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1. Motivation and objectives

The near-wall resolution requirement to accurately resolve the boundary layer in wall-

bounded flows remains one of the largest obstacles in large-eddy simulation (LES) of high-

Reynolds-number engineering applications. Chapman (1979) estimated that the number of 

grid points necessary for a wall-resolved (WR) LES scales as NWR ~ Re9/5, where Re is the 

characteristic Reynolds number of the problem. A more recent study by Choi & Moin 

(2012), using more accurate correlations for the skin friction coefficients, concluded that 

NWR ~ Re13/7, which is far too expensive for many practical engineering applications and 

not very different from the NDNS ~ Re37/14 scaling required for direct numerical simulation 

(DNS) where all the relevant scales of motion are resolved.

By modeling the near-wall flow such that only the outer layer of the boundary layer is 

resolved, the grid point requirements for wall-modeled (WM) LES scale at most linearly 

with increasing Reynolds number, NWM ~ Re. Therefore, wall-modeling stands as the most 

feasible approach for most engineering applications. Several strategies for modeling the 

near-wall region have been explored in the past. The most popular and well-known wall-

models are the traditional wall-stress models (or approximate boundary condition) and 

detached eddy simulation (DES) and its variants. Approximate boundary condition models 

compute the wall stress using either the law of the wall (Schumann 1975; Deardorff 1970; 

Piomelli et al. 1989) or the solution obtained by solving a simplified version of the boundary 

layer equations close to the wall, e.g., the Reynolds-averaged Navier-Stokes (RANS) 

equations (Balaras et al. 1996; Cabot & Moin 1999; Kawai & Larsson 2010). DES (Spalart 

et al. 1997)combines RANS equations close to the wall and LES in the outer layer, with the 

interface between RANS and LES domains enforced implicitly through the change in the 

turbulence model.

In order to reduce the computational cost, all above models assume a simplified state of the 

local near-wall boundary layer, including the shape of the velocity profile, the relative 

significance of the different terms in the equations solved, and the alignment of the subgrid 

velocity field with respect to local strain. Furthermore, models involving RANS equations 

close to the wall are sensitive to the choice of the particular closure and its associated 

coefficients, as well as the location of the RANS/LES interface. The above wall-model 

techniques may not be accurate in flow regimes where these assumptions are no longer valid 

as in transitional or separated flows. Moreover, sensitivities to model parameters or 

RANS/LES interface locations can limit the predictive capabilities of wall-modeled LES, 

and their computational complexity may make their implementation a difficult and time-

consuming task.
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Recently, Bose & Moin (2014) showed promising results using a dynamic slip boundary 

condition that does not require any prior knowledge of the local boundary layer. However, 

the computed slip length is sensitive to changes in grid resolution, Reynolds number and 

subgrid scale (SGS) model. Our goal is to investigate the effects of the slip boundary 

condition on the first-order statistics of a plane turbulent channel flow in order to obtain the 

neccessary requirements for building robust wall-models applicable to real-world scenarios.

The paper is organized as follows. In Section 2, we motivate the suitability of the slip 

boundary condition as a wall-model by considering the filtered Navier-Stokes equations. A-
priori testing is performed on filtered DNS data to study the validity of the slip boundary 

condition. In Section 3, we analyze the slip boundary condition for implicitly filtered LES. 

For that purpose, we perform a set of LES of turbulent channel flows with slip boundary 

conditions and study the effect of slip lengths, choice of SGS model, grid resolution, and 

Reynolds number on first-order statistics such as the mean and root-mean-squared (RMS) 

velocity profiles. Finally, conclusions are offered in Section 4.

2. Slip boundary condition in the filtered Navier-Stokes equations

2.1. Formulation

Let us consider a wall-bounded flow. For both DNS and wall-resolved LES, the velocity at 

the wall is given by the no-slip boundary condition

ui w = 0,    i = 1, 2, 3,

(2.1)

where i = 1,2,3 corresponds to the x1, x2 and x3 directions, respectively, and we will 

interchangeably use u, v, w for u1, u2, u3 (and x, y, z for x1, x2, x3) throughout the paper.

If we interpret LES as the solution of the filtered Navier-Stokes equations, as it is formally 

derived in most textbooks, the filtering operation in the wall-normal direction will result in 

non-zero velocities at the wall. This suggests that LES requires a modified wall boundary 

condition different from the usual no-slip, especially for large filter sizes (or coarse grid 

resolutions).

Following the above argument, we expand the velocities at the wall as a Taylor series of the 

filter size Δ around Δ = 0, to get

ui
w

(Δ) = ui
w

(0) +
∂ui
∂Δ w

Δ + 𝒪 Δ2 ,

(2.2)
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where ( ⋅ ) represents the filter operation and ui |w (0) is the velocity at the wall for Δ = 0, 

which coincides with the no-slip condition used in DNS. Defining the slip length as

l = ∂n
∂ΔΔ,

(2.3)

where n denotes wall-normal direction, Eq. (2.2) can be rearranged, up to first-order 

approximation, as an effective slip boundary condition of the form

ui
w

= l
∂ui
∂n w

.

(2.4)

Including second- and higher-order terms in Eq. (2.4), which might be neccessary in coarse 

LES calculations, will result in different slip lengths and even extra intercept terms for each 

velocity boundary condition in order to get a reasonable representation of the flow at the 

wall, that is,

ui
w

= li
∂ui
∂n w

+ βi,    i = 1, 2, 3,

(2.5)

where repeated indices do not imply summation. The particular expressions for li and βi are 

obtained by grouping all terms multiplied by ∂/∂Δ into li and collecting the remaining ones 

in βi. Both li and βi depend formally on the filter shape, size, and instantaneous 

configuration of the filtered velocity vector at the wall. Such a dependence on the filter and 

flow configuration is expected to become more relevant as the filter size increases.

The above analysis provides a framework to build general Robin boundary conditions for 

coarse LES computations, and its validity and suitability is investigated in the remaining 

sections.

2.2. A-priori testing

A-priori testing of the slip boundary condition was conducted to assess the validity of Eq. 

(2.4) in filtered turbulent channel flow data. DNS results from del Álamo et al. (2004), 
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Hoyas & Jiménez (2006) and Lozano-Durán & Jiménez (2014) at friction Reynolds numbers 

of Reτ = 950, 2000 and 4200 were used to perform the analysis.

In the following, x, y and z denote streamwise, wall-normal, and spanwise directions, 

respectively. The friction velocity is denoted by uτ and the channel half-height by δ. In each 

case, the velocity vector is filtered in the three spatial directions with two different filter 

shapes: the differential filter from Germano (1986) with the functional filter size proposed 

by Bose & Moin (2014), and the classic box filter. The resulting filtered data contain ui|w and 

∂ui/ ∂n|w, which can be used to evaluate the goodness of Eq. (2.4) by computing their joint 

probability density function (PDF) as shown in Figure 1.

We will focus first on the differential filter. Following Bose & Moin (2014), the filtered 

velocity is defined by

ui − ∂
∂xk

lp
∂ui
∂xk

= ui,

(2.6)

lp(y) = lnom
y

yint
,    y ≤ yint,

(2.7)

where repeated indices imply summation, lp is related to the filter size with nominal value 

equal to lnom, and yint is a wall-normal estimation of the beginning of the outer layer. See 

Bose & Moin (2014) for details. As lp vanishes linearly at the wall, the first-order 

approximation discussed in Eq. (2.4) renders exact with

l =
∂lp
∂y =

lnom
yint

.

(2.8)

Hence, the joint PDF for the differential filter corresponds to perfect straight lines with 

slopes (slip lengths) given by Eq. (2.8).

When the velocities are filtered using a box kernel, which may be a more realistic estimation 

of the LES velocities in coarse grids, the first-order approximation no longer holds. The joint 
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PDF of the streamwise, wall-normal and spanwise velocities and derivatives for the box 

filtered case at Reτ = 950 are plotted in Figure 1(a–c). The results show a linear correlation 

between ui|w and ∂ui/ ∂n|w on the average sense, which supports the suitability of the slip 

boundary condition. However, the spread of the joint PDF increases with increasing filter 

size and the average slopes (related to the slip lengths li) differ for the each velocity 

component, consistent with our analysis in Section 2.1. Finally, Figure 1 (d) shows the 

Reynolds number dependence of the joint PDF for a constant filter size in outer units. As 

already observed for varying filter width, the spread of the PDF increases with the Reynolds 

number too, but the correlation between velocity and its wall-normal derivative remains.

The above results suggest the necessity of different slip lengths in each direction in an actual 

LES implementation, at least for coarse grids as it is usually the case in wall-modeled LES. 

This was also argued in Eq. (2.5) in the context of truncation errors for the Taylor expansion 

of the velocities at the wall and will be tested in the next section.

3. Slip boundary condition in implicitly filtered LES

In most LES calculations, the filter operation is not explicitly defined. Instead, the truncation 

error of the numerical scheme and the grid itself are assumed to act as an implicit filter, 

resolving only those scales that can be represented by the given resolution. However, when 

the near-wall grid is not fine enough to resolve the very small scales, the no-slip condition 

produces very poor results (Jimenez & Moser 2000).

It was argued in Section 2.1 that the most general form of the Robin boundary condition, 

given by Eq. (2.5) should replace the no-slip condition in coarse implicitly filtered LES. The 

symmetries of the flow can be exploited to further simplify the above expression. For 

example, when 〈ui〉 = 0, where 〈·〉 denotes ensemble average in homogeneous directions and 

time, 〈βi〉 must be set to zero.

To study the effects of Eq. (2.5), we perform a set of plane turbulent channel flow 

simulations with the slip boundary condition at the wall. The above discussion suggests that 

the appropriate Robin boundary condition consistent with the symmetries of the channel 

must be of the form

ui
w

= li
∂ui
∂n w

.

(3.1)

Note that we have decided to set β1= 0 without much loss of generality, since its average 

effect can be absorbed by moving the frame of reference at constant uniform velocity. 

Another option is to set l1 = 0 along with a non-zero constant value for β1. However, that 

would generate zero tangential Reynolds stress at the wall which will be shown to be 

neccessary to avoid large velocity fluctuations near the wall.
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The question remains as to what should be the expected role of the slip condition or, in 

general, of any wall-model based on approximate boundary conditions. In the context of a 

channel flow driven by a constant mass flow, the first requirement is to provide the correct 

mean stresses at the wall, that is, an accurate wall momentum drain, which in turn will yield 

to the correct bulk velocity scaled in wall units. Second, the wall-model should avoid 

spurious near-wall peaks observed in coarse wall-resolved LES (e.g. Meyers & Sagaut 2007) 

for the streamwise RMS velocity fluctuations. Both requirements must be accompanied by 

an effective SGS model responsible for generating healthy turbulent statistics in the interior 

of the domain, where the wall-model plays a secondary role. This last point is important in 

order to obtain the correct shape of the mean velocity profile and accurate RMS velocity 

fluctuations along the entire domain.

3.1. Numerical experiments

We perform a set of LES calculations of a plane turbulent channel flow in order to study the 

effects of the Reynolds number, grid resolution and SGS model on the optimal slip length 

defined as the one providing the mean and RMS velocity statistics closest to the reference 

DNS. The simulations are computed with a staggered second-order finite difference (Orlandi 

2000) code and a fractional step method (Kim & Moin 1985) with a third-order Runge-Kutta 

time advancing scheme (Wray 1990). The size of the channel is 2πδ×2δ×πδ in the 

streamwise, wall-normal and spanwise directions, respectively, where δ is the channel half-

height. The channel flow is driven by imposing a constant mean pressure gradient and the 

slip boundary condition is used on the top and bottom walls. Periodic boundary conditions 

are imposed in the streamwise and spanwise directions. All simulations were run for at least 

100 eddy turnover times after transients.

We take as baseline case a channel flow at friction Reynolds number Reτ = 2000 and grid 

resolution 128 × 40 × 64 in the x, y, and z directions, respectively. The SGS model is the 

dynamic Smagorinsky from Germano et al. (1991) and Lilly (1991) but differs from the 

usual approach in the averaging procedure, in that it is directly applied to the eddy viscosity 

and not to the dynamic constant. Given the very coarse resolution at the wall, we impose 

Neumann boundary conditions for the SGS stress instead of the usual zero-value Dirichlet 

condition often used in wall-resolved LES.

To study the effects of the grid resolution, we define a coarse mesh and a fine mesh with 102 

× 32 × 52 and 152 × 48 × 76 grid points, respectively. The resolutions were chosen such that 

the first interior point lies in the logarithmic region, or at least is far from the inner-wall peak 

of the streamwise RMS velocity. The intention is to avoid solving (even partially) the 

dynamic cycle in the buffer layer, since the wall-normal lengths of the near-wall vortices and 

streaks scale in viscous units, and that scaling is incompatible with the computational 

efficiency pursued in wall-modeled LES.

To investigate the effect of the Reynolds number we will consider three cases at Reτ = 950, 

2000 and 4200, and the effect of the SGS model will be assessed by comparing results from 

dynamic and constant-coefficient Smagornisky models (Smagorinsky 1963) with cases 

without an SGS model. A complete list of cases is summarized in Table 1. Finally, the LES 
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results will be compared with DNS data from del Álamo et al. (2004), Hoyas & Jiménez 

(2006) and Lozano-Durán & Jiménez (2014).

3.2. Effects of the slip lengths on the flow

A-priori testing of the slip condition in Section 2.2 showed that the filtered velocity vector at 

the wall is better represented by assuming different slip lengths for each velocity component. 

To gain a better insight into the physical effects of each individual slip length, we study the 

changes undergone by the flow when the values of lx, ly, and lz are independently modified.

Although not shown, it was tested that varying lz has a second-order effect on the mean and 

RMS velocity profiles when compared to changes of the same order in lx and ly. The result 

is not totally unexpected, since u and v are active components of the mean streamwise 

momentum balance, while w enters only indirectly. In the remaining sections, we set lz equal 

to lx.

Figure 2 shows the mean streamwise velocity profile and RMS velocity fluctuations for 

(lx,ly) = (0.005δ,0.005δ), (0.005δ,0.01δ) and (0.01δ,0.005δ). The results reveal that 

increasing lx (at constant ly) moves up the mean velocity profile by 8%, while increasing ly 

(at constant lx) has the opposite effect and decreases the mean velocity profile by 16%. In 

both cases, the RMS velocity fluctuations remain unaltered, except for some small changes 

close to the wall that are barely visible in the plots.

The observations for lx and ly may be explained in terms of the non-zero average streamwise 

slip and mean streamwise momentum balance at the wall. With respect to the latter, 

increasing ly enhances the uv contribution at the wall, which is translated into a lower mean 

velocity due to the higher momentum drain at the boundaries. The same argument applies 

when increasing lx. However, higher lx also implies larger average slip velocities in x, which 

overcome the previous momentum drain. The net effect is an increase of the mean velocity 

profile as observed in Figure 2.

A second observation from Figure 2 is that the shape of the mean velocity profile remains 

constant for different slip lengths, and changes in lx and ly are only reponsible for a shift 

along the mean velocity axis. We would like to connect the previous result with the classic 

logarithmic profile for the mean streamwise velocity as obtained from the matched 

asymptotics argument by Millikan (1938), where

u
uτ

= B + Alog y+ ,

(3.2)

with A and B constants defining the slope and intercept of the mean velocity. Assuming that 

the filter operation does not alter the logarithmic shape of 〈u〉 for the typical filter widths (or 
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grid resolutions), Eq. (3.2) should also hold for LES. Moving one step forward, the 

integrated mean streamwise momentum balance can be written as

u y+ = u w
B

+ y+ 1 − y
2δ + ∫

0
y+

uv+ + τsgs
+ dy′

A log y+

,

(3.3)

where τsgs
+  is the subgrid stress tensor. A comparison of the structure of Eqs. (3.2) and (3.3) 

indicates that it is reasonable to hypothesize that the wall-model mainly influences the 

intercept A, which is independent of y, while the SGS model controls the y-dependent slope 

B, also related to the wall-normal mixing of the flow. This is further investigated in the next 

section.

Figure 3 shows the uv, viscous and subgrid stress contributions for different slip lengths. As 

already shown for the RMS velocities, changes in lx and ly seem to have a negligible effect 

on the flow except at the walls, which again highlights the limited influence of the wall-

model far from the boundaries.

3.3. Sensitivity to SGS model, Reynolds number, and grid resolution

As discussed in Section 2.1, the slip boundary condition is expected to depend on the 

instantaneous configuration of the velocity field at the wall. In general, different SGS 

models will yield to different velocities at the wall which will influence the slip boundary 

condition.

Figure 4 shows the mean velocity dependence on the SGS model. The three cases 

investigated are the dynamic Smagorinsky, constant coefficient Smagorinsky, and LES 

without model. In all of the cases, the slip lengths are fixed and equal to 0.005δ such that the 

velocity profile at the center of the channel for the dynamic Smagorinsky model matches the 

DNS data. The results reveal that not only the shape but also the total mass flow is highly 

dependent on the SGS model or on the absence of it. The subgrid scales can be interpreted 

as the mixing of the flow by the missing small scales. If the SGS model is under-dissipative, 

the flow becomes more turbulent, which causes the shape of the mean velocity profile to 

become flatter (enhanced mixing). Besides, for the case without model, the lack of SGS 

momentum drain at the wall results in strong gradients near the boundaries. On the other 

hand, if the SGS model is over-dissipative, the flow becomes more laminar and gets closer to 

a parabolic shape, which corresponds to the equilibrium solution for zero wall-normal 

momentum transfer.

The effect on the mass flow rate (in wall units) can be understood by considering the 

definition of the friction velocity,
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uτ
2 = − uv

w
+ ν∂u

∂y w
+ νt

∂u
∂y w

,

(3.4)

where νt is the eddy viscosity. In the case of LES without a model, the last term in Eq. (3.4) 

is zero, that is, lower uτ and hence higher mass flow. For non-zero eddy viscosity, the SGS 

stress will contribute to increasing uτ, decreasing the mass flow accordingly. The specific 

change will depend on the details of the SGS model. Note that the coupling between uτ and 

the slip condition makes these results different from those observed in wall-modeled LES. 

The previous argument is for variable uτ, but the trends shown in Figure 4 are equally valid 

for channel flows driven by either constant pressure or constant mass flow rate.

The grid resolution and Reynolds number sensitivity are studied in Figure 5, again 

maintaining constant slip lengths. Regarding the resolution, coarsening the grid strongly 

affects the mass flow, i.e., it is substantially increased. This phenomenon is also observed in 

wall-resolved LES with no-slip boundary condition and is again related to the lack of 

consistency of wall-normal momentum flux provided by the SGS model. Finally, Figure 5(b) 

shows a weak dependence of the mean velocity profile on the Reynolds number. The most 

important difference is the underestimation of the mass flow for the lowest Reynolds 

number, but overall the optimal slip lengths are quite insensitive to Reτ.

3.4. Expected requirements and a working slip condition

The information from previous sections can be compiled into a list of expected requirements 

for wall-models based on the slip boundary condition, as shown in table 2.

As an example, we show a working slip condition based on the knowledge acquired that 

prodives the best results in terms of the mean profile and RMS fluctuating velocities in a 

channel flow at Reτ = 4200. The challenge then is to build wall-models able to dynamically 

compute the corresponding slip lengths without any empirical information from the flow. 

This is already under investigation and will be addressed in future publications.

The results are plotted in Figure 6, which shows a good prediction of the mean velocity 

profile and reasonable RMS velocities below their DNS counterparts, as should be expected 

from filtered DNS at a high Reynolds number and coarse grid resolution. Unlike previous 

wall-resolved LES simulations, the RMS are not overpredicted near the walls, which is also 

an important improvement to emphasize. The increase of the uv contribution at the wall 

along with the decrease of the viscous stress is characteristic of the wall-normal slip 

condition and is consistent with the intuitive idea of coarse LES calculations and filtered 

DNS.
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4. Conclusions

Due to the scaling of grid resolution requirements at the wall in wall-resolved simulations, 

wall-modeling stands as the most viable approach for most practical engineering 

applications. In this investigation, we have motivated the slip boundary condition for a wall-

model using both first-order approximation of the Taylor series expansion of the velocities 

with respect to the filter width at the wall, and A-priori testing of filtered DNS data. We have 

applied the slip boundary condition to implicitly filtered LES using a turbulent channel flow 

simulation to study the effects of the slip lengths on the flow. The mean velocity profile is 

shifted depending on the slip lengths, whereas the RMS velocity profiles remain essentially 

insensitive except for those points close to the wall. We have studied the dependence of first-

order statistics on the Reynolds number, SGS model, and grid resolution for given constant 

slip lengths, and have showed that the mean profile is particularly sensitive to the last two. 

Finally, we have shown that there exist optimal slip lengths providing accurate mean and 

RMS velocities in LES and have compiled all the neccessary requirements for wall-models 

based on the slip boundary condition in order to get satisfactory results.
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Figure 1. 
50% and 95% probability contours of the joint probability density function of (a) u|w and 

∂u/ ∂y|w, (b) v|w and ∂v/ ∂y|w, and (c) w|w and ∂w/ ∂y|w for box-filtered DNS of turbulent 

channel flow for Δ = 0 (blue solid line), 0.01δ (red dashed line), 0.02δ (yellow dotted line), 

and 0.03δ (purple dot-dash line) with Reτ = 950; (d) u|w with ∂u/ ∂y|w for filter size Δ = 

0.01δ, Reτ = 950 (blue solid line), 2000 (red dashed line), and 4200 (yellow dotted line).
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Figure 2. 
The (a) mean streamwise velocity profile, and root-mean-square (b) streamwise, (c) wall-

normal, and (d) spanwise velocity profiles for (lx,ly) = (0.005δ,0.005δ) (blue-circles), 

(0.01δ,0.005δ) (yellow triangles), (0.005δ,0.01δ) (red squares), and DNS (black dashed 

lines).
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Figure 3. 
The (a) uv and (b) viscous stress contributions (smaller) and subgrid stress contributions 

(larger) for (lx,ly) = (0.005δ,0.005δ) (blue circles), (0.01δ,0.005δ) (yellow triangles), 

(0.005δ,0.01δ) (red squares), and DNS (black dashed lines).
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Figure 4. 
(a) Effect of different SGS models on the mean velocity profile for lx = ly = 0.005δ. (b) The 

mean velocity profiles have been shifted to compare the shapes of the mean velocity profile. 

Dynamic Smagorinsky model (blue circles), constant coefficient Smagorinsky model 

(yellow triangles), and no SGS model (red squares) are given for the turbulent channel with 

Reτ = 2000. DNS (black dashed lines).
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Figure 5. 
The effect of the (a) grid resolution and (b) Reynolds number on the mean velocity profile 

for lx = ly = 0.005δ. (a) 102×32×52 (red squares), 128×40×64 (blue circles), 152×48×76 

(yellow triangles). (b) Reτ = 950 (red squares), Reτ = 2000 (blue circles), Reτ = 4200, 

(yellow triangles). DNS (black dashed lines).
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Figure 6. 
The (a) mean streamwise velocity profile, (b) root-mean-square streamwise, span-wise, and 

wall-normal (top to bottom) fluctuation profiles, (c) the uv contribution, and (d) the viscosity 

contribution (blue circles) and eddy viscosity contribution (red triangles) for the for optimal 

values of the slip length. DNS (black dashed line).
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Table 1.

Tabulated list of cases. The case name indicates SGS model, Reτ and mesh size. Dynamic Smagorinsky model 

(DSM), constant coefficient Smagorinsky model (SM), and no model (NM). Reτ = 950, 2000, 4200. Coarse 

(c), base (b), and fine (f).

Case Reτ Nx Ny Nz Δ+ SGS model Figure(s)

DSM950b 950 128 40 64 47.5 DSM 5(a)

DSM2000c 102 32 52 125 DSM 5(b)

DSM2000b 2000 128 40 64 100 DSM 4, 5

DSM2000f 152 48 76 83.3 DSM 5(b)

SM2000b
NM2000b 2000 128 40 64 100 SM

NM
4
4

DSM4200b 4200 128 40 64 210 DSM 5(a)
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Table 2.

Effect of the slip condition on the flow and expected wall-model requirements.

Effect of the slip on the flow Expected requirements

Mean velocity profile shift depends on slip length Compute the slip lengths that provide the correct mean velocity profile

RMS velocity profiles insensitive to changes in slip lengths except at 
the wall

Provide non-zero Reynolds stress at the wall to avoid spurious peaks of 
the streamwise RMS velocities

Slip boundary condition sensitive to changes in grid resolution and 
Reynolds number

Robustness to the changes in grid resolution and Reynolds number
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