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Abstract

We report the space-time characteristics of the wall-pressure fluctuations and wall shear-stress 

fluctuations from wall-modeled large eddy simulation (WMLES) of a turbulent channel flow at 

Reτ = 2000. Two standard zonal wall models (equilibrium stress model and nonequilibrium model 

based on unsteady RANS) are employed, and it is shown that they yield similar results in 

predicting these quantities. The wall-pressure and wall shear-stress fields from WMLES are 

analyzed in terms of their r.m.s. fluctuations, spectra, two-point correlations, and convection 

velocities. It is demonstrated that the resolution requirement for predicting the wall-pressure 

fluctuations is more stringent than that for predicting the velocity. At least δ/Δx > 20 and δ/Δz > 

30 are required to marginally resolve the integral length scales of the pressure-producing eddies 

near the wall. Otherwise, the pressure field is potentially aliased. Spurious high wave number 

modes dominate in the streamwise direction, and they contaminate the pressure spectra leading to 

significant overprediction of the second-order pressure statistics. When these conditions are met, 

the pressure statistics and spectra at low wave number or low frequency agree well with the DNS 

and experimental data. On the contrary, the wall shear-stress fluctuations, modeled entirely 

through the RANS-based wall models, are largely underpredicted and relatively insensitive to the 

grid resolution. The short-time, small-scale near-wall eddies, which are neither resolved nor 

modeled adequately in the wall models, seem to be important for accurate prediction of the wall 

shear-stress fluctuations.

I. INTRODUCTION

Wall-modeled large eddy simulation (WMLES) is a technique deployed in large eddy 

simulation (LES) of high Reynolds number wall-bounded turbulent flows to reduce the 

computational cost. The premise of success in LES is that the stress-carrying large eddies 

are resolved everywhere in the computational domain by the underlying grid. However, the 

size of the large eddies near the wall becomes progressively smaller with increasing 

Reynolds number, and resolution of such minute structures in LES necessitates excessively 

large number of grid points. As a result, the cost of wall-resolved LES approaches that of 

direct numerical simulation (DNS) in practical high Reynolds number flows. In 

underresolved LES where such scales are not represented, it is hoped that underlying 

subgrid-scale (SGS) models capture accurately the effect of the unresolved near-wall 
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turbulence on the resolved scales. However, it has been demonstrated that the currently 

available SGS models do not quantitatively account for the unresolved shear stresses in 

coarse LES [1], especially near the wall [2].

In WMLES, no attempt is made to resolve the computationally demanding near-wall 

structures. The grids are built to resolve only the energetic structures in the outer portion of 

the boundary layer. As a result, the grid spacings in WMLES scale with the local boundary 

layer thickness (rather than with the viscous length scale), which makes the cost of WMLES 

a linear function of Reynolds number [3]. Accordingly, orders of magnitude reduction in the 

number of grid points is achieved in WMLES, compared to the wall-resolved LES. In 

WMLES, the aforementioned underresolution of the near-wall eddies and inadequacy of 

SGS models on coarse near-wall grids are remedied by a wall model, which augments the 

total shear stress in the inner layer. This is mostly done by modeling the wall shear stress 

using a Reynolds-averaged approach. There have been several advances in the wall-stress 

modeling since the early works of Deardorff [4] and Schumann [5] that relied on the 

existence of the logarithmic mean velocity profile. Advances have been made by increasing 

the dimension and completeness of the model so that it incorporates more of the near-wall 

physics embedded in the Navier-Stokes equations. A two-layer zonal model that solves 

simplified or full flow equations on a separate near-wall grid was proposed by Balaras et al. 
[6], and it has been improved in several studies [7–12]. Recently Yang et al. [13] introduced 

a model based on integration of an assumed velocity profile that can account for the surface 

roughness. Two wall models directly model the velocity boundary conditions. In the model 

of Chung and Pullin [14,15], instantaneous slip velocities calculated from a wall shear-stress 

model and the stretch-vortex SGS model are prescribed on a lifted virtual wall. Bose and 

Moin [16] dynamically calculate the wall-slip velocities conforming the derivation of the 

LES equations using an elliptic differential filter. The latter is potentially attractive, since the 

model is free of empirically specified parameters and a law of the wall prescription assumed 

in other models.

Primary interest in WMLES is prediction of the mean velocity and the mean forces exerted 

on the solid body, and assessment of WMLES has almost always precluded secondary 

quantities such as the wall-pressure and wall shear-stress fluctuations. These quantities can 

be of great importance in external hydro- and aerodynamics, since they are directly related 

to the structural vibration and noise generation. A good example is the airframe noise, where 

the wall-pressure fluctuations are the dominant source of the cabin noise inside a fuselage. 

Computational prediction of the radiated flow-induced noise often utilizes acoustic 

projection methods based on Lighthill’s acoustic analogy [17], such as the integral method 

of Ffowcs Williams and Hawkings [18]. In such formulations, the wall-pressure and wall 

shear-stress fluctuations appear as the surface dipole source, which dominates the 

quadrupole source in low Mach number flows [19]. Additionally, the space-time 

characteristics of the wall-pressure fluctuations, such as the frequency spectrum and 

convection velocity, are the required inputs to some approximate analytical far-field sound 

spectral models [20–23].

Few applications of WMLES for noise prediction are found in the literature. In their 

simulation of turbulent flow at a moderate Reynolds number (Reθ ≈ 3000) past an 
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asymmetric trailing edge of a model hydrofoil, Wang and Moin [8] reported that the 

frequency spectra of the wall-pressure fluctuations obtained with a two-layer zonal wall 

model agreed well with the results from a wall-resolved LES. Recently it was shown that 

getting the correct turbulent boundary layer inside the nozzle using an equilibrium stress 

wall model improved the far-field jet noise predictions [24,25].

The main purpose of the present study is to investigate the spatiotemporal characteristics of 

wall-pressure and wall shear-stress fluctuations obtained with WMLES. To our knowledge, 

this is the first such study reported in the literature. We expect that the present study will 

help elucidate to what extent these quantities from WMLES can be useful in prediction of 

flow-generated sound and structural vibration. Here we analyze the wall-pressure and wall 

shear-stress fluctuations in detail, in terms of their r.m.s. fluctuations, wave number-

frequency spectra, two-point correlations, and convection velocities. High Reynolds number 

canonical turbulent channel flow is considered for this purpose, where the wall-pressure 

statistics and spectra are available from a DNS [26]. The paper is organized as follows: In 

Sec. II, flow configuration, wall models, and computation of power spectra are described. 

The space-time characteristics of the wall-pressure and wall shear-stress fluctuations from 

WMLES are analyzed in Sec. III. Conclusions are given in Sec. IV.

II. COMPUTATIONAL DETAILS

A. Flow configuration

WMLES of a compressible channel flow is performed at Reτ = 2000, the friction Reynolds 

number based on the channel half-height δ, the friction velocity uτ, and the kinematic 

viscosity ν = μ/ρ. The flow configuration is identical to one of the validation cases 

considered in Ref. [12], with additional finer grids employed to study the effect of the grid 

resolution on the wall-pressure and wall shear-stress fluctuations. The Mach number at the 

channel centerline is fixed at 0.2 for comparison to the incompressible reference data. The 

size of the computational domain is Lx = 25δ, Ly = 2δ, and Lz = 10δ in the streamwise (x), 

wall-normal (y), and spanwise (z) directions, respectively. The incompressible DNS of 

Hoyas and Jiménez [26] which incorporated 18 billion collocation points is used here as 

reference. In the baseline WMLES calculation, the uniform grid spacings in each direction 

are (Δx, Δy, Δz) = (0.1δ, 0.02δ, 0.0625δ) in the LES. The number of grid points in the LES 

totals 4 million with (Nx, Ny, Nz) = (250, 100, 160). In the fine WMLES calculations, the 

baseline grid is refined only in the wall-parallel directions to produce two finer grids 

(denoted by xz-refined-1 and xz-refined-2) with 16 and 64 million grid points. This choice is 

based on observations that the wall-parallel grid resolution affects crucially the pressure 

fluctuations predicted in WMLES (see Sec III). Grid refinement in the wall-normal direction 

did not have such influence on the pressure fluctuations. The calculation with the finest grid 

is done for establishing the grid convergence of the quantities predicted with WMLES. 

Owing to the high computational cost and nearly identical results produced with two wall 

models on coarser grids, only the equilibrium wall model is used with the finest grid. 

Periodic boundary conditions are applied in the homogeneous directions (x and z). The 

periodic channel is driven at a constant mass-flow rate by adding a spatially uniform but 

time-varying body force term to the streamwise momentum equation, which balances the 
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streamwise drag force on the walls. The work done by the imposed pressure gradient is 

accounted for in the total energy equation by adding a consistent energy source term. The 

wall temperature is kept constant so that the global energy balance in the channel is achieved 

through wall-heat transfer.

B. Wall modeling

Since the LES grid is too coarse to support the stress-bearing near-wall turbulent structures 

and their sharp gradients, the usual no-slip and thermal wall-boundary conditions in the LES 

are replaced with approximate boundary conditions in terms of the wall stress and heat flux 

computed by the wall model. The wall-normal velocity is kept zero on the walls. Two 

standard zonal wall-flux models are considered in the present study: a nonequilibrium wall 

model and an equilibrium wall model. These models have been used mostly with structured 

grid solvers [6–9,11], but recently they have been extended to an unstructured framework 

within our code CHARLES, a cell-centered unstructured finite volume compressible LES 

solver [27]. Details of the flow solver and wall models are available in separate publications 

[10,12,28,29], where applications to high Reynolds number canonical boundary layers and 

an external aerodynamics configuration are discussed.

Both wall models require the specification of the matching location (or wall-model layer 

thickness, hwm) where the LES data are imposed. In the present study, this location is fixed 

for both wall models at a distance hwm
+ = 200 (hwm = 0.1δ) from the walls. This choice is 

made following the suggestion of Kawai and Larsson [9], who showed that at least three 

cells below the matching location are required in the LES grid for accurate wall modeling, 

and that variation of hwm has little effect on the mean flow so long as the first condition is 

met and hwm is placed within the log layer. Additionally, the number of grid points in the 

wall-normal direction is kept constant at Ny,wm = 30 in both wall models, with the same 

wall-normal grid stretching. It was found that finer normal resolution in the wall model 

domain (Ny,wm > 30) has no measurable impact on the flow statistics.

1. Nonequilibrium wall model—The nonequilibrium wall model (NEQWM) solves 

unsteady 3D Navier-Stokes equations on an embedded near-wall mesh with a RANS-type 

closure. Therefore, this wall model consists of partial differential equations (PDEs), bearing 

the same complexity as the primal LES. The wall-model mesh has the same grid in the wall-

parallel directions as that of the primal LES grid, while a fine resolution in the wall-normal 

direction is required to impose the no-slip wall condition in the wall model. The flow in the 

wall model is driven by the LES solution imposed on the wall-model top boundaries. At 

each time step, the wall-shear stress (τw) and wall-heat flux (qw) calculated from the wall-

model solution are used as Neumann boundary conditions for the LES. The wall-model 

equations are
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∂ρ
∂t +

∂ρu j
∂x j

= 0,

(1)

∂ρui
∂t +

∂ρuiu j
∂x j

+ ∂ p
∂xi

=
∂τi j
∂x j

,

(2)

∂ρE
∂t +

∂(ρE + p)u j
∂x j

=
∂τi jui
∂x j

−
∂q j
∂x j

,

(3)

where ρ is the density, ui is the velocity component, p is the pressure, E = p/[ρ(γ − 1)] + 

ukuk/2 is the total energy, and γ = cp/cv is the ratio of specific heats. The flow variables in 

the above equations are interpreted as ensemble-averaged quantities. The perfect gas relation 

is used for the equation of state. The stress tensor τij and heat flux vector qj are 

τi j = 2 μ + μt Si j
d  and q j = − λ + λt

∂T
∂x j

, where μ is the molecular viscosity, λ is the molecular 

thermal conductivity, T is the temperature, and Si j
d  is the deviatoric part of the rate-of-strain 

tensor Sij. For the turbulence closure, a novel mixing-length model in Ref. [12] is used for μt 

and λt, which dynamically accounts for the resolved Reynolds stresses carried by the wall 

model.

2. Equilibrium wall model—The equilibrium wall model (EQWM) is obtained by 

ignoring all the terms in the nonequilibrium model except for the wall-normal diffusion. 

This is equivalent to the assumption of a constant stress layer near the wall in the 

equilibrium boundary layer. The wall-model equations then reduce to

d
dη μ + μt

du
dη = 0,

(4)
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d
dη μ + μt u

du
dη + λ + λt

dT
dη = 0,

(5)

where η refers to the local wall-normal coordinate and u‖ is the wall-parallel velocity 

component. The wall-parallel shear-stress vector is assumed to be aligned with u‖ at η = hwm 

imposed by the LES, and its modulus is calculated from the wall-model solution. On each 

wall face, the EQWM consists of a system of two coupled ordinary differential equations 

(ODE), and it is therefore computationally very efficient. However, it is generally expected 

to have limited performance in flows with strong nonequilibrium effects, because the 

unsteady advection, pressure gradient, and wall-parallel transport are neglected [8].

C. Computation of power spectra

We follow the standard technique for the computation of power spectra in Ref. [30]. Once 

the simulations reach the statistically-stationary state, instantaneous fluctuations of any wall 

variable, denoted by ϕ(x,z,t), are collected over a nondimensional time T+ = tuτ
2/v = 19 200

(tUb/δ ≈ 208.8, where Ub is the bulk velocity). The variable ϕ here is either the wall-pressure 

fluctuations (pw), the streamwise wall shear-stress fluctuations τ1 = μ∂u′
∂y |w , or the 

spanwise wall shear-stress fluctuations τ3 = μ∂w′
∂y |w . Since the pressure is defined at the cell 

center in the code, pw is collected from the centroids of the wall-adjacent cells located at y+ 

= 20. Extrapolation of the pressure to the wall location using a second-order truncated 

Taylor series had little impact on the wall-pressure statistics and spectra. The simulation 

time steps are Δt′+ = 0.25 and 0.2 for the coarse and the fine calculations, respectively. The 

sampling resolution is fixed at Δt+ = 8. The signal is then divided into M overlapping 

intervals in the time domain with 50% overlap. Here we take M = 12. The Hanning window 

is applied to the signal within each interval to minimize spectral leakage in the frequency 

spectrum. Let ϕm(x,z,t) and ϕm k1, k3, ω  be the fluctuation signal in the mth time interval and 

its discrete Fourier transform (DFT), respectively. Here k1, k3, and ω are the discrete wave 

numbers and (angular) frequency. The definitions of DFT and inverse-DFT follow the 

standard in Ref. [31], and the corresponding discrete Parseval’s theorem has the form

ϕ2 = ∑
k1, k3, ω

ϕ k1, k3, ω 2 .

(6)

First, the three-dimensional power spectral density Ψ (k1,k3,ω) is calculated by
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Ψ k1, k3, ω = 1
M ∑

m = 1

M
ϕm k1, k3, ω

2
.

(7)

Ψ is then rescaled to satisfy the discrete Parseval’s theorem. In order to preserve an 

important property of the continuous three-dimensional power spectrum

ϕ2 = ∫
−∞

+∞
E k1, k3, ω dk1dk3dω,

(8)

the discrete three-dimensional power spectrum is defined as

E k1, k3, ω =
Ψ k1, k3, ω
Δk1Δk3Δω .

(9)

Two-dimensional power spectra are then obtained by integrating E k1, k3, ω  over the 

remaining dimension:

E k1, k3 = ∑
ω

E k1, k3, ω Δω,  E k1, ω = ∑
k3

E k1, k3, ω Δk3 .

(10)

One-dimensional power spectra are obtained similarly:

E k1 = ∑
k3, ω

E k1, k3, ω ΔωΔk3,  E(ω) = ∑
k1, k3

E k1, k3, ω Δk1Δk3 .

(11)
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The one-dimensional spectra are often presented in the space of positive wave numbers or 

frequencies, since they are symmetric about the zero wave number or frequency axes. 

Hence, one-dimensional spectra are defined by

E k1 = 2E k1 ,  E k3 = 2E k3 ,  E(ω) = 2E(ω) .

(12)

Two-dimensional two-point autocorrelations R(rx,rz) and R(rx,rt) are calculated by taking the 

inverse-DFT of the corresponding two-dimensional power spectra E k1, k3  and E k1, ω , and 

normalizing them with their respective maxima at zero separation. One-dimensional 

autocorrelations are obtained in a similar manner.

III. RESULTS

A. Mean flow statistics

Figure 1 shows the distribution of the mean streamwise velocity, the resolved Reynolds 

stresses, and the resolved mean-square pressure fluctuations across the channel. The results 

from the LES with the NEQWM and the LES with the EQWM are in close agreement. This 

is expected since the assumptions leading to the EQWM from the NEQWM are valid in this 

canonical channel flow. For the velocity statistics, the results with the baseline grid are 

already in reasonable agreement with the DNS. The wall-parallel refinements lead to minor 

improvements. The velocity profile in the outer region is slightly improved. The Reynolds 

stresses above the matching location show closer agreement with the DNS, especially on the 

finest grid. In general, WMLES is expected to yield accurate prediction of the mean forces 

(mean shear stress and mean pressure) exerted on the wall, and the mean velocity in the 

outer region of boundary layers. The mean skin friction error should be much less than 3%, 

and it is reasonable to expect that the mean velocity agrees well with DNS or wall-resolved 

LES. According to this criterion, the results presented above are acceptable at all grid 

resolutions. Note that the mean velocity and the mean skin friction shown in Table I have 

largely converged to the DNS data on the coarsest grid, while the Reynolds stresses improve 

with the grid refinement. We suspect this would be a typical scenario in WMLES.

On the contrary, the wall-pressure fluctuations are largely overpredicted in the baseline 

WMLES (especially near the wall), and the prediction improves significantly with the wall-

parallel grid refinements.

B. Remarks on the resolution of wall pressure in WMLES

A few remarks are in order regarding this unexpected pressure statistics. As will be 

evidenced in the subsequent sections, this behavior seems to be associated with the poorly 

resolved pressure field. In the baseline WMLES, strong 2-Δ waves in the streamwise 

direction were found from the pressure and density signals (they were not present in the 

velocity fields). These waves manifested themselves in the pile-up of energy at short 
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wavelengths (⩽4Δx), accounting for approximately 20% of the total mean square pressure 

fluctuation near the wall. The spurious waves were not found in the initially laminar state, 

but they emerged through transition to turbulence and were trapped within the periodic 

channel. The amplitude of the wave was highest at the wall and lowest at the channel 

centerline.

Following observations were made to narrow the cause of the spurious waves. First, it was 

found that the problem persisted in no-slip LES calculations (no wall model). Second, the 

problem was also present in the pressure (but not in the velocity field) when the same flow 

was computed with an in-house incompressible staggered finite difference solver. Third, the 

problem persisted when the same flow was considered independently in a different research 

group, using a cell-centered, incompressible collocated finite volume unstructured solver 

(Oriol Lehmkuhl, Polytechnic University of Catalonia, Spain, private communication, 

September 2015). Fourth, the wall-parallel grid refinement reduced the amplitude of the 

spurious high wave number modes significantly. Last, a recent analysis of the DNS data [32] 

showed that the correlation length of the wall-pressure fluctuations in the streamwise 

direction is about 0.1δ, which is comparable to the grid spacing in the coarse WMLES.

All these observations suggest that the 2-Δ wave is induced not by numerical artifacts of the 

wall models or particular discretization schemes, but likely by the lack of grid resolution for 

the large-scale pressure structures. This view is supported by the fact that, in the baseline 

WMLES, less than 2 and 6 cells in the streamwise and spanwise directions, respectively, 

span the integral correlation lengths of the wall-pressure fluctuations (see Sec. III E). This 

causes the spurious high wave number modes in the poorly resolved pressure, which, in turn, 

may alias erroneously into the resolved wave number contents. Presumably, once generated, 

they are not suppressed owing to the stiff flow conditions (high Reynolds number) and the 

energy-conserving, nondissipative numerical schemes. Some dissipative ad hoc remedies, 

such as locally averaging the pressure signal every 10 time steps or upwinding, helped 

reduce the amplitude of the 2-Δ wave, but they were not pursued owing to their negative 

effects on the mean flow. As mentioned, the problem was mitigated when the baseline 

channel mesh was refined in the wall-parallel directions (x and z). The pile-up of energy still 

occurred near the cutoff wave number, but it possessed significantly lower amplitude than 

that in the coarse calculation, accounting for only 5% and 1% of the total mean square 

values on the xz-refined-1 and xz-refined-2 grids, respectively.

We conjecture that this problem in the pressure field may have persisted (but not discovered) 

in some of the reported WMLES calculations [13,14,16,33] of the same flow at similar or 

even coarser grid resolutions. Albeit undesirable, the problematic pressure field could be 

tolerated if one is interested only in the velocity statistics. However, this may not be 

admissible when WMLES is used for noise calculations or in flow-structure interaction 

problems. An obvious remedy is to use more grid points to resolve the integral scales of the 

wall-pressure structures (in this situation, a local grid adaptation in the near-wall region 

would be more suitable than the global mesh refinement.) Fortunately, the integral lengths of 

the wall pressure scale with δ in high Reynolds number wall-bounded flows [32,34], so the 

additional resolution requirement imposed by the wall pressure will not alter the scaling of 

the overall cost of WMLES, which is linear in Reynolds number [3].
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C. r.m.s. fluctuation of wall pressure and wall shear stress

Table I compares the r.m.s wall-pressure and wall shear-stress fluctuations from the present 

WMLES to the DNS values. Note that the current wall models do not model the wall 

pressure and provide only the wall-shear stress to the LES. Therefore, τ1,rms and τ3,rms are 

calculated from the wall-model solution, whereas pw,rms is from the LES solution.

In WMLES, pw, rms
+  shows a convergence trend with the wall-parallel mesh refinements. 

pw, rms
+  is overpredicted by 36%, 4%, and 3% with the baseline, xz-refined-1, and xz-

refined-2 meshes, respectively. pw, rms
+  has little variation with different wall models. It is 

anticipated that pw, rms
+  will eventually converge to the DNS value with finer grids.

On the contrary, τ1, rms
+  and τ3, rms

+  from the wall models are underpredicted by about 50% 

and 70%, respectively, compared to the DNS values. This is expected, since the quasi-

streamwise near-wall vortices largely responsible for the wall shear-stress fluctuations [35] 

are not resolved in WMLES. Additionally, even if these structures were resolved in the LES, 

the wall models with a highly diffusive RANS closure would damp out the fluctuating LES 

signals imposed on the top boundary. In fact, such RANS-based wall models, at best, can 

produce the correct mean wall-shear stress. Therefore, the resolved fluctuation of the wall-

shear stress is not represented adequately in the wall model, and it does not improve with 

mesh refinement in the outer layer.

The wall shear-stress fluctuations in the two wall models seem to respond differently to the 

wall-parallel grid refinement. Their values (especially τ3) in the NEQWM are higher than 

those in the EQWM. τ1, rms
+  and τ3, rms

+  in the EQWM have little variation with the grid 

refinement. As will be evidenced from their spectra in the next section, we suspect that τ1 

and τ3 in the NEQWM are affected by the aliased LES pressure field imposed on the wall 

model. Note that the mean pressure gradient is neglected in the EQWM, and therefore the 

aliased pressure has no direct influence on τ1 and τ3 in the EQWM.

D. Spectra

In this section, the wave number-frequency spectra of pw, τ1, and τ3 from the present 

WMLES are presented, and they are compared to the available DNS and experimental data. 

In the DNS of Hoyas and Jiménez [26], only the wave number spectra of pw are available, 

and y+ = 5.8 is the lowest position in this DNS where the spectra are available. We use the 

DNS data at y+ = 19.8 for comparison (recall that pw in the present WMLES is defined at y+ 

= 20.) The DNS spectra at y+ = 5.8 and y+ = 19.8 had identical shapes with only a minute 

shift due to the difference in mean squared values. Other DNS and experimental data were 

measured on the wall.

Figure 2 shows contour plots of the streamwise-spanwise wave number spectrum E(k1,k3) of 

the wall-pressure fluctuations from the LES with the NEQWM. In the baseline WMLES, a 

high-energy density associated with the 2-Δ wave is visible in the right corners. Since the 

one-dimensional spectra are obtained by reducing (summing) E(k1,k3) in the remaining 
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direction, it is evident that the 2-Δ wave contaminates E(k1) in high k1, and E(k3) in low and 

high k3. This is reflected in the plots of E(k1) and E(k3) in Fig. 3. Additionally, the spectra 

are biased towards the high wave number region compared to the DNS. In the fine WMLES, 

the influence of the 2-Δ wave is much weaker, and better agreement with the DNS is 

observed.

Figure 3 shows the one-dimensional wave number spectra E(k1), E(k3) and the frequency 

spectrum E(ω) of the wall-pressure fluctuations. The pressure spectra from the calculations 

with the two different wall models are nearly indistinguishable. The 2-Δ wave is clearly 

visible in the wave number spectra from the baseline WMLES [Figs. 3(a)–3(b)]. Also, the 

spectra in the low wave number bands are largely overpredicted. At low wave numbers, 

E(k1) from the refined calculations agree well with the reference DNS. Aliasing near the 

cutoff wave number still persists in the refined WMLES, but its amplitude has diminished 

appreciably. The frequency spectrum shows similar behavior [Fig. 3(c)]. The low-frequency 

content in the baseline WMLES is overpredicted. Calculations with the baseline and the xz-

refined-1 grids exhibit pile-ups in the high-frequency ranges. Under Taylor’s frozen 

turbulence hypothesis, these frequency ranges correspond to the convection of the spurious 

high wave number modes whose wavelengths are shorter than 4Δx, with the convection 

velocity shown in Table II. The aliasing error is dominant in this frequency range, and the 

spectrum is contaminated. This pile-up is mostly suppressed in the finest grid. Also, the low 

frequency contents from the two refined calculations are in good agreement with the 

boundary layer measurement of Farabee and Casarella [36].

Note that the wall-pressure spectra from WMLES (for high wave number or frequency 

ranges before the pile-up) show convergence to spectra that have steeper slope than those 

from the DNS and the experiment. Because this portion of the spectrum is known to be 

related with the eddies residing in the buffer layer and in the lower end of the logarithmic 

layer [37], the present WMLES with a coarse wall-normal resolution (Δy+ = 40) not 

resolving those eddies is unable to reproduce the high wave number or frequency pressure 

spectra correctly. It is expected that adequately resolving the eddies below the buffer layer 

could produce the correct slopes, but this would certainly defeat the purpose of wall 

modeling. In this context, one should not aim at predicting the high wave number or 

frequency wall-pressure spectra accurately with WMLES, but it is emphasized that the 

mean-square pressure fluctuations and the low wave number or frequency spectra can be still 

predicted reasonably well.

Since the reference DNS does not report spectra of τ1 and τ3, comparisons are made against 

a channel DNS data at a comparable Reynolds number [38] (Reτ = 1450) for the frequency 

spectra only (Fig. 4). Since τ1,rms and τ3,rms are underpredicted significantly, large deficits 

are expected in their spectra. In general, the low-frequency spectra of τ1 and τ3 from the 

NEQWM show better agreement with the DNS than those from the EQWM. However, the 

lack of energy in the high-frequency band in both τ1 and τ3 suggests that a proper 

representation of the small near-wall eddies with short time scales is crucial for accurate 

prediction of the wall shear-stress fluctuations, which cannot be achieved with RANS-based 

wall models. The spectra of τ1 and τ3 from the NEQWM exhibit plateaus at large ω, which 

are absent in the EQWM. The frequency range of these plateaus overlaps with those of the 
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spurious pressure modes in Fig. 3, which suggests that the wall-shear stress fluctuations 

from the NEQWM are affected by the aliased LES pressure.

E. Correlations

The two-point correlations and convection velocities of the wall variables are analyzed in 

this section. Before describing the results, it is worth inspecting the instantaneous fields in 

order to contrast the spatial structures of the wall variables obtained with the two wall 

models. Instantaneous snapshots of the wall-pressure and wall shear-stress fluctuations are 

visualized in Fig. 5, together with the streamwise and spanwise velocity fluctuations from 

the LES (u′ and w′) on the matching plane. In the contours of u′, streaky large-scale 

motions (LSMs) with lengths of approximately δ–3δ in the streamwise direction and up to δ 
in the spanwise direction are observed on the matching plane located near the lower end of 

the log layer. Pressure fields obtained with the two wall models are qualitatively similar, as 

their spectra are almost identical.

Notable difference is found in the wall shear-stress fluctuations. In the EQWM, the wall 

shear-stress fluctuations are perfectly correlated with the velocity fluctuations imposed on 

the wall model top boundary. This is a direct consequence of the quasisteady assumption and 

the linear dependency of the EQWM solution on the top boundary conditions, as in the 

model of Schumann [5]. The situation is somewhat different in the NEQWM. The footprint 

of LSMs from the LES is still found in the contour of τ1, but at slightly upstream locations. 

Also, compared to the EQWM, the energetic structures of τ3 are more elongated in the 

streamwise direction, and structures with small spanwise scales are more densely populated. 

In view of the model of Piomelli et al. [39] and the recent inner-outer layer model [40], the 

phase lag of the wall shear-stress fluctuations due to the inclined LSMs seems to be better 

accounted for by the NEQWM than by the EQWM.

The aforementioned structures of the wall variables are characterized in an average sense by 

the two-point autocorrelations R(rx,rz), shown in Fig. 6. As expected, the pressure 

correlations in Fig. 6(a) obtained with the two wall models show little difference. Although 

not shown here for brevity, unphysical repeating patterns separated by Δrx = 2Δx = 0.2 were 

found in the baseline WMLES due to too high energy near the cutoff wave number. The 

presence of the large scale serrations in the medium-resolution grid (xz-refined-1) suggests 

that the integral scales of the wall-pressure fluctuations are still not well resolved. Such 

spurious patterns are suppressed in the finest grid, and closer agreement with the DNS is 

found. The contours in the fine WMLES and the DNS have circular shapes at small 

separations and oval shapes elongated in the spanwise direction at large separations. This is 

consistent with the findings in the literature [30,34].

In Fig. 6(b) the correlation structures of τ1 from the two wall models are similar. Unlike pw, 

the large-scale fluctuations of τ1 are elongated in the streamwise direction. Difference 

between the two wall models is more pronounced in τ3, as in its spectra and instantaneous 

structures. The large-scale fluctuations of τ3 from the NEQWM are elongated in the 

streamwise direction, whereas those from the EQWM are more isotropic [Fig. 6(c)].
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Figures 7 and 8 show the contours of the spatiotemporal two-point autocorrelation R(rx,rt). 

The strong convective nature of the wall variables is implied by the contours clustered in a 

thin band. The slope of this narrow band is generally interpreted as the convection velocity 

Uc. The overall convection velocities of the wall variables found from [30,41]

Uc = arg max
U

F U , F U = ∫
−∞

+∞
R Ut, t dt

(13)

are summarized in Table II. The function F(U) had a unique maximum for each of the wall 

variables. As expected, only the convection velocity of pw responds to the outer-layer grid 

refinement, whereas the convection velocities of τ1 and τ3 do not. The convection velocity 

of pw is underpredicted compared to the often quoted values Uc/U0 = 0.7–0.8 [30,34,36,42], 

where U0 is the channel centerline (or freestream) velocity. Uc of pw obtained with the 

NEQWM seems more accurate than that obtained with the EQWM. The convection 

velocities of τ1 and τ3 are nearly the same, and their values from the EQWM are slightly 

higher than those from the NEQWM. No reference data for Uc of τ1 and τ3 are found at 

comparable Reynolds numbers, but Jeon et al. [41] reported 0.53U0 and 0.57U0 for τ1 and 

τ3 in their low Reynolds number channel DNS at Reτ = 180. It is conjectured that the 

present WMLES overpredicts the convection velocities of τ1 and τ3, especially in the 

EQWM where the high-speed footprint of LSMs are projected directly.

Figure 9 shows the one-dimensional spatial autocorrelations R(rx) and R(rz) of the wall 

variables. In their analysis of the reference DNS [26], Sillero et al. [32] obtained the integral 

lengths by integrating R from r = 0 to r = rc, where rc is the first zero of R (if any), or the 

closest intersection with R = 0.05. With this definition, the integral lengths of pw from the 

DNS [Figs. 9(a)–9(b)] are about 0.1δ and 0.36δ in the streamwise and spanwise directions, 

respectively. Obviously, such large-scale fluctuations of pw are not resolved in the baseline 

and the xz-refined-1 grids, and they are resolved marginally on the finest grid. This is 

reflected in the oscillation-free autocorrelations from the finest grid (xz-refined-2) [Figs. 

9(a) and 9(b)].

The two-point autocorrelations of τ1 and τ3 are shown in Figs. 9(c)–9(f), respectively. Large 

decorrelation length of τ1 in the streamwise direction again reflects the influence of the 

elongated streaky structures in the outer layer. Negative spanwise correlations are observed 

in both τ1 and τ3. Their minima are located at small separation distance of roughly rz = 0.3δ, 

which implies that the mean-spanwise spacing of the large scale structures near the matching 

location is 0.6δ.

IV. CONCLUSION

In the present study, the space-time characteristics of the wall-pressure and wall shear-stress 

fluctuations obtained from WMLES of a channel flow at Reτ = 2000 were investigated. The 
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choice of wall model seems to have negligible effect on the wall-pressure field in this flow. 

While the velocity statistics are predicted reasonably well on the coarse grid (δ/Δx = 10 and 

δ/Δz = 16), prediction of the wall-pressure fluctuations to a comparable accuracy required 

additional wall-parallel grid resolution such that δ/Δx > 20 and δ/Δz > 30. Otherwise the 

pressure field is severely contaminated by the spurious 2-Δ waves, and the pressure statistics 

and spectra are overpredicted. When these conditions are met, the r.m.s fluctuations and low 

wave number or low-frequency spectra of the wall-pressure fluctuations agree reasonably 

well with the DNS and experimental data. The resolution requirement for accurate 

prediction of the wall-pressure fluctuations therefore seems to be more stringent than that 

required for the mean velocity. This aspect may have been overlooked in the previous 

WMLES computations which had comparable or coarser resolution in the wall-parallel 

directions. It warrants further investigation, especially when the technique is to be used for 

noise or vibration prediction.

Unlike the wall-pressure fluctuations, the wall shear-stress fluctuations modeled entirely 

through the RANS-based wall models are underpredicted. Furthermore, the LES grid 

refinement in the wall-parallel directions did not improve the prediction. The spectra of the 

shear-stress fluctuations show significant energy deficit in the high-frequency range, 

suggesting that the small eddies that are neither resolved nor modeled adequately by the 

RANS-based wall models make important contributions to the wall shear-stress fluctuations. 

We therefore conclude that LES employing RANS-based wall models has the inherent 

problem in predicting the wall-shear stress fluctuations. One may need a more sophisticated 

wall-layer model for accurate estimation of the wall-shear stress fluctuations. For instance, 

the recent inner-outer interaction model [40] accurately captures the shear stress fluctuations 

by accounting for the amplitude modulation of the small scales by the large-scale log-region 

motions.

The convection velocity of the wall-pressure fluctuations from the present WMLES 

improves with the outer layer grid refinement, but it is underpredicted by 10%–20% 

compared to the values reported in the literature.

In summary, we suggest that the large-scale features of the wall-pressure fluctuations are 

mostly signatures of the outer-layer structures and therefore can be reasonably well-

predicted with WMLES. On the contrary, proper representation of the fast, small near-wall 

eddies seems to be necessary for correct prediction of wall shear-stress fluctuations, and 

therefore the RANS-based wall models do not predict them accurately regardless of the grid 

resolution.
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FIG. 1. 
Mean flow statistics from WMLES of Reτ = 2000 channel flow: (a) Mean streamwise 

velocity. (b) Streamwise intensity. (c) Wall-normal intensity. (d) Spanwise intensity. (e) 

Reynolds shear stress. (f) Mean-square pressure fluctuation. Colors differentiate grid 

resolutions, and line types differentiate wall models. Blue lines, WMLES with the baseline 

grid; red lines, WMLES with the xz-refined-1 grid; green lines, WMLES with the xz-

refined-2 grid; solid lines, LES with NEQWM; dashed lines, LES with EQWM; circles, 

DNS [26].
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FIG. 2. 
Contour plots of the two-dimensional streamwise-spanwise wave number power spectrum of 

the wall-pressure fluctuations E k1, k3 /τw
2 δ2 . Top, DNS [26]; middle, present WMLES 

(baseline mesh); bottom, present WMLES (xz-refined-1 mesh). Circled regions in WMLES 

are contaminated by aliasing.
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FIG. 3. 
Spectra of the wall-pressure fluctuations: (a) streamwise wave number; (b) spanwise wave 

number; (c) frequency. In each figure, colors differentiate grid resolutions, and line types 

differentiate wall models. Blue lines, WMLES with the baseline grid; red lines, WMLES 

with the xz-refined-1 grid; green lines, WMLES with the xz-refined-2 grid; solid lines, LES 

with NEQWM; dashed lines, LES with EQWM; circles, DNS of Hoyas and Jiménez [26] 

(Reτ = 2000); triangles, boundary layer measurement of Farabee and Casarella [36] (Reτ ≈ 
1900).
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FIG. 4. 
Frequency spectra of the wall shear-stress fluctuations: (a) τ1; (b) τ3. Colors differentiate 

grid resolutions, and line-types differentiate wall models. Blue lines, WMLES with the 

baseline grid; red lines, WMLES with the xz-refined-1 grid; green lines, WMLES with the 

xz-refined-2 grid; solid lines, LES with NEQWM; dashed lines, LES with EQWM; squares, 

channel DNS of Hu et al. [38] (Reτ = 1450).
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FIG. 5. 
Instantaneous contours of the wall variables on the lower wall from the WMLES with the 

xz-refined-1 grid: top, pw
+; middle, τ1

+ (left half) and τ3
+ (right half); bottom, u′+ (left half) 

and w′+ (right half) from the LES at the matching location (y+ = 200). Panels (a), (c), and 

(e) are from the LES with the EQWM, and panels (b), (d), and (f) are from the LES with the 

NEQWM.
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FIG. 6. 
Contours of the streamwise-spanwise two-point autocorrelation R(rx,rz): (a) pw, (b) τ1, (c) 

τ3. Lines in the top half (rz > 0) are from the LES with the NEQWM, and lines in the bottom 

half (rz < 0) are from the LES with the EQWM. Red solid lines, WMLES with the xz-

refined-1 grid; green dashed lines, WMLES with the xz-refined-2 grid; black solid line in 

panel a, DNS [26,32]. Contour levels from 0.1 to 0.9 with 0.1 increment.
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FIG. 7. 
Contours of the streamwise-temporal two-point autocorrelation R(rx,rt) of pw. Lines in the 

top half (rx > 0) are from the LES with the NEQWM, and lines in the bottom half (rx < 0) 

are from the LES with the EQWM. Blue dashed line, present WMLES (baseline mesh); red 

solid line, present WMLES (xz-refined-1 mesh); green dash-dotted lines, present WMLES 

(xz-refined-2 mesh). Contour levels from 0.2 to 0.9 with 0.1 increment.
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FIG. 8. 
Contours of the streamwise-temporal two-point autocorrelation R(rx,rt): (a) τ1, (b) τ3. Lines 

in the top half (rx > 0) are from the LES with the NEQWM, and lines in the bottom half (rx 

< 0) are from the LES with the EQWM. Blue dashed line, present WMLES (baseline mesh); 

red solid line, present WMLES (xz-refined-1 mesh). green dash-dotted lines, present 

WMLES (xz-refined-2 mesh). Contour levels from 0.2 to0.9 with 0.1 increment.
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FIG. 9. 
One-dimensional spatial autocorrelations R(rx) and R(rz) of (a), (b) pw, (c), (d) τ1, (e), (f) τ3. 

Colors differentiate grid resolutions, and line-types differentiate wall models. Red lines, 

WMLES with the xz-refined-1 grid; green lines, WMLES with the xz-refined-2 grid; solid 

lines, LES with NEQWM; dashed lines, LES with EQWM; circles, DNS [26,32] (Reτ = 

2000).
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TABLE I.

Fluctuating wall pressure and shear stress in Reτ = 2000 turbulent channel flow. The numbers outside and 

inside parentheses are from the LES with the NEQWM and the LES with the EQWM, respectively. The 

calculation with the finest grid (xz-refined-2) was done with the EQWM only.

Case Δx+/Δz+ τ1 pw, rms
+ τ1, rms

+ τ3, rms
+

Present WMLES (baseline) 200/125 1.027(1.035) 3.836(3.858) 0.226(0.197) 0.150(0.073)

Present WMLES (xz-refined-1) 100/62.5 0.998(1.001) 2.917(2.951) 0.191(0.185) 0.105(0.069)

Present WMLES (xz-refined-2) 50/31.25 (0.999) (2.915) (0.196) (0.075)

Incompressible DNS [26] 8.2/4.1 1 2.817 0.431 0.289
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TABLE II.

Overall convection velocities of pw, τ1, and τ3 as fractions of the channel centerline velocity (Uc/U0). The 

numbers outside and inside parentheses are from the LES with the NEQWM and the LES with the EQWM, 

respectively. The calculation with the finest grid (xz-refined-2) was done with the EQWM only.

Case pw τ1 τ3

Present WMLES (baseline) 0.56 (0.49) 0.71 (0.76) 0.69 (0.77)

Present WMLES (xz-refined-1) 0.63 (0.58) 0.72 (0.74) 0.68 (0.77)

Present WMLES (xz-refined-2) (0.57) (0.76) (0.77)
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