no time filtering). The strength of LLM drops 

to ≈2% with Tf = Δtc and to about 1% with Tf = Ti. Because the uncertainty in the von 

Kármán constant is about 2.5% [37], taking Tf = Δtc already resolves LLM. It was also 

verified that LLM remains negligibly small with very large filtering time scales (Tf ≫ Ti).
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A temporal filtering with Tf = Δtc is expected to have a similar effect as a 2Δx wall-parallel 

filtering. It is of interest here to know whether the wall-parallel spatial filtering is an equally 

useful remedy for LLM. Three types of spatial filters are tested (the nine-point top-hat filter, 

the nine-point Gaussian filter, and the five-point top-hat filter; all spatial filtrations are 

performed within the wall-parallel plane located at y = hwm) in half channel WMLES 

calculations with 323 and 643 grid points. As shown in Fig. 4, the filter type has no 

noticeable impact on the resolution of LLM. Grid convergence is found, suggesting that the 

filter width only needs to be a few times the grid spacings (Δx and Δz). Similarly to the 

finding in the temporally filtered cases, it is found that LLM remains weak with much larger 

filter widths. The test cases in this section have used a fixed grid aspect ratio Δx = Δz = 

2πΔy. Although not shown, we conducted several numerical experiments where the grid 

aspect ratio is varied (Δx = Δz = CΔy with C ranging from 1 to 10). Log-layer mismatch was 

again observed, but it was removed with the same filtering strategy.

As the low resolving power of a less accurate numerical scheme can act as an effective filter, 

it is of interest to examine whether LLM can be removed by deploying lower-order 

numerical methods for the discretization of the LES equations. To this end, we carried out 

the same set of numerical experiments using a finite-difference channel flow code to 

investigate the effects of numerical methodology. In this code, the second-order finite-

difference scheme is used for spatial discretization and the subgrid stress is modeled using 

the recently developed minimum dissipation model [38]. A grid of size 32 × 64 × 32 is used 

for a channel of size 2πδ × 2δ × 2πδ (note that this is a full channel and the grid aspect ratio 

is kept the same as in other cases). Figure 5 shows the mean-velocity profiles as functions of 

the wall-normal distance. With the finite-difference code (case FD), LLM occurs when the 

equilibrium model is applied directly to the first off-wall LES grid point, and we resolve 

LLM by applying a five-grid-point spatial filtering (case FD, filt). The LESGO results are 

included for comparison. Log-layer mismatch of similar magnitude is found. Employing a 

less-accurate spatial discretization does not seem to affect LLM in the near-wall region or 

the effectiveness of the proposed remedy. However, the flow in the bulk region is affected by 

the numerical methodology, where the law of wake is not captured at this particular 

resolution by the finite-difference code.

Both the temporal filtering and wall-parallel spatial filtering allow a local wall-modeling 

procedure using the LES information right above the wall. We anticipate that the temporal 

filtering would be of greater utility for practical applications. This is because the wall-

parallel filtering can be inappropriate in highly accelerating or decelerating flows and also 

due to the difficulty of constructing a discrete wall-parallel filter operating on unstructured 

mesh elements.

V. REVISITING THE CAUSE OF LLM

At this point, it is important to realize that the remedy suggested in the preceding section, as 

opposed to the prevailing remedy, neither introduces additional grid resolution near the wall 

nor uses the LES information away from the wall. This is in direct contradiction to the 

common perception that LLM is caused by the near-wall LES solution contaminated by the 

numerical and SGS modeling errors due to the too-large grid spacing [21]. With our remedy, 
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LLM is resolved even when the near-wall LES solution remains significantly underresolved. 

This implies that potentially a distinctly different mechanism beyond the naive numerical-

error argument may be at work in producing LLM. Identifying the correct cause of LLM is 

of great importance in wall-stress modeling, because this would have significant implication 

on developing alternative wall-modeling strategies, as in the progress made in the hybrid 

RANS-LES community over the past decades for model developments [7]. In this section 

we propose an alternative explanation of how LLM is caused in WMLES based on detailed 

analysis of flow statistics near the wall.

We first consider the validity of the argument made by Bou-Zeid et al. [34]. They argued 

that wall models can overpredict the wall stress even in the absence of the numerical and 

SGS modeling errors in LES. Based on the commonly found scaling τw, wm ~ ρu2 between 

the wall-model input and output, they deduced that the mean wall stress modeled by a wall 

model can be overpredicted due to the fluctuations inherent in the LES velocity, even if the 

LES velocity is correct in the mean sense: 〈τw, wm〉 ~ ρ〈u〉2 + ρ〈u′2〉 > ρ〈u〉2 ~ 〈τw〉. Here 

〈·〉 indicates ensemble averaging, τw is the true wall stress, τw, wm is the modeled wall stress, 

u′ is the instantaneous velocity fluctuation, and u is the instantaneous velocity. This 

argument may explain a negative LLM (downward shift of the mean-velocity profile due to 

the overpredicted wall stress), but the positive LLM is clearly not explained by this 

mechanism. In fact, close scrutiny of the near-wall flow statistics given in Table I shows that 

this scaling argument does not explain the negative LLM either. The mean velocity (〈u〉2) 

and the level of velocity fluctuations (〈u′2〉/〈u〉2) show no appreciable change in the cases 

with and without LLM. Instead, comparing the case with LLM (NFil) with the cases without 

LLM (Fil and 2nd pt), a notable difference is found in the resolved Reynolds shear stress at 

the first off-wall grid point. We notice the Reynolds shear stress −〈u′ v′〉 is significantly 

smaller when LLM persists, suggesting that turbulence near the wall is less energetic. 

Considering a momentum balance at the first off-wall LES grid point, the total shear stress −

〈u′ v′〉 + 〈(u + vt)〉∂u/∂y〉 is balanced by the imposed mean pressure gradient [(1/ρ)(dp/dx)]. 

Therefore, a smaller −〈u′ v′〉 necessarily leads to an increased 〈(u + vt)〉∂u/∂y〉. The 

increased 〈(u + vt)〉∂u/∂y〉 may be due to a corresponding increase in either the LES eddy 

viscosity νt or the velocity gradient, d〈u〉/dy, or both. However, because 

u(y) ≡ 0 + ∫ 0
y du/dy′ dy′, LLM is associated much more likely with the increased d〈u〉/dy. 

This was confirmed from the WMLES solution, where the LES eddy viscosity at the first 

off-wall grid point is almost identical in the cases considered in Table I. We therefore 

conclude that the positive LLM is a result of underpredicted Reynolds shear stress. Because 

−〈u′ v′〉 is not sufficiently large, the velocity gradient d〈u〉/dy increases to compensate for 

the deficit, leading to a positive LLM.

A more fundamental question is then why the Reynolds shear stress is underpredicted when 

using the raw LES data at the first off-wall grid point as the wall-model input (as in the case 

NFil). We consider how the modeled wall-shear stress and the input LES velocity is related 

at the instantaneous level,
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τwm = ρ κ
ln hwm/y0

2
u2 = ρ κ

ln hwm/y0

2
u 2 + 2 u u′ + u2 ≈ τw

+ 2ρ κ
ln hwm/y0

uτu′ = τw + Cρuτu′ .

(3)

Here it is assumed that the term that is second order in fluctuations (u′2) is negligibly small 

compared to others. Equation (3) suggests that the instantaneous fluctuations in the wall 

stress τw′  are proportional to the instantaneous fluctuations in the input LES velocity (i.e., 

τw′ ρuτu′). When u is taken from the first LES off-wall grid point, this implies that the wall 

model responds immediately to the change in u, instantaneously draining more momentum 

when u′ > 0 and less momentum when u′ < 0. This effectively “locks” the wall-adjacent 

LES velocity, damping the near-wall fluctuations. Consequently, the Reynolds shear stress −

〈u′ v′〉 becomes less energetic. Overall, this problem is the direct consequence of the 

unphysical high correlation between the LES velocity at the first off-wall point (likely 

located at y+ ≫ 100 for high-Reynolds-number flows) and the wall-shear stress (defined at y
+ = 0). The correlation coefficient C in the present WMLES calculations (N = 643) can be 

estimated from Eq. (3) to be 0.2. Note that C, in the framework of the recent inner-outer 

interaction model [40], can be interpreted as the superposition effect of the velocity signal in 

the log-layer region on the wall-shear stress [41–43]. The coefficient C in the high-

Reynolds-number experiment or DNS is found to be less than 0.1 at wall distances 

comparable to the matching locations in the present study [40].

This analysis suggests that LLM can be mitigated by disrupting the unphysical correlation 

between τwm′  and u′ in coarse WMLES. This hypothesis can be confirmed by a numerical 

experiment, where the imposed shear stress at the wall is constructed by a superposition of 

the known mean wall-shear stress with the fluctuations having a controllable correlation 

with the LES velocity at the first off-wall grid point. Note that the channel flow driven with 

the known pressure gradient allows the construction of such simple wall models, as the mean 

wall-shear stress is known a priori. For this purpose, we model the wall stress according to

τwm = τw + Cρuτ[u − u ]y = Δy/2,

(4)

with C = 0.2, 0.1, and 0. As can be seen in Fig. 6, a 7% LLM is found with C = 0.2. The 

LLM reduces with C = 0.1 and LLM is essentially resolved with C = 0.
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To summarize, the proposed mechanism of LLM is as follows. When a wall model operates 

with the LES velocity at the first off-wall grid point, the modeled stress fluctuations are 

instantaneously (and unphysically) correlated to the LES velocity, causing damping of 

turbulence adjacent to the wall. Then, to satisfy the momentum balance, the reduced 

Reynolds shear stress −〈u′ v′〉 gives rise to an increased 〈du/dy〉, leading to LLM.

It becomes more clear now how filtering the LES signal provided to the wall model resolves 

LLM. Filtering disrupts the unphysical direct coupling between τw′  and u′ by removing the 

velocity fluctuations u′ in Eq. (3) and subsequently leading to a more energetic 〈u′ v′〉 and 

eventually to a reduction of LLM. The same argument can be used to explain how the 

traditional remedy of using the LES information away from the wall, as advocated by Kawai 

and Larsson [21], helps resolve LLM. In this case, the wall-shear stress is correlated with the 

LES velocity far away from the wall, which effectively removes the damping or locking 

cycle between the wall-shear stress and the wall-adjacent LES velocity. This argument could 

also be used to explain how the control-based wall model developed in Ref. [35] resolves 

LLM, where the wall-shear stress is modified such that the near-wall RANS solution 

matches as closely as possible the near-wall LES solution. As reported in Ref. [35], the 

control strategy essentially decorrelates the modified stress from the first off-wall LES 

velocity, but correlates it with the second off-wall LES velocity.

VI. WALL STRESS FLUCTUATIONS

The discussion in the previous sections has focused on the first-order quantities. High-order 

quantities including the wall-stress fluctuations are of interest in a few applications [44,45]. 

When compared to DNS, WMLES inevitably underpredicts the fluctuations in the wall-

shear stress [46] owning to the implied use of LES filters. A fair comparison is between 

WMLES and the filtered DNS at the corresponding LES resolution.

Table II reports the root-mean-square (rms) values of the wall-stress fluctuations from 

WMLES and the filtered DNS. The grid sizes of the WMLES are 323, 643 and 1283 and the 

DNS is filtered at the corresponding LES resolutions. The input LES velocities to the 

equilibrium wall model is filtered with a nine-point top-hat filter. The DNS is a channel flow 

at Reτ ≈ 2000. The DNS resolution is Δx+ = 12.3, Δymin
+ = 0.22, Δymin

+ = 6.1, and Δz+ = 6.1. 

Details of this DNS data set can be found in Ref. [39]. Based on the data in Table II, we 

reconfirm that WMLES underpredicts the fluctuations in the wall stress; meanwhile, we find 

that the rms wall-stress fluctuations from WMLES agree well with those from the DNS 

filtered at the corresponding LES resolution.

VII. CONCLUSION

Log-layer mismatch in WMLES refers to the erroneous shift of the mean-velocity profile 

below or above the logarithmic layer, when wall-stress models are operated with the LES 

velocity at the wall-adjacent control volumes. In boundary layers, LLM leads to the skin 

friction error up to 15%, not admissible in application of WMLES for practical engineering 

applications. A prevailing remedy for resolving LLM in WMLES is based on a hypothesis 

that the near-wall LES solution is contaminated by the inherent truncation and SGS 

Yang et al. Page 9

Phys Rev Fluids. Author manuscript; available in PMC 2019 October 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



modeling errors owing to the use of too-large grid spacings near the wall, especially in the 

wall-normal direction. This remedy suggests providing the wall model the LES data at least 

two to three cells away from the wall. This method has proven to be robust, resolving LLM 

with little effort when using structured grids. However, this remedy was recently found to be 

not only impractical in terms of the LES mesh preparation for complex geometries (with 

corners and junctures) and implementation in the unstructured parallel flow solvers, but also 

inaccurate in accounting for the complex velocity profiles found in external aerodynamics 

(e.g., skewed 3D mean-velocity profile).

In this paper we proposed a simple remedy for LLM that is well suited for application to 

complex flows. This method resolves LLM by simply providing the wall model the filtered 

LES data in the wall-adjacent control volumes. It is shown that both spatial and temporal 

filtering work.

The perception of LLM being attributable simply to the numerical error [21] does not 

explain how our method resolves LLM, as our remedy still uses the LES data right above the 

wall. We proposed a mechanism explaining the cause of LLM based on quantitative analysis 

of the near-wall flow statistics in WMLES of turbulent channel flow, summarized as follows. 

Log-layer mismatch is thought to be a consequence of the underpredicted Reynolds shear 

stress \〈u′ v′〉\ near the wall. This is compensated for by the increase in the velocity 

gradient (∂ u
∂y ) near the wall, eventually leading to the erroneous shift of the mean-velocity 

profile (that is, LLM). The reason why the Reynolds shear stress is underpredicted when 

wall models are given the wall-adjacent LES data is first explained based on how the wall 

stress from the wall model is coupled to the wall-adjacent LES velocity at the instantaneous 

level. It is proposed that the unphysically strong coupling between the wall-adjacent LES 

velocity [defined likely at y+ ≫ O(100) in WMLES] and the wall stress (defined at y+ = 0) 

makes the wall-stress fluctuations an effective damper of the near-wall turbulence. 

According to this analysis, resolving LLM requires decorrelating the wall stress and the 

wall-adjacent LES velocity, and numerical experiments further carried out (Fig. 6) provide 

support to this argument. Theproposed mechanism can also explain how both the traditional 

remedy and our method proposed here help removing LLM. The LES flow field in the near-

wall region is admittedly underresolved, but we conclude that this is not necessarily the 

culprit of LLM.

We reconfirm that WMLES does not predict the wall-shear stress fluctuations well. 

However, it is found that WMLES captures the rms of the filtered DNS wall stress. A better 

description of the fluctuating wall stress requires adequate modeling of the unresolved SGS 

wall-stress fluctuations. Although a direct path to such SGS modeling is not known, the 

insights and understanding gained from the superposition-modulation model [47–53] might 

be a promising starting point for the finer-scale stress modeling.
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FIG. 1. 
Mean velocity profiles. The expected logarithmic law U/uτ = 1/κ ln(y/y0) is indicated by a 

solid red line. For the no-filtering cases (NFil), the first LES grid point from the wall is used 

as the wall-model input. For the second off-wall point case (2nd pt), the instantaneous LES 

velocity at the second LES grid from the wall is used as the wall-model input, with no 

filtering. For the cases shown here, y0 = 0.0001δ, which corresponds to Reτ = 1400.
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FIG. 2. 
Mean velocity profiles obtained with the temporally filtered wall-model input at the first off-

wall LES point. All cases use a grid of size 643 and a roughness length scale y0 = 0.0001δ. 

The logarithmic law is indicated by a solid red line.
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FIG. 3. 
Strength of LLM plotted against the filtering time scale. Here Δt is the LES time step size, 

Δtc = Δx/〈u(y = 0.5Δy)〉, and Ti = hwm/κuτ. The line at 0.025 indicates the expected 

uncertainty in evaluating the strength of LLM owing to the variation in the von Kármán 

constant. For the cases shown here, y0 = 0.0001δ, which corresponds to Reτ = 1400.
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FIG. 4. 
Mean velocity profiles obtained with the spatially filtered wall-model input at the first off-

wall LES point. The effective roughness height is y0 = 6.8 × 10−5δ, which corresponds to a 

Reτ = 2000 channel flow. The expected logarithmic law U/uτ = 1/κ ln(y/y0) is indicated 

using a solid red line. Solid blue lines are for a 323 grid and dashed black lines are for a 643 

grid. Squares are for nine-point top-hat filters, diamonds are for five-point top-hat filters, and 

left-pointing triangles are for nine-point Gaussian filters.
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FIG. 5. 
Mean velocity profiles. Here y0 = 6.8 × 10−5δ. The LESGO and FD data are obtained with the 

spectral and second-order finite-difference codes, respectively, without filtering the wall-

model input; “filt” means that the results are obtained with the five-grid-point spatial 

filtering. The red line is the DNS results of Hoyas and Jiménez [39].
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FIG. 6. 
Semilogarithmic plot of the mean-velocity profiles as functions of the wall-normal distance. 

The wall stresses are specified according to Eq. (4). Here C = 0.2 for the correlated case, C = 

0.1 for the partially correlated case, and C = 0 for the uncorrelated case. For the cases shown 

here, y0 = 0.0001δ, which corresponds to Reτ = 1400.
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TABLE I.

List of the relevant quantities near the wall. The nomenclature for the cases is the same as in Fig. 1. Here u is 

the instantaneous streamwise LES velocity at y = hwm and u′ is the instantaneous streamwise velocity 

fluctuation. In addition, 〈u′ v′〉 is the resolved Reynolds shear stress evaluated at the first LES grid point for 

all cases. All quantities are in wall units. For all the cases shown here, y0 = 0.0001δ, which corresponds to Reτ 
= 1400.

Cases hwm
u y = hwn

2 u′2 y = hwn
〈u′2〉/〈u〉2 −〈u′v′〉y=Δy/2 LLM strength

NFil Δy/2 1.1 × 102 4.7 4.2% 0.22 7%

Fil Δy/2 1.1 × 102 5.7 5.2% 0.28 2%

2nd pt 3Δy/2 1.8 × 102 7.4 4.1% 0.27 2%
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Yang et al. Page 21

Table II.

Root mean square of the streamwise wall-stress fluctuations. We test three wall models: the equilibrium model 

used at the first off-wall LES grid point, with a nine-point top-hat filtering of the wall-model input; the 

equilibrium wall model used at the second off-wall LES grid point (no filtering); and the integral wall model 

in its original form [33] (with a temporal filtering of the first off-wall LES data). For each wall model, 

WMLESs at three grid sizes are conducted. The rms of the DNS stress fluctuations is 0.42. The last three rows 

are for the filtered DNS data. All numbers are in wall units.

LES grid Corresponding LES grid size Wall model rms of the streamwise wall stress

323 Equilibrium model first grid 0.16

643 Equilibrium model first grid 0.21

1283 Equilibrium model first grid 0.25

323 Equilibrium model second grid 0.13

643 Equilibrium model second grid 0.19

1283 Equilibrium model second grid 0.24

323 Integral model 0.15

643 Integral model 0.20

1283 Integral model 0.26

323 0.14

643 0.19

1283 0.25
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