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Abstract

Transferring high-level knowledge from a source task to a target task is an effective way to 

expedite reinforcement learning (RL). For example, propositional logic and first-order logic have 

been used as representations of such knowledge. We study the transfer of knowledge between 

tasks in which the timing of the events matters. We call such tasks temporal tasks. We concretize 

similarity between temporal tasks through a notion of logical transferability, and develop a transfer 

learning approach between different yet similar temporal tasks. We first propose an inference 

technique to extract metric interval temporal logic (MITL) formulas in sequential disjunctive 
normal form from labeled trajectories collected in RL of the two tasks. If logical transferability is 

identified through this inference, we construct a timed automaton for each sequential conjunctive 
subformula of the inferred MITL formulas from both tasks. We perform RL on the extended state 
which includes the locations and clock valuations of the timed automata for the source task. We 

then establish mappings between the corresponding components (clocks, locations, etc.) of the 

timed automata from the two tasks, and transfer the extended Q-functions based on the established 

mappings. Finally, we perform RL on the extended state for the target task, starting with the 

transferred extended Q-functions. Our implementation results show, depending on how similar the 

source task and the target task are, that the sampling efficiency for the target task can be improved 

by up to one order of magnitude by performing RL in the extended state space, and further 

improved by up to another order of magnitude using the transferred extended Q-functions.

1 Introduction

Reinforcement learning (RL) has been successful in numerous applications. In practice 

though, it often requires extensive exploration of the environment to achieve satisfactory 

performance, especially for complex tasks with sparse rewards [Wang and Taylor, 2017].

The sampling efficiency and performance of RL can be improved if some high-level 

knowledge can be incorporated in the learning process [Toro Icarte et al., 2018a]. Such 

knowledge can be also transferred from a source task to a target task if these tasks are 

logically similar [Taylor and Stone, 2007]. For example, propositional logic and first-order 

logic have been used as representations of knowledge in the form of logical structures for 

transfer learning [Mihalkova et al., 2007]. They showed that incorporating such logical 

similarities can expedite RL for the target task [Torrey et al., 2008].
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The transfer of high-level knowledge can be also applied to tasks where the timing of the 

events matters. We call such tasks as temporal tasks. Consider the gridworld example in 

Figure 1. In the source task, the robot should first reach a green region GS and stay there for 

at least 4 time units, then reach another yellow region YS within 40 time units. In the target 

task, the robot should first reach a green region GT and stay there for at least 5 time units, 

then reach another yellow region YT within 40 time units. In both tasks, the green and 

yellow regions are a priori unknown to the robot. After 40 time units, the robot obtains a 

reward of 100 if it has completed the task and obtains a reward of −10 otherwise. It is 

intuitive that the two tasks are similar at a high level despite the differences in the specific 

regions in the workspace and timing requirements.

Transfer learning between temporal tasks is complicated due to the following factors: (a) No 

formally defined criterion exists for logical similarities between temporal tasks. (b) Logical 

similarities are often implicit and need to be identified from data. (c) There is no known 

automated mechanism to transfer the knowledge based on logical similarities.

In this paper, we propose a transfer learning approach for temporal tasks in two levels: 

transfer of logical structures and transfer of low-level implementations. For ease of 

presentation, we focus on Q-learning [Watkins and Dayan, 1992], while the general 

methodology applies readily to other forms of RL.

In the first level, we represent the high-level knowledge in temporal logic [Pnueli, 1977], 

which has been used in many applications in robotics and artificial intelligence [Kress-Gazit 

et al., 2011; To et al., 2016]. Specifically, we use a fragment of metric interval temporal 

logic (MITL) with bounded time intervals. We transfer such knowledge from a source task 

to a target task based on the hypothesis of logical transferability (this notion will be 

formalized in Section 4.1) between the two tasks.

To identify logical transferability, we develop an inference technique that extracts 

informative MITL formulas (formalized in Section 3) in sequential disjunctive normal form. 

If the inference process indeed identifies logical transferability, we construct a timed 

automaton for each sequential conjunctive subformula of the inferred MITL formulas. We 

combine the locations and clock valuations of the timed automaton with the state of the 

robot to form an extended state, and perform RL in the extended state space for the target 

task.

In the second level, we transfer the extended Q-functions (i.e., Q-function on the extended 

states) from the source task to the target task if logical transferability is identified in the first 

level. We first perform RL in the extended state space for the source task. Next, we establish 

mappings between the corresponding components (clocks, locations, etc.) of the timed 

automata from the two tasks based on the identified logical transferability. Finally, we 

transfer the obtained optimal extended Q-functions from the source task to the target task 

based on these mappings, and perform RL for the target task starting with the transferred 

extended Q-functions.

The implementation of the proposed approach shows, in both levels, that the sampling 

efficiency is significantly improved for RL of the target task.
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1.1 Related Work

Our work is closely related to the work on RL with temporal logic specifications [Aksaray et 
al., 2016; Li et al., 2017; Toro Icarte et al., 2018b; Fu and Topcu, 2014; Wen et al., 2017; 

Alshiekh et al., 2018]. The current results mostly rely on the assumption that the high-level 

knowledge (i.e., temporal logic specifications) are given, while in reality they are often 

implicit and need to be inferred from data.

The methods for inferring temporal logic formulas from data can be found in [Hoxha et al., 
2017; Kong et al., 2017; Bombara et al., 2016; Neider and Gavran, 2018; Xu et al., 2018; Xu 

and Julius, 2018; Vazquez-Chanlatte et al., 2018; Xu et al., 2019; Shah et al., 2018]. The 

inference method used in this paper is inspired from [Bombara et al., 2016] and [Xu et al., 
2019].

While there has been no existsing work on RL-based transfer learning utilizing similarity 

between temporal logic formulas, the related work on transferring first-order logical 

structures or rules for expediting RL can be found in [Taylor and Stone, 2007; Torrey and 

Shavlik, 2010; Torrey et al., 2008], and the related work on transferring logical relations for 

action-model acquisition can be found in [Zhuo and Yang, 2014].

2 Preliminaries

2.1 Metric Interval Temporal Logic

Let 𝔹 = ⊤ , ⊥  (tautology and contradiction, respectively) be the Boolean domain and 

𝕋 = 0, 1, 2, …  be a discrete set of time indices. The underlying system is modeled by a 

Markov decision process (MDP) ℳ = (S, A, P), where the state space S and action set A are 

finite, P : S × A × S → [0,1] is a transition probability distribution. A trajectory s0:L = s0s1 

⋯ sL describing an evolution of the MDP ℳ is a function from 𝕋  to S. Let AP be a set of 

atomic predicates.

The syntax of the MITLf fragment of time-bounded MITL formulas is defined recursively as 

follows1:

ϕ ≔ ⊤ ρ ¬ϕ ϕ1 ∧ ϕ2 ϕ1 ∨ ϕ2 ◊I ϕ □I ϕ,

where ρ ∈ AP is an atomic predicate; ¬ (negation), ∧ (conjunction), ∨ (disjunction) are 

Boolean connectives; ♢ (eventually) and □ (always) are temporal operators; and I is a 

bounded interval of the form I = i1, i2 i1 < i2, i1, i2 ∈ 𝕋 . For example, the MITLf formula □

[2,5] (x > 3) reads as “x is always greater than 3 during the time interval [2, 5]”.

A timed word generated by a trajectory s0:L is defined as a sequence 

ℒ st1
, t1 , …, ℒ stm

, tm , where ℒ:S 2𝒜𝒫 is a labeling function assigning to each state s 

1Although other temporal operators such as “Until ”(𝒰) may also appear in the full syntax of MITL, they are omitted from the syntax 
here as they can be hard to interpret and are not often used for the inference of temporal logic formulas [Kong et al., 2017].
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∈ S a subset of atomic predicates in 𝒜𝒫 that hold true at state s, t1 = 0 , tm = L, tk−1 < tk (k 

∈ [2, m]) and for k ∈ [1, m − 1], tk+1 is the largest time index such that ℒ st = ℒ stk
 for all 

t ∈ [tk, tk+1). The satisfaction of an MITLf formula by timed words as Boolean semantics 

can be found in [Alur et al., 1996]. We say that a trajectory s0:L satisfies an MITLf formula 

ϕ, denoted as s0:L = ϕ, if and only if the timed word generated by s0:L satisfies ϕ. As the time 

intervals I in MITLf formulas are bounded intervals, MITLf formulas can be satisfied and 

violated by trajectories of finite lengths.

2.2 Timed Automaton

Let C be a finite set of clock variables. The set 𝒞C of clock constraints is defined by 

[Ouaknine and Worrell, 2005]

φC ≔ ⊤ c⋈k φ1 ∧ φ2,

where k ∈ ℕ, c ∈ C and ⋈∈ {<, ≤, >, ≥}.

Definition 1. [Alur and Dill, 1994] A timed automaton is a tuple 𝒜 = Σ, 𝒬, q0, C, ℱ, Δ , 

where Σ is a finite alphabet of input symbols, 𝒬 is a set of locations, q0 ∈ 𝒬 is the initial 

location, C is a finite set of clocks, ℱ ⊂ 𝒬 is a set of accepting locations, 

Δ ⊂ 𝒬 × Σ × 𝒬 × 𝒞C × 2C is the transition function, e = (q, σ, q′, φC, rC) ∈ Δ represents a 

transition from q to q′ labeled by σ, provided the precondition φC on the clocks is met, rC is 

the set of clocks that are reset to zero..

Remark 1. We focus on timed automata with discrete time, which are also called tick 

automata in [Gruber et al., 2005].

A timed automaton 𝒜 is deterministic if and only if for each location and input symbol there 

is at most one transition to the next location. We denote by v = v1, …, v|C| ∈ V ⊂ 𝕋 |C| the 

clock valuation of 𝒜 (we denote by |C| the cardinality of C), where vk ∈ Vk ⊂ 𝕋  is the value 

of clock ck ∈ C. For a timed word v = (σ0, t0), (σ1, t1), … , (σm, tm) (where t0 < t1 < ⋯ < tm, 

σk ∈ Σ for k ∈ [0, m]) and writing dk := tk+1 − tk, a run of 𝒜 on v is defined as

where the flow-step relation is defined by (q, v) d (q, v + d) where d ∈ ℝ > 0; the edge-step 

relation is defined by q, v
σ (q′, v′) if and only if there is an edge (q, σ, q′, φC, rC) ∈ Δ such 

that σ ∈ Σ, υ satisfies φC, vk′ = 0 for all ck ∈ rC and vk′ = vk for all ck ∉ rC. A finite run is 

accepting if the last location in the run belongs to ℱ. A timed word v is accepted by 𝒜 if 

there is some accepting run of 𝒜 on v.
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3 Information-Guided Inference of Temporal Logic Formulas

We now introduce the information gain provided by an MITLf formula, the problem 

formulation and the algorithm to extract MITLf formulas from labeled trajectories.

3.1 Information Gain of MITLf Formulas

We denote by ℬL the set of all possible trajectories with length L generated by the MDP ℳ, 

and use 𝒢L:ℬL [0, 1] to denote a prior probability distribution (e.g., uniform distribution) 

over ℬL. We use ℙℬL, ϕ to denote the probability of a trajectory s0:L satisfying ϕ in ℬL

based on 𝒢L.

Definition 2. Given a prior probability distribution 𝒢L and an MITLf formula ϕ such that 

ℙℬL, ϕ > 0, we define 𝒢L
ϕ:ℬL [0, 1] as the posterior probability distribution, given that ϕ 

evaluates to true, which is expressed as

𝒢L
ϕ s0:L : =

𝒢L s0 − L

ℙℬL, ϕ
,  i f  s0:L ╞ ϕ,

0,  otherwise .

The expression of 𝒢L
ϕ can be derived using Bayes’ theorem. We use the fact that the 

probability of ϕ evaluating to true given s0:L is 1, if s0:L satisfies ϕ; and it is 0 otherwise.

Definition 3. When the prior probability distribution 𝒢L is updated to the posterior 

probability distribution 𝒢L
ϕ, we define the information gain as

ℐ 𝒢L, 𝒢L
ϕ ≔ DKL 𝒢L

ϕ 𝒢L /L,

where DKL 𝒢L
ϕ 𝒢L  is the Kullback-Leibler divergence from 𝒢L to 𝒢L

ϕ.

Proposition 1. For an MITLf formula ϕ, if ℙℬL, ϕ > 0, then

ℐ 𝒢L, 𝒢L
ϕ = − logℙℬL, ϕ/L .

Proof. Straightforward from Definitions 2 and 3. □
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If ϕ = ⊤, then ℙℬL, ϕ = 1 and ℐ 𝒢L, 𝒢L
ϕ = 0, i.e., tautologies provide no information gain. 

For completeness, we also define that the information gain ℐ 𝒢L, 𝒢L
ϕ = 0 if ℙℬL, ϕ > 0. So if 

ϕ = ⊥, then ℙℬL, ϕ > 0 and ℐ 𝒢L, 𝒢L
ϕ = 0, i.e., contradictions provide no information gain.

For two MITLf formulas ϕ1 and ϕ2, we say ϕ1 is more informative than ϕ2 with respect to the 

prior probability distribution 𝒢L if ℐ 𝒢L, 𝒢L
ϕ1 > ℐ 𝒢L, 𝒢L

ϕ2 .

Based on Proposition 1, the computation of the information gain requires the computation of 

ℙℬL, ϕ. We point the reader to [Xu et al., 2019] for a recursive method to compute ℙℬL, ϕ.

3.2 Problem Formulation

We now provide some related definitions for formulating the inference problem. Let a set 𝒫
of primitive structures [Bombara et al., 2016] used in the rest of the paper be

𝒫 ≔ ◊I ρ, □I ρ, ◊I □I′ ρ, □I ◊I′ ρ ,

(1)

where I = i1, i2 i1 < i2, i1, i2 ∈ 𝕋 , I′ = 0, i2 i2 > 0,i2 ∈ 𝕋 , and ρ is an atomic predicate. We 

call an MITLf formula ϕ a primitive MITLf formula if ϕ follows one of the primitive 

structures in 𝒫 or the negation of such a structure.

Definition 4. For an MITLf formula ϕ, we define the start-effect time ts(ϕ) and end-effect 

time te(ϕ) recursively as

ts(ρ) = te(ρ) = 0, ts(¬ϕ) = ts(ϕ), te(¬ϕ) = te(ϕ),

ts ϕ1 ∧ ϕ2 = min ts ϕ1 , ts ϕ2 ,

te ϕ1 ∧ ϕ2 = max te ϕ1 , te ϕ2 ,

ts ◊
t1, t2

ϕ = ts(ϕ) + t1, te ◊
t1, t2

ϕ = te(ϕ) + t2,

ts □
t1, t2

ϕ = ts(ϕ) + t1, te □
t1, t2

ϕ = te(ϕ) + t2 .

Definition 5. An MITLf formula ϕ is in disjunctive normal form if ϕ is expressed in the form 

of ϕ1
1 ∧ ⋯ ∧ ϕ1

n1 ∨ ⋯ ∨ ϕm
1 ∧ ⋯ ∧ ϕm

nm , where each ϕi
j is a primitive MITLf formula (also 

called primitive subformula of ϕ). If, for any i ∈ [1, m] and for all j, k ∈ [1, ni] such that j < 
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k, it holds that te ϕi
j < ts ϕi

k , then we say ϕ is in sequential disjunctive normal form (SDNF) 

and we call each ϕi: = ϕi
1 ∧ ⋯ ∧ ϕi

ni a sequential conjunctive subformula.

In the following, we consider MITLf formulas only in the SDNF for reasons that will 

become clear in Section 4. We define the size of an MITLf formula ϕ in the SDNF, denoted 

as ϱ(ϕ), as the number of primitive MITLf formulas in ϕ.

Suppose that we are given a set 𝒮L = s0:L
k , lk k = 1

NsL
 of labeled trajectories, where lk = 1 and 

lk = −1 represent desired and undesired behaviors, respectively. We define the satisfaction 

signature gϕ s0:L
k  of a trajectory s0:L

k  as follows: gϕ s0:L
k = 1, if s0:L

k  satisfies ϕ; and 

gϕ s0:L
k = − 1, if s0:L

k  does not satisfy ϕ. Note that here we assume that L is sufficiently 

large, thus s0:L
k  either satisfies or violates ϕ. A labeled trajectory s0:L

k , lk  is misclassified by 

ϕ if gϕ s0:L
k ≠ lk. We use CR SL, ϕ = s0:L

k , lk ∈ 𝒮L:gϕ s0:L
k = lk / 𝒮L  to denote the 

classification rate of ϕ in 𝒮L.

Problem 1. Given a set 𝒮L = s0:L
k , lk k = 1

NSL
 of labeled trajectories, a prior probability 

distribution 𝒢L, real constant ζ ∈ (0, 1] and integer constant ϱth ∈ (0, ∞), construct an MITLf 

formula ϕ in the SDNF that maximizes ℐ 𝒢L, 𝒢L
ϕ  while satisfying

• the classification constraint CR 𝒮L, ϕ ≥ ζ and

• the size constraint ϱ(ϕ) ≤ ϱth.

Intuitively, as there could be many MITLf formulas that satisfy the classification constraint 

and the size constraint, we intend to obtain the most informative one to be utilized and 

transferred as features of desired behaviors.

We call an MITLf formula that satisfies both the two constraints of Problem 1 a satisfying 
formula for 𝒮L.

3.3 Solution Based on Decision Tree

We propose an inference technique, which is inspired by [Bombara et al., 2016] and [Xu et 
al., 2019], in order to solve Problem 1. The technique consists of two steps. In the first step, 

we construct a decision tree where each non-leaf node is associated with a primitive MITLf 

formula (see the formulas inside the circles in Figure 2). In the second step, we convert the 

constructed decision tree to an MITLf formula in the SDNF.

In Algorithm 1, we construct the decision tree by recursively calling the MITLtree procedure 

from the root node to each leaf node. There are three inputs to the MITLtree procedure: (1) a 

set 𝒮 of labeled trajectories assigned to the current node; (2) a formula ϕpath to reach the 

current node (also called the path formula, see the formulas inside the rectangles in Figure 
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2); and (3) the depth h of the current node. The set 𝒮 assigned to the root node is initialized 

as 𝒮L in Problem 1, ϕpath and h are initialized as ⊤ and 0, respectively.

For each node, we set a criterion stop(ϕpath, h, 𝒮) to determine whether it is a leaf node (Line 

2). Each leaf node is associated with label 1 or −1, depending on whether more than 50% of 

the labeled trajectories assigned to that node are with label 1 or not.

At each non-leaf node z, we construct a primitive MITLf formula ϕθ parameterized by θ ∈ 
ϒz, where

ϒ z: = θ ts ϕθ , te ϕθ ∩ ts ϕ′ , te ϕ′ = ∅
for each primitive subformula ϕ′ of ϕpath .

(2)

For example, for an MITLf formula ϕθ = □
i1, i2

(x > a), we have θ = [i1,i2,a]. If ϕpath = 

♢[1,15]□[0,4] (x > 3), then ϒz ensures that the start-effect time of ϕθ is later than the end-

effect time of ϕpath (which is 19). Essentially ϒz guarantees that the primitive MITLf 

formula ϕθ and primitive subformulas of ϕpath can be reordered to form a sequential 

conjunctive subformula (see Definition 5).

We use particle swarm optimization (PSO) [Eberhart and Shi, 2001] to optimize θ for each 

primitive structure from 𝒫 and compute a primitive MITLf formula z.ϕ = ϕθ* which 

maximizes the objective function
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J 𝒮, ϕθ : = CR 𝒮, ϕθ + λℐ 𝒢L, 𝒢L
ϕθ

(3)

in Line 11, where λ is a weighting factor.

With z.ϕ, we partition the set 𝒮 into 𝒮⊤ and 𝒮⊥, where the trajectories in 𝒮⊤ and 𝒮⊥ satisfy 

and violate z.ϕ, respectively (Line 12). Then the procedure is called recursively to construct 

the left and right sub-trees for 𝒮⊤ and 𝒮⊥, respectively (Lines 13, 14).

After the decision tree is constructed, for each leaf node associated with label 1, it is also 

associated with a path formula zLeaf·ϕpath (Line 4 to Line 6). The path formula zLeaf·ϕpath is 

constructed recursively from the associated primitive MITLf formulas along the path from 

the root node to the parent of the leaf node (see Figure 2). We rearrange the primitive 

subformulas of each zLeaf·ϕpath in the order of increasing start-effect time to obtain a 

sequential conjunctive subformula. We then connect all the obtained sequential conjunctive 

subformulas with disjunctions. In this way, the obtained decision tree can be converted to an 

MITLf formula in the SDNF. As in the example shown in Figure 2, if ts(ϕ1) < ts(ϕ2) and 

ts(¬ϕ1) < ts(ϕ3), then the decision tree can be converted to (ϕ1 ∧ ϕ2) ∨ (¬ϕ1 ∧ ϕ3) in the 

SDNF. If ts(ϕ2) < ts(ϕ1) and ts(ϕ3) < ts(¬ϕ1), then the decision tree can be converted to (ϕ2 ∧ 
ϕ1) ∨ (ϕ3 ∧ ¬ϕ1) in the SDNF.

We set the criterion stop(ϕpath, h, 𝒮) as follows. If at least ζ (e.g., 95%) of the labeled 

trajectories assigned to the node are with the same label (Condition I) or the depth h of the 

node reaches a set maximal depth hmax (Condition II) or ϒz, as defined in (2), becomes the 

empty set (Condition III), then the node is a leaf node. If condition I holds for each leaf 

mode, then the obtained MITLf formula satisfies the classification constraint of Problem 1. 

If we set hmax2
hmax − 1

≤ ϱth, then the size constraint is guaranteed to be satisfied.

The complexity of Algorithm 1 for the average case can be determined through the Akra-

Bazzi method as follows [Bombara et al., 2016]:

Θ N𝒮 ⋅ 1 + ∫1

N𝒮 f (u)
u2 du ,

where f N𝒮  is the complexity of the local PSO algorithm for N𝒮 labeled trajectories, and 

Θ(·) denotes the two-sided asymptotic notation for complexity bound.
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4 Transfer Learning of Temporal Tasks Based on Logical Transferability

In this section, we first introduce the notion of logical transferability. Then, we present the 

framework and algorithms for utilizing logical transferability for transfer learning.

4.1 Logical Transferability

To define logical transferability, we first define the structural transferability between two 

MITLf formulas.

For each primitive MITLf formula ϕ, we use OT(ϕ) to denote the temporal operator in ϕ. For 

example, OT(♢[5,8] (x > 3)) = ♢ (eventually) and OT(□[0,8]♢[0,4](x < 5)) = □♢ (always 

eventually).

Definition 6. Two MITLf formulas (in the SDNF)

ϕ = ϕ1
1 ∧ ⋯ ∧ ϕ1

n1 ∨ ⋯ ∨ ϕm
1 ∧ ⋯ ∧ ϕm

nm

and

ϕ = ϕ1
1 ∧ ⋯ ∧ ϕ1

n1 ∨ ⋯ ∨ ϕm
1 ∧ ⋯ ∧ ϕm

nm

are structurally equivalent, if and only if the followings hold:

1. m = m and, for every i ∈ [1, m], ni = ni; and

2. For every i ∈ [1, m] and every j ∈ [1, ni], OT ϕi
j = OT ϕi

j .

Definition 7. For two MITLf formulas ϕ1 and ϕ2 in the SDNF, ϕ2 is structurally transferable 

from ϕ1 if and only if either of the following conditions holds:

1. ϕ1 and ϕ2 are structurally equivalent;

2. ϕ2 is in the form of ϕ2
1 ∨ ⋯ ∨ ϕ2

p(p > 1), where each ϕ2
k(k = 1, …, p) is structurally 

equivalent with ϕ1.

Suppose that we are given a source task 𝒯S in the source environment ℰS and a target task 

𝒯T in the target environment ℰT, with two sets 𝒮L
S and 𝒮L

T of labeled trajectories collected 

during the initial episodes of RL (which we call the data collection phase) in ℰS and ℰT

respectively. The trajectories are labeled based on a given task-related performance criterion. 

To ensure the quality of inference, the data collection phase is chosen such that both 𝒮L
S and 

𝒮L
T contain sufficient labeled trajectories with both label 1 and label −l. We give the 

following definition for logical transferability.
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Definition 8. 𝒯T is logically transferable from 𝒯S based on 𝒮L
S, 𝒮L

T, ζ and ϱth (as defined in 

Problem 1), if and only if there exist satisfying formulas ϕS for 𝒮L
S and ϕT for 𝒮L

T such that 

ϕT is structurally transferable from ϕS.

In the following, we explain the proposed transfer learning approach based on logical 

transferability in two different levels. We provide a workflow diagram as an overview of the 

proposed transfer learning approach, as shown in Figure 3.

4.2 Transfer of Logical Structures Based on Hypothesis of Logical Transferability

We first introduce the transfer of logical structures between temporal tasks. To this end, we 

pose the hypothesis that the target task is logically transferable from the source task. If 

logical transferability can be indeed identified, we perform RL for the target task utilizing 

the transferred logical structure. Specifically, we take the following three steps:

Step 1: Extracting MITLf Formulas in the Source Task—From 𝒮L
S, we infer an 

MITLf formula ϕS using Algorithm 1. If ϕS is a satisfying formula for 𝒮L
S, we proceed to 

Step 2.

As in the introductory example, we obtain the satisfying formula 

ϕS = ◊[1, 15] □[0, 4] GS ∧ ◊[21, 39] YS for 𝒮L
S (see Section 5 for details).

Step 2: Extracting MITLf Formulas in the Target Task—From 𝒮L
T, we check if it is 

possible to infer a satisfying MITLf formula ϕT for 𝒮L
T such that ϕT is structurally 

transferable from the inferred MITLf formula ϕS from the source task. We start from 

inferring an MITLf formula that is structurally equivalent with ϕS. This can be done by 

fixing the temporal operators (the same with those of ϕS), then optimizing the parameters 

that appear in ϕT (through PSO) for maximizing the objective function in (3). If a satisfying 

MITLf formula is not found, we infer a MITLf formula ϕT in the form of ϕT = ϕ1
T ∨ ϕ2

T, 

where ϕ1
T and ϕ2

T are both structurally equivalent with ϕS. In this way, we keep increasing the 

number of structurally equivalent formulas connected with disjunctions until a satisfying 

MITLf formula is found, or the size constraint is violated (i.e., ϱ ϕT > ϱth). If a satisfying 

MITLf formula is found, we proceed to Step 3; otherwise, logical transferability is not 

identified.

As in the introductory example, we obtain the satisfying formula 

ϕT = ◊[5, 18] □[0, 5] GT ∧ ◊[24, 39] YT for 𝒮L
T and ϕT is structurally equivalent with ϕS, hence 

logical transferability is identified.

Step 3: Constructing Timed Automata and Performing RL in the Extended 

State Space for the Target Task—For the satisfying formula ϕT = ϕ1
T ∨ ⋯ ∨ ϕm

T  in the 

SDNF, we can construct a deterministic timed automaton (DTA) 
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𝒜
ϕi

T
= 2AP, 𝒬

ϕi
T

, q
0ϕi

T
, C

ϕi
T

, ℱ
ϕi

T
, Δ

ϕi
T

 [Alur et al., 1996] that accepts precisely the timed 

words that satisfy each sequential conjunctive subformula ϕi
T.

We perform RL in the extended state space XT = ∪i Xi
T, where each Xi

T = ST × 𝒬
ϕi

T
× V

ϕi
T

(ST is the state space for the target task, V
ϕi

T
 is the set of clock valuations for the clocks in 

C
ϕi

T
) is a finite set of extended states. For each episode, the index i is first selected based on 

some heuristic criterion. For example, if the atomic predicates correspond to the regions to 

be reached in the state space, we select i such that the centroid of the region corresponding 

to the atomic predicate in ϕi
1, T (as in ϕi

T = ϕi
1, T ∧ ⋯ ∧ ϕi

ni, T
) has the nearest (Euclidean) 

distance from the initial state s0
T. Then we perform RL in Xi

T. For Q-learning, after taking 

action aT at the current extended state χi
T = sT, qT, vT ∈ Xi

T, a new extended state 

χi
′T = s′T, q′T, v′T ∈ Xi

T and a reward RT are obtained. We have the following update rule for 

the extended Q-function values (denoted as Q):

Q χi
T, aT (1 − α)Q χi

T, aT + α RT + γ max
a′T

Q χi
′T, a′T ,

where α and γ are the learning rate and discount factor, respectively.

As in the introductory example, we construct a DTA [see Figure 4 (b)] that accepts precisely 

the timed words that satisfy ϕT as there is only one sequential conjunctive subformula in ϕT. 

We then perform RL in the extended state space XT = ST × 𝒬ϕT
× VϕT

, where ST is the state 

space in the 9×9 gridworld, 𝒬ϕT
= q0

T, q1
T, q2

T, q3
T q0

T = q0ϕT
 and 

VϕT
= 0, 1, …, 40 × 0, 1, …, 40  (the set of clock valuations for the clocks c1

T and c2
T).

4.3 Transfer of Extended Q-functions Based on Identified Logical Transferability

Next, we introduce the transfer of extended Q-functions if logical transferability can be 

identified from Section 4.2.

We assume that the sets of actions in the source task and the target task are the same, 

denoted as A. For the satisfying formula ϕS = ϕ1
S ∨ ⋯ ∨ ϕm

S  in the SDNF, we construct a DTA 

corresponding to each ϕi
S and perform Q-learning in the extended state space for the source 

task. We denote the obtained optimal extended Q-functions as QS* sS, qS, vS, a . In the 

following, we explain the details for transferring QS* sS, qS, vS, a  to the target task based on 

the identified logical transferability.

Xu and Topcu Page 12

IJCAI (U S). Author manuscript; available in PMC 2020 January 01.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



From Definitions 6 and 7, if ϕT = ϕ1
T ∨ ⋯ ∨ ϕ

mT
T  is structurally transferable from 

ϕS = ϕ1
S ∨ ⋯ ∨ ϕ

mS
S , then for all index i ∈ [1,mT], the sequential conjunctive subformulas ϕi

T

and ϕ
i
S are structurally equivalent, where i = i mod mS (where mod denotes the modulo 

operation). For the DTA 𝒜
ϕi

T
 and 𝒜

ϕ
i
S
 constructed from ϕi

T and ϕ
i
S respectively, it can be 

proven that we can establish bijective mappings: ξΣ
i, i : 2AP 2AP , ξ𝒬

i, i : 𝒬
ϕi

T
𝒬

ϕ
i
S
 and 

ξC
i, i : C

ϕi
T

C
ϕ

i
S
 such that the structures of 𝒜

ϕi
T
 and 𝒜

ϕ
i
S
 are preserved under these bijective 

mappings [Glushkov, 1961]. Specifically, we have ξ𝒬
i, i q

0ϕi
T

= q
0ϕ

i
S

, ξ𝒬
i, i ℱ

ϕi
T

= ℱ
ϕ

i
S

(where ξ𝒬
i, i ℱ

ϕi
T

 denotes the point-wise application of ξ𝒬
i, i  to elements of ℱ

ϕi
T
). Besides, for 

any ρ ∈ 2AP and any q, q′ ∈ 𝒬
ϕi

T
, we have that

e
ϕi

T
= q, ρ, q′, φC1

ϕi
T

, rC1

ϕi
T

∈ Δ
ϕi

T

holds if and only if

e
ϕ

i
S

= ξ𝒬
i, i (q), ξΣ

i, i (ρ), ξ𝒬
i, i q′ , φC2

ϕ
i
s

, rC2

ϕ
i
s

∈ Δ
ϕ

i
S

holds, where C1 = C
ϕi

T
 and C2 = ξC

i, i C
ϕi

T
. See Figure 4 for an illustrative example.

Algorithm 2 is for the transfer of the extended Q-functions. For all indices i, we first identify 

a unique primitive MITLf formula ϕi
j, T (as in ϕi

T = ϕi
1, T ∧ ⋯ ∧ ϕi

ni, T
) that is to be satisfied at 

each extended state χi
T = sT, qT, vT  (Line 3). Specifically, according to qT and υT, we 

identify the index j such that ϕi
1, T, …, ϕi

( j − 1), T are already satisfied while ϕi
j, T is still not 

satisfied.

Next, we identify the state, location and clock valuation in the extended state χ
i
S that are the 

most similar to sT, qT and υT respectively in the extended state χi
T.
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Identification of State: We first identify the atomic predicate ρi
j, T in the primitive MITLf 

formula ϕi
j, T. Then we identify the atomic predicate ρS corresponding to ρi

j, T through the 

mapping ξΣ
i, i  (Line 5). As in the introductory example, at the locations q0

S and q0
T, we first 

identify the atomic predicate GT, then the mapping ξΣ
1, 1 maps GT to its corresponding atomic 

predicate GS. We use Cr(ρ) to denote the centroid of the region corresponding to the atomic 

predicate ρ and ‖·‖ to denote the 2-norm. We identify the state sS in SS such that the relative 

position of sS with respect to Cr(ρS) is the most similar (measured in Euclidean distance) to 

the relative position of sT with respect to Cr ρi
j, T  (Line 6).

Identification of Location: We identify the location qS corresponding to qT through the 

mapping ξ𝒬
i, i  (Line 7). As in the introductory example, the mapping ξ𝒬

1, 1 maps the locations 

q0
T, q1

T, q2
T and q3

T to the locations q0
S, q1

S, q2
S and q3

S, respectively (see Figure 4).

Identification of Clock Valuation: For each clock cl
T ∈ C

ϕi
T
, we identify the clock ck

S

corresponding to cl
T through the mapping ξC

i, i  (Line 9). As in the introductory example, the 

mapping ξC
1, 1 maps the clocks c1

T and c2
T to the corresponding clocks c1

S and c2
S, respectively 

(see Figure 4). Then for each clock valuation vl
T ∈ V l

ϕi
T
, we identify the (scalar) clock 

valuation vk
S ∈ Vk

ϕ
i
S
 which is the most similar (in scalar value) to vl

T (Line 10).
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In this way, QS* sS, qS, vS, a  from the source task are transferred to QT sT, qT, vT, a  in the 

target task. Finally, we perform Q-learning of 𝒯T in the extended state space, starting with 

the transferred extended Q-functions QT sT, qT, vT, a .

5 Implementation

In this section, we illustrate the proposed approach on a case study2. We consider the 

introductory example in the 9×9 gridworld as shown in Figure 1. The robot has three 

possible actions at each time step: go straight, turn left or turn right. After going straight, the 

robot may slip to adjacent cells with probability of 0.04. After turning left or turning right, 

the robot may stay in the original direction with probability of 0.03. We first perform Q-

learning on the τ-states (i.e., the τ-horizon trajectory involving the current state and the most 

recent τ − 1 past states, see [Aksaray et al., 2016], we set τ=5) for the source task and the 

target task. We set α = 0.8 and γ = 0.99. For each episode, the initial state is randomly 

selected.

We use the first 10000 episodes of Q-learning as the data collection phase. From the source 

task, all the 46 trajectories with cumulative rewards above 0 are labeled as 1, and 200 

trajectories randomly selected out of the remaining 9954 trajectories are labeled as −1. From 

the target task, all the 19 trajectories with cumulative rewards above 0 are labeled as 1 and 

200 trajectories randomly selected out of the remaining 9981 trajectories are labeled as −1.

For the inference problem (Problem 1), we set ϱth = 4 and ζ = 0.95. For Algorithm 1, we set 

λ = 0.01 and hmax = 2. We use the position of the robot as the state, and the atomic 

predicates ρ correspond to the rectangular regions in the 9×9 gridworld. For computing the 

information gain of MITLf formulas, we use the uniform distribution for the prior 

probability distribution 𝒢L. Following the first two steps illustrated in Section 4.2, we obtain 

the following satisfying formulas:

ϕS = ◊[1, 15] □[0, 4] GS ∧ ◊[21, 39] YS and

ϕT = ◊[5, 18] □[0, 5] GT ∧ ◊[24, 39] YT,

where

GS = (x > = 3) ∧ (x < = 4) ∧ (y > = 3) ∧ (y < = 5),

YS = (x > = 7) ∧ (x < = 8) ∧ (y > = 5) ∧ (y < = 8),

2Dur to space limitations, an additional case study can be found in the longer version https://bit.ly/2Zjx7mt.
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GT = (x > = 5) ∧ (x < = 6) ∧ (y > = 6) ∧ (y < = 7),

YT = (x > = 4) ∧ (x < = 7) ∧ (y > = 1) ∧ (y < = 2) .

ϕS reads as “first reach GS during the time interval [1, 15] and stay there for 4 time units, 

then reach YS during the time interval [21, 39]”. ϕT reads as “first reach GT during the time 

interval [5, 18] and stay there for 5 time units, then reach YT during the time interval [24, 

39]”. The regions GS, YS, GT and YT are shown in Figure 5 (a) (b). It can be seen that ϕT is 

structurally equivalent with ϕS, hence logical transferability is identified.

For comparison, we also obtain ϕ′T without considering the information gain, i.e., by setting 

λ = 0 in (3):

ϕ′T = ◊[1, 18] □[0, 4] GT ∧ ◊[24, 40] Y′T,

where

GT = (x > = 5) ∧ (x < = 6) ∧ (y > = 6) ∧ (y < = 7),

Y′T = (x > = 0) ∧ (x < = 8) ∧ (y > = 0) ∧ (y < = 2) .

ϕ′T reads as “first reach GT during the time interval [1, 18] and stay there for 4 time units, 

then reach Y′T during the time interval [24, 40]”.GT and Y′T are shown in Figure 5 (c). It can 

be seen that ϕT implies ϕ′T, hence ϕ′T is less informative than ϕT with respect to the prior 

probability distribution 𝒢L.

We use Method I to refer to the Q-learning on the τ-states. In comparison with Method I, we 

perform Q-learning in the extended state space with the following three methods:

Method II: Q-learning with ϕ′T (i.e., on the extended state that includes the locations 

and clock valuations of the timed automata constructed from ϕ′T).

Method III: Q-learning with ϕT.

Method IV: Q-learning with ϕT and starting from the transferred extended Q-

functions.

Figure 6 shows the learning results with the four different methods. Method I takes an 

average of 834590 episodes to converge to the optimal policy (with the first 50000 episodes 

shown in Figure 6), while Method III and Method IV take an average of 13850 episodes and 

2220 episodes for convergence to the optimal policy, respectively. It should be noted that 

although Method II performs better than Method I in the first 50000 episodes, it does not 
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achieve optimal performance in 2 million episodes (as ϕ′T is not sufficiently informative). In 

sum, the sampling efficiency for the target task is improved by up to one order of magnitude 

by performing RL in the extended state space with the inferred formula ϕT, and further 

improved by up to another order of magnitude using the transferred extended Q-functions.

6 Discussions

We proposed a transfer learning approach for temporal tasks based on logical transferability. 

We have shown the improvement of sampling efficiency in the target task using the proposed 

method.

There are several limitations of the current approach, which leads to possible directions for 

future work. Firstly, the proposed logical transferability is a qualitative measure of the 

logical similarities between the source task and the target task. Quantitative measures of 

logical similarities can be further established using similarity metrics between the inferred 

temporal logic formulas from the two tasks. Secondly, as some information about the task 

may not be discovered during the initial episodes of reinforcement learning (especially for 

more complicated tasks), the inferred temporal logic formulas can be incomplete or biased. 

We will develop methods for more complicated tasks by either breaking the tasks into 

simpler subtasks, or iteratively performing inference of temporal logic formulas and 

reinforcement learning as a closed loop process. Finally, we use Q-learning as the 

underlying learning algorithm for the transfer learning approach. The same methodology can 

be also applied to other forms of reinforcement learning, such as actor-critic methods or 

model-based reinforcement learning.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
An illustrative example where the source task and the target task are logically similar.
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Figure 2: 
Illustration of a decision tree which can be converted to an MITLf formula in the SDNF.
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Figure 3: 
Workflow diagram of the proposed transfer learning approach based on logical 

transferability.
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Figure 4: 
The deterministic timed automata (DTA) of two structurally equivalent formulas (a) 

◊[1, 15] □[0, 4] GS ∧ ◊[21, 39] YS and (b) ◊[5, 18] □[0, 5] GT ∧ ◊[24, 39] YT. The locations q0
S, 

q1
S, q2

S and q3
S correspond to q0

T, q1
T, q2

T and q3
T, respectively. The atomic predicate GS and YS

correspond to GT and YT, respectively. The clocks c1
S and c2

S correspond to c1
T and c2

T, 

respectively.
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Figure 5: 
Inferred regions in the case study.
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Figure 6: 
Learning results in the case study: cumulative rewards of 10 independent simulation runs 

averaged for every 10 episodes (left) and boxplot of the 10 runs for the average cumulative 

rewards of 40000 episodes after the data collection phase (right). Black: Method I; magenta: 

Method II; blue: Method III; red: Method IV.
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