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Abstract

Wall modelling in large-eddy simulation (LES) is necessary to overcome the prohibitive near-wall 

resolution requirements in high-Reynolds-number turbulent flows. Most existing wall models rely 

on assumptions about the state of the boundary layer and require a priori prescription of tunable 

coefficients. They also impose the predicted wall stress by replacing the no-slip boundary 

condition at the wall with a Neumann boundary condition in the wall-parallel directions while 

maintaining the no-transpiration condition in the wall-normal direction. In the present study, we 

first motivate and analyse the Robin (slip) boundary condition with transpiration (non-zero wall-

normal velocity) in the context of wall-modelled LES. The effect of the slip boundary condition on 

the one-point statistics of the flow is investigated in LES of turbulent channel flow and a flat-plate 

turbulent boundary layer. It is shown that the slip condition provides a framework to compensate 

for the deficit or excess of mean momentum at the wall. Moreover, the resulting non-zero stress at 

the wall alleviates the well-known problem of the wall-stress under-estimation by current subgrid-

scale (SGS) models (Jiménez & Moser, AIAA J., vol. 38 (4), 2000, pp. 605–612). Second, we 

discuss the requirements for the slip condition to be used in conjunction with wall models and 

derive the equation that connects the slip boundary condition with the stress at the wall. Finally, a 

dynamic procedure for the slip coefficients is formulated, providing a dynamic slip wall model 

free of a priori specified coefficients. The performance of the proposed dynamic wall model is 

tested in a series of LES of turbulent channel flow at varying Reynolds numbers, non-equilibrium 

three-dimensional transient channel flow and a zero-pressure-gradient flat-plate turbulent 

boundary layer. The results show that the dynamic wall model is able to accurately predict one-

point turbulence statistics for various flow configurations, Reynolds numbers and grid resolutions.
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1. Introduction

The near-wall resolution requirement to accurately resolve the boundary layer in wall-

bounded flows remains a pacing item in large-eddy simulation (LES) for high-Reynolds-

number engineering applications. Choi & Moin (2012) estimated that the number of grid 

points necessary for a wall-resolved LES scales as Re13/7, where Re is the characteristic 

Reynolds number of the problem. The computational cost is still excessive for many 

practical problems, especially for external aerodynamics, despite the favourable comparison 

with the Re37/14 scaling required for direct numerical simulation (DNS), where all the 

relevant scales of motion are resolved.

By modelling the near-wall flow such that only the large-scale motions in the outer region of 

the boundary layer are resolved, the grid-point requirement for wall-modelled LES scales at 

most linearly with increasing Reynolds number. Therefore, wall-modelling stands as the 

most feasible approach compared with wall-resolved LES or DNS. Several strategies for 

modelling the near-wall region have been explored in the past, and most of them are 

effectively applied by replacing the no-slip boundary condition in the wall-parallel directions 

by a Neumann condition. This fact is motivated by the observation that, with the no-slip 

condition, most subgrid-scale (SGS) models do not provide the correct stress at the wall 

when the near-wall layer is not resolved by the grid (Jiménez & Moser 2000).

Examples of the most popular and well-known wall models are the traditional wall-stress 

models (or approximate boundary conditions), and detached-eddy simulation (DES) and its 

variants. Approximate boundary condition models compute the wall stress using either the 

law of the wall (Deardorff 1970; Schumann 1975; Piomelli et al. 1989; Yang et al. 2015) or 

the Reynolds-averaged Navier-Stokes (RANS) equations (Balaras, Benocci & Piomelli 

1996; Wang & Moin 2002; Chung & Pullin 2009; Kawai & Larsson 2013; Park & Moin 

2014). DES (Spalart et al. 1997) combines RANS equations close to the wall and LES in the 

outer layer, with the interface between RANS and LES domains enforced implicitly through 

the change in the turbulence model. The reader is referred to Cabot & Moin (2000), Piomelli 

& Balaras (2002), Larsson et al. (2016) and Bose & Park (2018) for a more comprehensive 

review of wall-stress models and to Spalart (2009) for a review of DES.

One of the most important limitations of the models above is that they depend on pre-

computed parameters and/or assume explicitly or implicitly a particular law for the mean 

velocity profile close to the wall. Recently this has been challenged by Bose & Moin (2014) 

with a dynamic slip wall model that is free of any a priori specified coefficients. In addition, 

the no-transpiration condition used in most wall models was replaced by a Robin boundary 

condition in the wall-normal direction. The present study extends the work by Bose & Moin 

(2014) and is divided in two parts. In the first part, we investigate the use of the slip 

boundary condition at the wall for the three velocity components in the context of wall-

modelled LES. The motivation for the use of this boundary condition is corroborated both 

theoretically and through detailed a priori tests of filtered velocity fields. We then assess 

whether this condition is physically advantageous compared with other boundary conditions 

when the LES grid resolution is insufficient to accurately resolve the near-wall region. In 

addition, sensitivities of the slip boundary condition with respect to Reynolds number, grid 
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resolution and SGS model in actual LES are explored. In the second part of the paper, we 

discuss the requirements for constructing wall models based on the slip condition and 

propose a dynamic procedure independent of any a priori tunable parameters, consistent 

with the slip boundary condition and based on the invariance of wall stress under test 

filtering.

The paper is organised as follows. In § 2, we present and motivate the suitability of the slip 

boundary condition for LES by considering the behaviour of the filtered velocities at the 

wall. A priori testing is performed on filtered DNS data to test the validity of the analysis. In 

§ 3, we perform a set of turbulent channel LES with the slip boundary condition and study 

the effect of the slip parameters, choice of SGS model, grid resolution and Reynolds number 

on the one-point statistics such as the mean and root-mean-squared (r.m.s.) velocity profiles. 

A dynamic procedure is presented in § 4, and its performance is evaluated in § 5 for LES of 

two-dimensional and non-equilibrium three-dimensional transient turbulent channel flows 

and a zero-pressure-gradient flat-plate turbulent boundary layer. Finally, conclusions are 

offered in § 6.

2. Slip boundary condition with transpiration

We define the slip boundary condition with transpiration as

ui |w = li
∂ui
∂n w

+ vi, i = 1, 2, 3,

(2.1)

where repeated indices do not imply summation. The indices i = 1, 2, 3 denote the 

streamwise, wall-normal and spanwise spatial directions represented by x1, x2 and x3, 

respectively, ui are the flow velocities, ( ⋅ ) is the resolved LES field (or filter operation), n is 

the wall-normal direction and (·)|w indicates quantities evaluated at the wall. The grid or 

filter size will be denoted as Δi for the respective directions. We define li to be the slip 

lengths and vi the slip velocities. In general, both the slip lengths and velocities are functions 

of space and time. A sketch of the slip boundary condition for a flat wall is given in figure 1. 

In this section, we provide theoretical motivation for the slip boundary condition in the 

context of filtered velocity components and inspect the validity of (2.1) using a priori testing 

of filtered DNS data. The physical implications of the slip lengths are also investigated in 

terms of the mean velocity profile and r.m.s. velocity fluctuations. Some preliminary results 

of this section can be found in Bae, Lozano-Durán & Moin (2016).

2.1. Theoretical motivation

Let us consider a wall-bounded flow. For the Navier–Stokes equations, the velocity at the 

wall is given by the no-slip boundary condition (Stokes et al. 1901)

Bae et al. Page 3

J Fluid Mech. Author manuscript; available in PMC 2020 January 25.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



ui w = 0, i = 1, 2, 3.

(2.2)

If we interpret LES as the solution of the filtered Navier–Stokes equations (Leonard 1975), 

the filtering operation in the wall-normal direction will result, in general, in non-zero 

velocities at the wall. For wall-resolved LES, where the effective filter size near the wall is 

small, ui|w can still be approximated by the no-slip boundary condition (Ghosal & Moin 

1995). However, when the filter size is large or the near-wall resolution is coarse, such as in 

wall-modelled LES, a modified wall boundary condition different from the usual no-slip is 

required for the three velocity components. Consider a one-dimensional symmetric filter 

kernel 𝒢(χ) with non-zero filter size Δ𝒢 defined by its second moment

Δ𝒢
2 = ∫

−∞

∞
𝒢 χ′ χ′2dχ′ .

(2.3)

Then, far from the wall x2 ≫ Δ𝒢 , where x2 = 0 is the location of the wall, the filtered 

velocity field can be computed as

ui(x) = ∫
−∞

∞∫
−∞

∞∫
−∞

∞
𝒢 −x1 + χ1′ 𝒢 −x2 + χ2′ 𝒢 −x3 + χ3′ ui χ ′ d χ ′,

(2.4)

where x = (x1, x2, x3) and χ ′ = x1′ , x2′ , x3′ . However, in the near-wall region, the filter kernel 

in the wall-normal direction has a functional dependence on the wall-normal distance, which 

becomes prevalent for x2 → 0, as depicted in figure 2. The new filter operator restricted by 

the wall then becomes

ui(x) = ∫
−∞

∞∫
0

∞∫
−∞

∞
𝒢 −x1 + χ1′ 𝒢* −x2 + χ2′ ; x2 𝒢 −x3 + χ3′ ui χ ′ d χ ′

(2.5)
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where

𝒢* χ; x2 = 𝒢(χ)
∫ −x2

∞ 𝒢(φ)dφ

(2.6)

is the effective (rescaled) kernel at a wall-normal distance x2.

Assuming a no-slip boundary condition for the unfiltered velocity and approximating the 

velocity profile near the wall as a Taylor expansion ui(x) = ∑m = 1
p amx2

m, the filtered velocity 

can be expressed as

ui |w = ∑
m = 1

p
amM𝒢0*

(m),

(2.7)

where M𝒢0*
(m) is the mth moment of 𝒢*(χ; 0), the effective filter at the wall. From (2.7), it can 

be shown that

∂ui
∂x2 w

= ∑
m = 1

p
−2am𝒢(0)M𝒢0*

(m) + mamM𝒢0*
(m − 1) .

(2.8)

Since M𝒢0*
(m) Δ𝒢

m and 𝒢(0) Δ𝒢
−1, we can use (2.7) and (2.8) to obtain a second-order 

approximation of the boundary condition of the form

ui|w = l
∂ui
∂x2 w

,

(2.9)

where l = M𝒢0*
(1) / 1 − 2𝒢(0)M𝒢0*

(1) .
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This boundary condition is exact for a linear velocity profile but is expected to deteriorate as 

the linear approximation is no longer valid for x2 < Δ𝒢. In this case, the second- and higher-

order terms excluded in (2.9) may result in different slip lengths and extra terms for each 

velocity component as in (2.1) to achieve an accurate representation of the flow at the wall. 

The particular expressions for li and vi depend formally on the filter shape, size and 

instantaneous configuration of the filtered velocity vector at the wall.

Equation (2.9) motivates the use of the slip boundary condition for wall-modelled LES. 

Nevertheless, it is important to highlight a few remarks regarding the derivation and the 

consistency of the slip condition. The first observation is that in the case of explicitly filtered 

LES (Lund & Kaltenbach 1995; Lund 2003; Bose 2012; Bae & Lozano-Durán 2017) with a 

well-defined filter operator, the filter size is a given function of the wall-normal distance, 

and the slip lengths and velocities can be computed explicitly. However, in the present study, 

we focus on traditional implicitly filtered LES, where the filter operator is not distinctly 

defined and, consequently, neither is the filter size, typically assumed to be proportional to 

the grid size. This supposed relation between the filter and grid sizes is not always valid 

(Lund 2003; Silvis et al. 2016) and worsens close to the wall. Therefore, in the near-wall 

region, it is reasonable to assume that the effective filter size is an unknown function of the 

wall-normal distance, and the slip lengths and velocities must be modelled as they cannot be 

computed explicitly. As a final remark, note that commutation of the filter and derivative 

operators is necessary to formally derive the LES equations, which, in turn, entails a 

constant-in-space filter size or a filter operator that is constructed to be commutative 

(Marsden, Vasilyev & Moin 2002). This condition is not met by (2.1), but given that the 

filter size for implicitly filtered LES is an unknown function of space, we also neglect terms 

arising from commutation errors.

2.2. A priori evaluation

A priori testing of the slip boundary condition is conducted to assess the validity of (2.1) in 

filtered DNS data of turbulent channel flow from Del Álamo et al. (2004), Hoyas & Jiménez 

(2006) and Lozano-Durán & Jiménez (2014a) at friction Reynolds numbers of Reτ ≈ 950, 

2000 and 4200, respectively.

In the following, uτ is the friction velocity, v is the kinematic viscosity and the channel half-

height is denoted by δ. Wall units are defined in terms of v and uτ and denoted by the 

superscript + and outer units in terms of δ and uτ. In each case, DNS velocity vector is 

filtered in the three spatial directions with a box-filter with filter size equal to Δ1 × Δ2 × Δ3. 

The resulting filtered data contain ui|w and ∂ui/ ∂x2|w, which can be used to test the accuracy 

of (2.1) by computing their joint probability density function (PDF).

The joint PDF for Reτ ≈ 950 with Δ1 = Δ2 = Δ3 are plotted in figure 3(a–c). The results 

show, on average, a linear correlation between ui|w and ∂ui/ ∂x2 |w , vi = 0, which supports the 

suitability of the slip boundary condition given in (2.1) with vi = 0. However, the spread of 

the joint PDFs increases with increasing filter size. A trend similar to that of figure 3(a–c) 

appears when increasing the Reynolds number for a constant filter size Δi/δ (not shown), 

which implies that the second-order approximation deteriorates as the filter size increases in 
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wall units. However, despite this scaling, a linear relationship between ui|w and ∂ui/ ∂n|w is 

still satisfied on average, and it will be shown in § 3 that this is enough to obtain accurate 

predictions of the mean velocity profile in actual LES.

Finally, figure 3(d) shows the streamwise slip length l1 as a function of Reynolds number for 

a constant Δi/δ. The slip length was computed as the average ratio of u1|w and ∂u1/ ∂x2|w. The 

plot shows that the dependence of the streamwise slip length on Reynolds number is 

stronger for smaller Reτ. This behaviour can be explained by the relative thickness of the 

filter size and the buffer layer. When the ratio is of O(1), the filtered velocity at the wall 

takes into account contributions from the buffer layer, and l1 is expected to be sensitive to 

changes in Reynolds number. However, when the buffer layer is a small fraction of the filter 

size, most of the contribution to l1 comes from the logarithmic layer, which has a universal 

behaviour with Reτ. Neglecting the effect of the buffer layer, the approximate functional 

dependence of the slip length on Reynolds number can be estimated from the logarithmic 

velocity profile,

u1
uτ

= 1
κ log x2

+ + B,

(2.10)

where 〈·〉 denotes ensemble average in the homogeneous directions and time, k is the von 

Kármán constant and B is the intercept constant. In the limit of high Reynolds numbers, the 

box-filtered streamwise velocity and its wall-normal derivative can be estimated by 

assuming a logarithmic law in the entire near-wall region and integrating (2.10). This gives 

an approximation for the average streamwise slip length:

l1
δ

u1/uτ
∂ u1/uτ / ∂ x2/δ

Δ2
2δ log Reτ

Δ2
2δ − 1 + κB

Δ2
2δ

(2.11)

(dashed lines in figure 3d), which predicts a weak Reτ dependence for large Reynolds 

numbers. It is important to remark that l1 from the figure is only an estimation from a priori 
testing and the particular values are not expected to work in an actual LES, although we 

expect the trends to be relevant.

2.3. Consistency constraints on the slip parameters

In an actual LES implementation, the choice of li and vi must comply with the symmetries of 

the flow. Moreover, it is also necessary to satisfy on average the impermeability constraint of 

Bae et al. Page 7

J Fluid Mech. Author manuscript; available in PMC 2020 January 25.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



the wall to preserve the physics of the flow (more details are offered in § 3.6). Therefore, the 

slip boundary condition for a plane channel flow should fulfil

ui w
= li

∂ui
∂n w

+ vi = 0, i = 2, 3.

(2.12)

Equation (2.12) can be further simplified by assuming li and vi to be constant in the 

homogeneous directions. Since ui w
= 0 and ∂ui/ ∂x2 w

= 0 for i = 2, 3, 〈v2〉 and 〈v3〉 must 

be set to zero. We can also set 〈v1〉 = 0 without loss of generality, since its average effect can 

be absorbed by moving the frame of reference at constant uniform velocity. Then, the slip 

boundary condition consistent with the symmetries of the channel is of the form

ui w
= li

∂ui
∂n w

.

(2.13)

When the flow is no longer homogeneous in x1, as in a spatially developing flat-plate 

boundary layer, the above arguments based on the symmetry of the channel do not hold. 

Then, the slip velocity vi can be used to impose zero mean mass flow through the walls and 

ensure that the boundary behaves, on average, as a non-permeable wall. Since the mass flow 

through a flat wall is only affected by v2, we can still set v1 and v3 to zero for simplicity.

3. Effect of the slip boundary condition on one-point statistics

It was argued in § 2 that the most general form of the Robin boundary condition, given by 

(2.1), should replace the no-slip condition in wall-modelled LES. In this section, we 

investigate the effects of li and vi on the one-point statistics of LES of plane turbulent 

channel flow and a flat-plate boundary layer. Our conclusions will be numerically 

corroborated by considering li and vi as free parameters in an LES with slip boundary 

condition at the wall. A dynamic procedure to compute these parameters is given in § 4.

3.1. Numerical experiments

We perform a set of plane turbulent channel LES listed in table 1. The simulations are 

computed with a staggered second-order finite difference (Orlandi 2000) and a fractional-

step method (Kim & Moin 1985) with a third-order Runge-Kutta time-advancing scheme 

(Wray 1990). The code has been validated in previous studies in turbulent channel flows 

(Lozano-Durán & Bae 2016; Bae et al. 2018) and flat-plate boundary layers (Lozano-Durán, 

Hack & Moin 2018). The size of the channel is 2πδ × 2δ × πδ in the streamwise, wall-
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normal and spanwise directions, respectively. It has been shown that this domain size is 

sufficient to accurately predict one-point statistics for Reτ up to 4200 (Lozano-Durán & 

Jiménez 2014a). Periodic boundary conditions are imposed in the streamwise and spanwise 

directions. The eddy viscosity vt is computed at the cell centres and the values at the wall are 

obtained by assuming Neumann boundary conditions for the discretised vt, which is 

motivated by the fact that for coarse grid resolutions the SGS contribution at the wall must 

be non-zero. The channel flow is driven by imposing a constant mean pressure gradient, and 

all simulations were run for at least 100 eddy turnover times, defined as δ/uτ, after 

transients.

The slip boundary condition from (2.13) is used on the top and bottom walls. We have tested 

the variability of li in time by oscillating li(t) with different amplitudes and frequencies 

around a given mean. The frequency of the oscillation considered were 0.5, 1 and 2 times the 

natural frequency given by the size of the grid and uτ, and the amplitudes imposed were up 

to 0.5 times the value of the mean. The different cases resulted in almost identical one-point 

statistics as those obtained with a constant li of the same mean with the relative difference in 

the resulting wall stress less than 0.5 % for all cases. Thus, li will be fixed to a constant 

value in both homogeneous directions and time for the remainder of the section.

We take as a baseline case the friction Reynolds number Reτ ≈ 2000 with a uniform grid 

resolution of 128 × 40 × 64 in the x1, x2 and x3 directions, respectively. The grid size in 

outer units is 0.050δ in the three directions, and follows the recommendations by Chapman 

(1979) for resolving the large eddies in the outer portion of the boundary layer. The baseline 

SGS model used is the dynamic Smagorinsky model (DSM) (see Germano et al. 1991; Lilly 

1992). The baseline slip lengths are li = 0.008δ, i = 1, 2, 3 for reasons given in § 3.2. Three 

additional cases with different slip lengths, which are given in the first group of table 1, are 

used to study the effect of li on the one-point statistics.

To study the effects of slip boundary condition on grid resolution, we define two meshes 

with 82 × 26 × 42 and 64 × 20 × 32 grid points distributed uniformly in each direction, 

which correspond to a uniform grid size of 0.077δ and 0.100δ, respectively as listed in the 

second group of table 1. The resolutions were chosen such that the first interior point lies in 

the logarithmic region and is far from the inner-wall peak of the streamwise r.m.s. velocity. 

The intention is to avoid capturing (even partially) the dynamic cycle in the buffer layer, 

since the wall-normal lengths of the near-wall vortices and streaks scale in viscous units, and 

that scaling is incompatible with the computational efficiency pursued in wall-modelled 

LES. The range of grid resolutions is limited due to the fact that the outer layer still needs to 

be resolved by the LES. However, it will be shown in § 3.5 that the selected range of grid 

resolutions is sufficient to show the sensitivity of the slip lengths to the grid resolution.

To investigate the effect of the Reynolds number, we consider three cases DSM-950, 

DSM-2000 and DSM-4200, which constitute the third group of table 1. The sensitivity to the 

SGS model will be assessed by comparing results from DSM, constant-coefficient 

Smagorinsky model (SM) (see Smagorinsky 1963) without a damping function at the wall, 

the anisotropic minimum-dissipation model (AMD) (see Rozema et al. 2015) and cases 

without an SGS model (NM), given in the fourth group of table 1. Finally, LES results will 
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be compared with DNS data from Del Alamo et al. (2004), Hoyas & Jiménez (2006) and 

Lozano-Durán & Jiménez (2014a).

3.2. Control of the wall stress and optimal slip lengths

In an LES of channel flow with the slip boundary condition (2.13), the wall stress is given 

by

τw = v
∂u1
∂x2 w

− u1u2 w
− τ12

SGS
w

,

(3.1)

where τw is the stress at the wall, τ12
SGS is the tangential SGS stress tensor and u1u2 |w  is the 

result of the non-zero velocity provided by the slip condition. The slip lengths can be 

explicitly introduced by substituting u1u2 from (2.13) such that

τw = v
∂u1
∂x2 w

− l1l2
∂u1
∂x2

∂u2
∂x2 w

− τ12
SGS

w
,

(3.2)

where τ12
SGS may also depend on the slip lengths. Therefore, the wall stress (and hence the 

mass flow) can be controlled by the proper choice of slip lengths. This is an important 

property of the slip boundary condition, and it is illustrated in figure 4. For coarse LES with 

no-slip boundary conditions, the near-wall region cannot be accurately computed owing to 

the inadequacy of the current SGS models and large numerical errors in the near-wall region, 

even if the resolution is sufficient to resolve the outer layer eddies. This mainly results in 

under- or over-predictions of the wall stress, among other effects, and the shift of mean 

velocity with respect to DNS. Figure 4 shows the mean streamwise velocity profile for cases 

DSM-2000 and DSM-2000-s[1–3]. The results reveal that increasing l1 (at constant l2) 

moves up the mean velocity profile by 8%, while increasing l2 (at constant l1) have the 

opposite effect and decreases the mean by 15 %. Although not shown, it was tested that 

varying l3 has a second-order effect on the mean velocity profile when compared to changes 

of the same order in l1 and l2. For instance, the change in mean velocity profile is 1.2% 

when l3 is changed from 0.008δ to 0.004δ for case DSM-2000. The result is not totally 

unexpected since u1 and u2 are active components of the mean streamwise momentum 

balance in a channel flow (see (3.2)), while u3 enters only indirectly. All calculations in the 

present study have been performed with l3 equal to l1.
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The observations in figure 4 may be explained in terms of the mean streamwise momentum 

balance at the wall and non-zero streamwise slip. With respect to the former, increasing l2 

enhances the u1u2  contribution at the wall, which is translated into a lower mean velocity 

profile due to the higher momentum drain at the boundaries. The same argument applies 

when increasing l1. However, higher l1 also implies larger slip in x1, which overcomes the 

previous momentum drain, and the resulting net effect is an increase of the mean mass flow. 

For the laminar Poiseuille flow with the slip boundary condition, the shift in the mean 

velocity profile can be computed analytically and is shown to be proportional to l1.

The duality between the streamwise and wall-normal slip lengths makes it possible to 

always achieve the correct wall stress by an appropriate selection of (l1, l2), which we define 

as optimal slip lengths. The optimal slip lengths are effectively computed by running an LES 

with slip boundary condition using (3.2) with τw = τw
DNS as a constraint, and then averaging 

in time the values obtained for l1 and l2. Note that we have the freedom to impose the ratio 

l1/l2, and the optimal slip lengths are not unique. Two examples are shown in figure 4. It is 

also important to remark that the control of the mean velocity profile is not possible in 

general without wall-normal transpiration. In particular, if an LES with l1/δ = l2/δ = 0 (no-

slip) already over-predicts the mean velocity profile with respect to DNS, the only possible 

outcome of increasing l1/δ while maintaining l2/δ = 0 is a positive shift of the mean velocity 

profile. Since our experience shows that negative values of l1 will result in an unstable 

solution, the conclusion is that the correct mean velocity profile cannot be achieved in this 

case unless l2 ≠ 0, making the wall-normal slip length indispensable.

3.3. Prediction of the logarithmic layer

A second observation from figure 4 is that the shape of the mean velocity profile remains 

roughly constant for different slip lengths, and changes in l1 and l2 are mainly responsible 

for a shift along the mean velocity axis. We would like to connect the previous observation 

with the classic logarithmic profile for the mean streamwise velocity given in (2.10). 

Assuming that the filter operation does not alter the logarithmic shape of u1  for the typical 

filter sizes (or grid resolutions), (2.10) should also hold for LES. However, it is not clear 

whether this would be the case for an actual LES. For example, Millikan’s asymptotic 

matching argument (Millikan 1938) requires a scale separation that tends to infinity as the 

Reynolds number increases, which is not the case in wall-modelled LES as the length scales 

are fixed in outer units. Other arguments, such as the Prandtl’s mixing length hypothesis 

(Prandtl 1925) would suggest that the correct wall-normal mixing of the flow should be 

obtained in order to recover the logarithmic profile. Alternatively, from the point of view of 

Townsend’s attached eddy hypothesis (Townsend 1980), the flow from the LES should be 

populated by a self-similar hierarchy of eddies with sizes proportional to the wall distance 

and the proper number of eddies per unit area. In all cases, the SGS model plays a non-

negligible role in fulfilling these conditions, especially at high Reynolds numbers and coarse 

grids. As a consequence, not all SGS models are expected to recover the correct shape of the 

mean velocity profile, and this is further discussed in § 3.5.
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The prominent role of the SGS model in the correct representation of the logarithmic layer 

can be seen from the integrated mean streamwise momentum balance for filtered velocities

u1
+ x2

+ = u1
+|

w
B

+ x2
+ 1 −

x2
2δ + ∫

0

x2
+

u1
+u2

+ + τ12
SGS + dx2

′ +

1/κlog x2
+

.

(3.3)

By comparing the structure of (2.10) and (3.3), it is reasonable to hypothesise that the slip 

boundary condition mainly influences the intercept B, which is independent of x2, while the 

SGS model controls the x2-dependent slope 1/κ, related to the wall-normal mixing of the 

flow by the attached eddies. Note that this is not strictly the case, and some coupling is 

expected between all terms in (3.3). For example, the value of the integrand at the wall will 

depend on the slip lengths.

3.4. Turbulence intensities and Reynolds stress contribution

The sensitivity of ui
′2 1/2

 to the choice of slip lengths is examined in figure 5(a). Three cases 

DSM-2000, DSM-2000-s1 and DSM-2000-s3 are considered, two of them supplying the 

correct mean velocity profile. The r.m.s. velocities are insensitive, especially away from the 

wall, even when the slip lengths are such that the mean velocity profile does not match that 

of DNS. The most noticeable difference is observed at the wall, where larger l1 results in 

smaller r.m.s. values. The consequence is that even if the mean velocity profile matches that 

of DNS for an optimal (l1, l2), some pairs are preferred in order to avoid the near-wall under- 

and over-shoot in the r.m.s. velocity fluctuations. A more comprehensive study of the near-

wall turbulent intensities with the slip boundary condition can be found in Bae et al. (2018).

Figure 5(b) stresses another important property of the slip condition. As was the case for 

r.m.s. velocities, the changes in the mean tangential Reynolds stresses are negligible to 

varying values of l1 and l2, except at the walls. For the case with larger l1, the wall-stress 

contribution from the u1u2  is roughly 50%, and the remaining stress is then carried by the 

SGS and viscous terms. This can be considered an advantage compared to the classic no-

transpiration condition since the SGS model, usually known to under-predict the wall stress 

(Jiménez & Moser 2000), is not constrained to account for the resolved non-zero uiu j at the 

wall.

Finally, the structure of the streamwise velocity at the wall for filtered DNS and wall-

modelled LES is shown in figure 6. The filtered DNS data was obtained by box-filtering the 

streamwise velocity with filter size Δi = 0.050δ, i = 1, 2, 3, that coincides with the LES grid 

resolution. Although our analysis is qualitative, the figures show that despite the comparable 

intensities, the filtered DNS is organised into more elongated streaks. Also note that for a 

constant l1, the slip boundary condition forces the velocity and its wall-normal derivative to 
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have the same structure close to the wall that is inconsistent with box-filtered DNS. This 

suggests that an accurate representation of the flow structure at the wall is neither expected 

nor necessary in order to obtain accurate predictions of the low-order flow statistics far from 

the wall. This is consistent with previous studies indicating that the outer layer dynamics are 

relatively independent of the near-wall cycle (Del Álamo et al. 2006; Flores & Jiménez 

2006; Jiménez 2013; Mizuno & Jiménez 2013; Lozano-Durán & Jiménez 2014b; Dong et al. 
2017).

3.5. Sensitivity to SGS model, Reynolds number and grid resolution

In this section, we study the effect of the SGS model, Reynolds number and grid resolution 

on the mean velocity profile for the slip boundary condition. The discussion is necessary for 

understanding the most relevant sensitivities of wall models based on the slip boundary 

condition.

Figure 7 shows the sensitivity of the mean velocity to different SGS models for DSM-2000, 

SM-2000, AMD-2000 and NM-2000. In all of the cases, the slip lengths are fixed and equal 

to 0.008δ such that the velocity profile at the centre of the channel for DSM-2000 matches 

the DNS data. Note that this particular choice is arbitrary, and that alternative values of slip 

lengths could be selected to find the best match between SM-2000, AMD-2000 or NM-2000 

and DNS. However, the results below are independent of this choice, since the relative shift 

between cases is barely affected. The results in figure 7 reveal that not only the shape but 

also the mean mass flow, and thus the optimal slip lengths for each SGS model, are impacted 

by the SGS model at grid resolutions typical of wall-modelled LES. Regarding the shape of 

u1  (figure 7b), for low-dissipation SGS models (e.g. NM), the flow becomes more 

turbulent, causing the mean velocity profile to flatten due to the enhanced mixing. On the 

other hand, for highly dissipative SGS models (e.g. SM), the shape approaches a parabolic 

profile, that is closer to the laminar solution.

The effect of each SGS model on the mass flow rate in wall units can be understood by 

considering the definition of the friction velocity,

uτ
2 = − u1u2 w

+ v
∂u1
∂x2 w

+ vt
∂u1
∂x2 w

.

(3.4)

For a channel flow driven by a constant mass flow rate, the last term in (3.4) is zero for LES 

without an SGS model, which results in lower uτ and therefore a positive shift of the mean 

velocity profile scaled in wall units. For non-zero eddy viscosity, the mean SGS stress at the 

wall will contribute to increase uτ, creating a negative shift in the mean velocity profile in 

wall units. The actual impact of the SGS model on uτ is more intricate owing to the coupling 

between vt and the flow velocities. However, the qualitative behaviour of uτ described above 

still holds.
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Conversely, the effects on the mean velocity profile can also be explained for a channel flow 

driven by a constant pressure gradient. In this case, the left-hand side of (3.4) is fixed. 

Hence, variations in the SGS stress at the wall must be compensated by variations in the 

Reynolds and viscous stress terms. We have observed that these changes are balanced by the 

viscous stress, v∂u1/ ∂x2|w, rather than by the Reynolds stress term. The variation in the mass 

flow can then be understood through the slip boundary condition, where larger ∂u1/ ∂x2 w

implies a larger slip at the wall and, hence, higher mass flow.

Figure 8(a) shows the eddy viscosity as a function of wall-normal height for various SGS 

models. In particular, the eddy viscosity of DSM and AMD model are comparable far from 

the wall, consistent with the shape of the mean velocity profile in the outer region shown in 

figure 7(b). However, vt differs notably for DSM and AMD model in the first two grid points 

off the wall, leading to the differences in mean velocity profile observed in figure 7(a). 

Hence, the results above are indicative of the fact that different SGS models demand 

different optimal slip lengths.

The grid resolution and Reynolds number sensitivity are studied in figure 9, again 

maintaining constant slip lengths. Regarding the resolution, coarsening the grid increases the 

mass flow. This phenomenon is also observed in LES with no-slip boundary condition and, 

in the present case, is probably related to an inconsistency between the choice of slip lengths 

and the wall-normal momentum flux provided by the SGS model. Figure 9(b) shows a weak 

dependence of the mean velocity profile on the Reynolds number. The most notable 

observation is the under-estimation of the mass flow for the lowest Reynolds number, but 

overall the optimal slip lengths are quite insensitive to Reτ, consistent with our analysis in § 

2.2 regarding the effect of Reτ. Finally, increasing the Reynolds number or coarsening the 

grid resolution augments the eddy viscosity for DSM (figure 8b), which is consistent with 

the expected behaviour from SGS models.

3.6. The role of slip velocity in imposing zero mean mass flow through the walls

As discussed in § 2.3, we require the slip velocities to guarantee no net mass flow through 

the walls for flows that are inhomogeneous in the wall-parallel direction. The requirement is 

demonstrated here in an LES of a zero-pressure-gradient flat-plate turbulent boundary layer.

The numerical method is similar to that of the channel flow presented in § 3.1 with the 

exception of the boundary conditions and the Poisson solver, which was modified to take 

into account the non-periodic boundary conditions in the streamwise direction. The 

simulation ranges from Reθ ≈ 1000 to 10000, where Reθ is the Reynolds number based on 

the momentum thickness. This range is comparable to the boundary layer simulation by 

Sillero, Jimenez & Moser (2013) that will be used for comparisons.

The slip boundary condition from (2.1) is used at the wall, located at x2 = 0. In the top 

plane, we impose u1 = U∞ (free-stream velocity), u3 = 0 and u2 estimated from the known 

experimental growth of the displacement thickness for the corresponding range of Reynolds 

numbers as in Jiménez et al. (2010). This controls the average streamwise pressure gradient, 

whose nominal value is set to zero. The turbulent inflow is generated by the recycling 
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scheme of Lund, Wu & Squires (1998), in which the velocities from a reference downstream 

plane, xref, are used to synthesise the incoming turbulence. The reference plane is located 

well beyond the end of the inflow region to avoid spurious feedback (Nikitin 2007; Simens 

et al. 2009). In our case, xref/θ0 = 890, where θ0 is the momentum thickness at the inlet. A 

convective boundary condition is applied at the outlet with convective velocity U∞ (Pauley, 

Moin & Reynolds 1990) and small corrections to enforce global mass conservation (Simens 

et al. 2009). The spanwise direction is periodic. The length, height and width of the 

simulated box are Lx = 1060θavg, Ly = 18θavg and Lz = 35θavg, where θavg ≈ 2.12θ0 denotes 

the momentum thickness averaged along the streamwise coordinate. This domain size is 

similar to those used in previous studies (Jiménez et al. 2010; Schlatter & Örlü 2010; Sillero 

et al. 2013). The streamwise and spanwise resolutions are Δ1/δ = 0.05 Δ1
+ = 118  and Δ3/δ = 

0.04 Δ3
+ = 84.3  at Reθ ≈ 6500. The number of wall-normal grid points per boundary layer 

thickness is chosen to be ~20 at the inlet, which is in line with the channel flow simulations 

in the previous sections. The grid is slightly stretched in the wall-normal direction with 

minimum Δ2/δ = 0.01 Δ2
+ = 20.8 . All computations were run with CFL = 0.5 and for 50 

washouts after transients.

The slip lengths are computed to match the empirical friction coefficient, Cf, from White & 

Corfield (2006). The connection between the slip parameters and the friction coefficient is

1
2U∞

2 C f = v
∂u1
∂x2 w

− l1l2
∂u1
∂x2

∂u2
∂x2 w

+ l1v2
∂u1
∂x2 w

− τ12
SGS

w
,

(3.5)

which is equivalent to (3.1) with the slip boundary condition applied to the u1u2 term. The 

slip lengths are now a function of the streamwise coordinate to take into account the 

inhomogeneity of the flow in x1. To ensure numerical stability, exponential filtering in time 

with filter size 0.2δ/uτ was applied to the slip lengths in addition to averaging in the 

homogeneous direction. Equation (3.5) is key to guaranteeing the correct wall stress, but we 

have the freedom to impose two more conditions to fully determine l1, l2 and l3. For 

simplicity, we set l1 = l2 = l3 = l, and compute l from (3.5) with the correct Cf prescribed. 

The value of v2 is computed at each time step to ensure global zero mean mass flow through 

the wall such that

v2(t + Δt) = − u2 x1, 0, x3, t
w

,

(3.6)
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where Δt is the time step and 〈·〉w denotes average over the entire wall. The average v2 

obtained is of the order of 10−3U∞. The slip velocities v1 and v3 in (2.1) are set to zero.

Figure 10(a) shows the resulting mean slip lengths computed to produce the target Cf, which 

is successfully achieved as shown in figure 10(b). It is important to stress again that one of 

the main differences of the boundary layer case with respect to the channel flow is the 

necessity of a non-zero v2 term from (2.1) to guarantee that the wall behaves as a no-

transpiration boundary on average. We have implemented a global condition (constant-in-

space v2, equation (3.6)) that does not prevent instantaneous local mass flow at a particular 

streamwise location as seen in figure 10(c). However, the mean mass flow remains locally 

close to zero for all streamwise locations.

The mean streamwise velocity and the three r.m.s. velocity fluctuations at Reθ ≈ 6500 (Reτ 
≈ 1989.5) are shown in figure 11 and compared with Sillero et al. (2013). As expected, the 

mean DNS and LES velocities match in the wake region, as the correct Cf in the LES is 

imposed. The shape of the profile is also well predicted. The r.m.s. velocities are reasonably 

well reproduced at this Reynolds number, with no over-prediction of the streamwise r.m.s. 

velocity and under-prediction of the other two components close to the wall, consistent with 

the analysis in § 3.4. Overall, these results along with those from LES of channel flow in the 

previous sections show that the slip boundary condition successfully reproduces the one-

point statistics of the flow as long as the slip lengths accurately reflect the correct mean wall 

stress.

Two more cases (not shown) were run to test the effect of the slip boundary condition on the 

net mass flow through the wall. In the first case, a slip boundary condition was imposed such 

that the net mass flow through the wall is positive (incoming flow through the wall) such 

that u2 |w w
≈ 0.01U∞. In this case, the boundary layer thickness grew five times faster than 

the reference DNS. In contrast, when the simulation was run with net negative mass flow 

through the walls u2 |w w
≈ − 0.01U∞ ., the flow remained laminar. The results are 

consistent with observations in previous studies on blowing and suction of boundary layers 

(Simpson, Moffat & Kays 1969; Antonia et al. 1988; Chung & Sung 2001; Yoshioka & 

Alfredsson 2006) and highlight the relevance of imposing a correct zero net mass flow 

through the walls to faithfully predict the boundary layer growth.

4. Dynamic wall models for the slip boundary condition

It is pertinent to discuss first the expected role of wall models in LES. From § 3.3 and 

previous analysis in the literature (Lee, Cho & Choi 2013), the most important requirement 

for a wall model is to supply accurate mean tangential stress at the wall. This requirement 

must be accompanied by an effective SGS model responsible for generating correct 

turbulence statistics in the outer region, where the wall model plays a secondary role. The 

first requirement is necessary for obtaining the correct bulk velocity, whereas the last point is 

crucial to predict the shape of the mean velocity profile and r.m.s. velocity fluctuations far 

from the wall (see §§ 3.2 and 3.4).
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The wall models reviewed in the introduction are capable of meeting the first requirement by 

assuming a specific state of the boundary layer and relying on empirical parameters 

consistent with such state. In this regard, most traditional wall models assume quasi-

equilibrium turbulence in the vicinity of the wall and encode explicitly or implicitly 

information about the law of the wall, which cannot be derived from first principles but can 

only be extracted from DNS or wind tunnel experiments, such as the values of κ and B. 

Despite the equilibrium-turbulence assumption, current wall-modelling approaches have 

been successful in predicting numerous flow configurations up to date, although their 

performance in some regimes such as transitional or separated flows as well as non-

equilibrium turbulence is still open to debate.

The main purpose of a dynamic wall model is similar to that of traditional wall models, i.e. 

the estimation of accurate wall stress τw. However, the objective is to achieve this goal 

without prior assumptions regarding the state of the boundary layer or embedded empirical 

parameters. Instead, dynamic wall models aim to use only the current (local) state of the 

LES velocity field and universal modelling assumptions valid across different flow 

scenarios. Note that the task outlined above is an outstanding challenge, since without any 

empirical coefficients there is no explicit reference to how the near-wall flow should behave 

in different situations. Moreover, the instantaneous velocity field is intertwined with the 

effects of the LES grid resolution, Reynolds number and SGS model choice as documented 

in previous sections. In addition, numerical errors are amplified at the wall, and 

discretisation schemes are expected to play an important role as well. Dynamic models must 

encompass these factors to be of practical use, and whether this can be accomplished for 

arbitrary flow configurations remains to be demonstrated.

Despite the aforementioned difficulties, we provide below a dynamic slip wall model that 

shows the ability to adapt to different grid resolutions and Reynolds numbers as well as flow 

configurations, provided an SGS model. For a slip boundary condition of the form (2.1), the 

problem of estimating τw can be reformulated as finding the value of slip parameters that 

provides the correct mean wall stress. The relationship between l and τw was shown in §§ 

3.2 and 3.6 for channels and boundary layers. Moreover, for the slip boundary condition to 

be used as a predictive tool in wall-modelled LES, the computed li and vi should comply 

with the observations discussed in the previous sections.

4.1. Previous dynamic models

Bose & Moin (2014) introduced a dynamic wall model based on the slip boundary condition 

free of any a priori parameters. The slip length, assumed to be equal for the three spatial 

directions, is computed via a modified form of the Germano’s identity (Germano et al. 
1991),
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l2 ΔR
2 ∂ui

∂n
∂u j
∂n −

∂ui
∂n

∂u j
∂n + T i j

SGS − τi j
SGS = uiu j − uiu j,

(4.1)

where l is the slip length, ( ⋅ ) is the test filter, ΔR is the filter size ratio between the test and 

grid filters, τi j
SGS and T i j

SGS represent the grid and test filter SGS tensors, respectively. 

Equation (4.1) is then solved for l by using least squares.

In Bose & Moin (2014), the model was tested for a series of LES of turbulent channel flow 

and NACA 4412 airfoil. However, our attempts to reproduce the channel flow results did not 

perform as expected with our current implementation, which uses a different SGS model and 

numerical discretisation. The discrepancies motivated a deeper study of the slip boundary 

condition and investigation of alternative dynamic wall models as that presented in the next 

section.

4.2. Wall-stress invariant dynamic wall model

We present a dynamic wall model formulated for the slip boundary condition based on the 

invariance of wall stress under test filtering. We will refer to this new model as the wall-

stress invariant model (WSIM). We will assume a single slip length l1 = l2 = l3 = l and 

neglect any potential contribution from the terms vi. The goal is to define a dynamic 

procedure to obtain l at each time step such that the mean wall stress obtained from (3.1) is 

an accurate representation of the stress resulting from solving the Navier–Stokes equations 

with DNS resolution.

Let us consider the wall-stress operator 𝒯i j given by

𝒯i j(u) = − Ri j(u)
w

− τi j
SGS(u)|

w
+ 2vSi j(u)|

w
− p(u)|wδi j,

(4.2)

where terms Rij, τi j
SGS, Sij and pδij are the Reynolds stress, subgrid stress, strain-rate and 

pressure tensors, respectively, computed from the specified velocity field u. In our 

formulation of 𝒯i j the wall is assumed to be smooth, but the wall stress can be extended to 

encode information about the type of wall (smooth, rough, hydrophobic, etc.) by adding the 

appropriate drag terms into the right-hand side of (4.2).

The modelling choice for the dynamic wall model is
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𝒯i j(u) − 𝒯i j(u) = 0,

(4.3)

𝒯i j(u) − 𝒯i j(u) = 0,

(4.4)

where the different wall stresses, 𝒯i j, are obtained by either computing the stress of the 

filtered velocity field or by filtering the total stress. Condition (4.3) enforces the invariance 

of wall stress under test filtering and allows the wall model to predict the same wall stress 

regardless of the grid resolution (or filter). A similar approach was also adopted by 

Anderson & Meneveau (2011) for rough walls. Condition (4.4) is analogous to the 

Germano’s identity for the total stress of the filtered velocity and can be interpreted as a 

consistency condition between the wall stress and filter operator. The proposed model is 

given by combining (4.3) and (4.4) such that

ℱi j = 𝒯i j(u) − 𝒯i j(u) + 𝒯i j(u) − 𝒯i j(u) = 0.

(4.5)

The rationale for this particular combination of (4.3) and (4.4) is given by considering ℱ12, 

the dominant shear stress component in a boundary layer. This term can be simplified by test 

filtering only in the wall-normal direction with a box filter with filter size Δ + x2 at x2 < Δ. 

Assuming that the subgrid stress tensor is given by an eddy viscosity, i.e. 

τi j
SGS − 1/3δi jτkk

SGS (u) = − 2vt𝒮i j(u) and that vt is constant in the near-wall region, the first-

order approximation of ℱ12 can be shown to be

ℱ12 = Δ
2

∂u1u2
∂x2

− ∂
∂x2

ν + νt |
w

∂u1
∂x2

+ O Δ2 .

(4.6)
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Hence, ℱ12 = 0 implicitly enforces the well-established constant stress layer across the wall-

normal direction. Note that (4.3) and (4.4) may be combined differently to produce 

alternative versions of (4.5), but not all these groupings lead to a first-order approximation 

consistent with the form reported in (4.6). For example, enforcing only (4.3) would not be 

consistent with (4.6). Nevertheless, wall models using different variants of (4.5) may be 

constructed based on similar principles; a broader family of dynamic models postulated on 

stress-invariant principles was investigated in Lozano-Durán et al. (2017).

Next we introduce an explicit dependence on the slip length condition in (4.5). We will 

assume that the slip boundary condition also applies for the test-filtered velocity field,

ui = l
∂ui
∂n ,

(4.7)

where l  is the slip length at the test filter level. We further suppose that a linear functional 

dependence of the slip length with the filter size of the form l = ΔRl holds. This assumption 

will be shown to be reasonably well satisfied in figure 13(c), which contains a posteriori 
values for the optimal slip length (3.2) as a function of grid resolution. Introducing the slip 

boundary condition at grid- and test-filter levels for the Reynolds stress terms in 𝒯i j(u) and 

𝒯i j(u), such that

uiu j = l2
∂ui
∂n

∂u j
∂n , uiu j = l2ΔR

2 ∂ui
∂n

∂u j
∂n ,

(4.8a,b)

the WSIM becomes

l2
∂ui
∂n

∂u j
∂n − ΔR

2 ui
∂n

∂u j
∂n = uiu j − uiu j + 𝒯i j(u) − 𝒯i j(u) + 𝒯i j(u) − 𝒯i j(u),

(4.9)

which can be rewritten as
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l2ℳi j = ℒi j + ℱi j,

(4.10)

with

ℳi j =
∂ui
∂n

∂u j
∂n − ΔR

2 ∂ui
∂n

∂u j
∂n , ℒi j = uiu j − uiu j .

(4.11a,b)

The system (4.10) is over-determined and l is computed via least squares as

l2 =
ℒi j + ℱi j ℳi j

ℳi jℳi j
= ℒ + ℱ

ℳ

(4.12)

where repeated indices imply summation and the compact notation ℒ = ℒi jℳi j and 

ℱ = ℱi jℳi j is used. For incompressible flows, the isotropic part of ℳ = ℳi jℳi j is usually 

not defined by the SGS models and, since the system is already over-determined, we exclude 

the i = j components of (4.12).

Note that the first part of the right-hand-side of (4.9), uiu j − uiu j ℒi j , is the result of 

applying the boundary condition at the grid and test filter levels. The remaining terms, 

𝒯i j(u) − 𝒯i j(u) + 𝒯i j(u) − 𝒯i j(u) ℱi j , then act as an effective control such that the slip 

length increases if the current wall stress is under-predicted, and decreases if the wall stress 

is over-predicted. This self-regulating mechanism can be examined by analysing the terms 

ℳ, ℒ and ℱ for three test cases of a channel flow at Reτ ≈ 4200 with DSM and grid Δ1 = Δ2 

= Δ3 = 0.05δ. The first case is computed by imposing the optimal slip length, l = lopt = 

0.009δ. The second and third cases are analogous to the first case but with l = 1.70lopt and l 
= 0.35lopt, respectively. The terms ℳ, ℒ and ℱ were evaluated after the cases were run with 

their corresponding slip lengths fixed in time until the statistically steady state was reached. 

Note that ℒ can be interpreted as the model prior to applying the control mechanism, and 

this allows us to define two slip lengths, namely, lℒ = ℒ/ℳ  and lℒ + ℱ = (ℒ + ℱ)/ℳ.
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The terms ℳ, ℒ and ℒ + ℱ evaluated from the three test cases are plotted in figure 12(a), 

and the corresponding slip lengths lℒ and lℒ + ℱ are presented in figure 12(b). The results 

show that application of WSIM recovers the optimal slip length, and thus the correct wall 

stress, through the control mechanism ℱi j. The analysis provided here is performed a priori, 

that is, the wall model was used to predict l at time t + Δt for a given flow field at time t, but 

without an actual dynamic coupling between WSIM and LES. The remainder of the paper is 

devoted to testing the WSIM in LES under different test scenarios.

5. Performance of the WSIM

5.1. Numerical experiments

To test the performance of the WSIM, three flow configurations are considered: a 

statistically steady plane turbulent channel (2-D channel), a non-equilibrium three-

dimensional transient channel (3-D channel) and a zero-pressure-gradient flat-plate turbulent 

boundary layer. The numerical methods of the simulations are the same as those given in §§ 

3.1 and 3.6. The 2-D channel flow and the turbulent boundary layer were discussed in § 3. 

The three-dimensional transient channel flow is a temporally developing turbulent boundary 

layer in a planar channel subjected to a sudden spanwise forcing as in Moin et al. (1990).

The size of the 2-D and 3-D channel domain is 8πδ × 2δ × 3πδ in the streamwise, wall-

normal and spanwise directions, respectively. For both 2-D and 3-D channel flows, periodic 

boundary conditions are applied in the streamwise and spanwise directions. For the top and 

bottom walls, we impose either the no-slip (NS), slip boundary condition for WSIM, or 

Neumann boundary condition for cases with the equilibrium wall model (EQWM). The 

formulation for the EQWM follows Kawai & Larsson (2013) with a matching location at the 

third grid cell for the streamwise velocity, although recent studies have shown that the first 

grid cell may be used for the EQWM when the velocities are filtered using a spatial or 

temporal filter (Yang, Park & Moin 2017) following the methodology first introduced for 

algebraic wall models (Bou-Zeid, Meneveau & Parlange 2004).

For the 2-D channel, the flow is driven by imposing a constant mean pressure gradient and 

the simulations are started from a random initial condition run for at least 100δ/uτ after 

transients. In the case of the 3-D channel, the calculations were started from a 2-D fully 

developed plane channel flow driven by a streamwise mean pressure gradient. The 

subsequent calculations were performed with a transverse (spanwise) mean pressure gradient 

of ∂P/∂x3 = 10τw0/δ, where τw0 is the mean wall shear stress of the unperturbed channel. 

The 3-D channel simulations were run for 10uτ0/δ and averaged over seven realisations, 

where uτ0 is the friction velocity of the 2-D initial condition.

For the boundary layer, the set-up is identical to that in § 3.6. The range of Reθ is from 1000 

to 10000. The length, height and width of the simulated box are Lx =1060θavg, Ly = 18θavg 

and Lz = 35θavg with the streamwise and spanwise resolutions of Δ1/δ = 0.05 Δ1
+ = 118  and 

Δ3/δ = 0.04 Δ3
+ = 84.3  at Reθ ≈ 6500. The grid is slightly stretched in the wall-normal 

direction with minimum Δ2/δ = 0.01 Δ2
+ = 20.8 . The inlet, outlet and top boundary 
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conditions are as in § 3.6 with xref/θ0 = 890. For the wall, we impose the slip boundary 

condition for the WSIM.

It is important to note the details of the filter operation, as dynamic wall models are 

particularly sensitive to this choice (see Appendix). Test filtering a variable f in a given 

spatial direction at point i is computed as 1/6f (i − 1) + 2/3f (i) + 1/6f (i + 1) (Simpson’s 

rule). The operation is repeated for all three directions away from the wall. This corresponds 

to a discrete fourth-order quadrature over a cell of size 2Δ1 × 2Δ2 × 2Δ3 for a uniform grid. 

At the wall, the same filtering operation is used in the horizontal directions while the wall-

normal filter is one-sided and given by 2/3f(1) + 1/3f(2), with f(1) and f(2) denoting values 

at the first and second wall-normal grid points. This is an integration over a cell of size 2Δ1 

× Δ2 × 2Δ3. In addition, the definition of the filter operation fixes the value of ΔR, which is 

the ratio between the grid and test filter sizes at the wall. In this case, the ΔR based on the 

cell volume is given by 2 × 1 × 23 ≈ 1.6.

The cases for the 2-D and 3-D channel are labelled following the convention ([Channel 

type]-[Wall model]-[Reynolds number]-[Grid]), where the grid labels G0, G1, and G2 given 

in table 2 correspond to 320 × 25 × 120 (Δ1 = Δ2 = Δ3 = 0.080δ), 512 × 40 × 192 (Δ1 = Δ2 = 

Δ3 = 0.050δ), and 1024 × 80 × 384 (Δ1 = Δ2 = Δ3 = 0.025δ), respectively. The wall models 

applied are labelled NS, EQWM or WSIM. Additional cases with anisotropic grids, different 

values of ΔR, test-filtering operations or SGS models were run to study the sensitivity of the 

model to these choices. They are discussed in the Appendix but not included in the table.

The 2-D channel results are compared with DNS data from Hoyas & Jimenez (2006) and 

Lozano-Durán & Jiménez (2014a) for Reτ ≈ 2000 and 4200, Yamamoto & Tsuji (2018) for 

Reτ ≈ 8000 and with the law-of-the wall for Reτ > 8000. For the boundary layer, the 

resulting friction coefficient is compared with the empirical Cf from White & Corfield 

(2006), and the mean velocity profiles are compared with the DNS data from Sillero et al. 
(2013) at Reθ ≈ 6500 and the experimental data from Österlund (1999) at Reθ ≈ 8000.

The performance of the WSIM in laminar flows has not been studied. However, in the limit 

of fine grids, the dynamic procedure of WSIM should produce zero slip lengths and revert to 

the no-slip boundary condition. Thus, for laminar cases with enough grid resolution to 

resolve the near-wall structures, we expect the dynamic wall model to naturally switch off.

5.2. Statistically steady two-dimensional channel flow

We assess the performance of the WSIM compared with EQWM and NS. The results are 

discussed in terms of the error in the streamwise mean velocity profile across the logarithmic 

region. This choice was necessary to include higher-Reynolds-number cases where the 

corresponding DNS was not available and the law of the wall is used instead. Restricting the 

error to be evaluated only in the logarithmic layer is justified as wall models mainly impact 

the solution by vertically shifting the mean velocity profile and do not alter its shape for the 

range of grid resolutions tested as shown in § 3.3. In particular, the error is measured as the 

normalised L2 error of the streamwise mean velocity between the second grid point and 

0.2δ,
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ℰ =
∫ Δ2

0.2δ u1 − u1
DNS 2dx2

∫ Δ2
0.2δ u1

DNS 2dx2

1/2

.

(5.1)

In the case where the corresponding DNS does not exist, u1
DNS  is replaced by the law of the 

wall,

u1
DNS + = 1

κ logx2
+ + B,

(5.2)

with κ = 0.392 and B = 4.48 (Luchini 2017).

Figure 13(a,b) show ℰ as a function of grid resolution and Reynolds number. At moderate 

Reynolds numbers (Reτ < 8000) and all grid resolutions, the error for WSIM (ℰ ≈ 2% − 6%)
is similar to that of the EQWM (ℰ ≈ 2% − 3%). With increasing Reynolds number, the 

performance degrades up to ℰ ≈ 15% at Reτ ≈ 20000 , while the EQWM does not. The 

accurate results for EQWM are not surprising as its modelling assumptions are well satisfied 

for channel flow settings. The reason for the declining performance of WSIM at very high 

Reynolds number can be found in §§2.1 and 2.2, where it was argued that the underlying 

assumptions for the slip condition are invalidated for large filter sizes. However, it is worth 

mentioning that the errors for an LES with no wall model 

(ℰ ≈ 100% for 2D − NS − 4200 − G1) are an order of magnitude larger than the errors of 

WSIM for all cases. The mean velocity profiles and streamwise r.m.s. velocity fluctuations 

for WSIM for various cases are shown in figure 14. Additional sensitivities to anisotropic 

grids, different values of ΔR, test-filtering operations or SGS model are discussed in the 

Appendix.

The slip lengths predicted by the WSIM are shown in figure 13(c,d) as a function of grid 

resolution and Reynolds number and compared to the optimal slip lengths (3.2). It is 

remarkable that the WSIM captures the overall behaviour of the optimal slip lengths, that is, 

a strong dependence on grid resolution and a weak variation with Reynolds number.

5.3. Three-dimensional transient channel flow

The performance of WSIM in non-equilibrium scenarios is assessed in a three-dimensional 

transient channel flow (Moin et al. 1990). Note that in general wall models cannot be 

assumed to be effective at transferring information from the inner to the outer layer in non-
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equilibrium flows. Hence, the current flow set up, characterised by a spanwise boundary 

layer growing from the wall owing to viscous effects, is expected to be problematic for wall-

modelled LES. A plane channel flow was modified to incorporate a lateral (transverse) 

pressure gradient 10 times that of the streamwise pressure gradient. The details of the 

simulations were given in § 5.1.

The wall models explored are the WSIM and EQWM. A case with the no-slip boundary 

condition is used for control, and the figure of merit is the evolution of the streamwise and 

spanwise wall stress as a function of time (figure 15). Note that the temporal increment of 

the wall stress magnitude involves an increase of the Reynolds number from Reτ ≈ 932 at t = 

0 to Reτ ≈ 2600 at t = 10δ/uτ0. The results show that the performance of the WSIM is 

similar to the EQWM despite its parameter-free nature. The streamwise and spanwise mean 

velocity profiles at various time instances are given in figure 16, which also shows that both 

the WSIM and EQWM predict similar time evolutions. Although there is no reference DNS 

available for the full time span of our simulations, in the limited time range from t = 0 to 

1δ/uτ0, Giometto et al. (2017) showed that the EQWM predicts the evolution of the wall 

stresses with less than 10 % deviation in the spanwise wall-stress prediction from DNS, and 

thus the results from the WSIM are also expected to exhibit a similar error. Both the EQWM 

and WSIM entail a quantitative correction to the prediction provide by the no-slip boundary 

condition. Consequently, the computational simplicity and absence of a secondary mesh 

makes the WSIM an appealing approach at the cost of a moderate attenuation of the 

predictive capabilities compared with more sophisticated wall models.

5.4. Zero-pressure-gradient flat-plate turbulent boundary layer

Finally, the performance of WSIM is assessed in a flat-plate turbulent boundary layer. The 

details of the numerical set-up were discussed in § 5.1. The friction coefficient is shown in 

figure 17 from Reθ ≈ 1000 to 10000. Note that the recycling scheme of Lund et al. (1998) 

imposes an artificial boundary condition at the inlet, requiring an initial development region 

for the flow to fully adapt to the slip boundary condition, which is the reason for the 

discrepancy in Cf near the inlet. Consistent with previous test cases, the results show that 

WSIM predicts the friction coefficient well within 4 % error for Reθ > 6000. The mean 

streamwise velocity profile at Reθ ≈ 6500 and 8000 and the r.m.s. velocity fluctuations at 

Reθ ≈ 6500 are also well predicted as reported in figure 18.

6. Conclusions

Owing to the scaling of grid resolution requirements in DNS and wall-resolved LES, wall-

modelled LES stands as the most viable approach for most engineering applications. In most 

existing wall models, the Dirichlet no-slip boundary condition at the wall is replaced by a 

Neumann and no-transpiration conditions in the wall-parallel and wall-normal directions, 

respectively. In this study, we have investigated the efficacy of the Robin (slip) boundary 

condition, where the velocities at the wall are characterised by the slip lengths and slip 

velocities. One novel aspect of this boundary condition is the non-zero instantaneous wall-

normal velocity at the wall, i.e. transpiration, that opens a new avenue to model near-wall 

turbulence in LES. We have also presented a new dynamic slip wall model, WSIM, that is 
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free from a priori tunable RANS parameters, which most traditional wall models for LES 

rely on. The model is based on the invariance of the wall stress under test filtering and is 

effectively applied through the slip boundary condition.

We have provided theoretical support for the use of the slip condition in wall-modelled LES 

instead of the widely applied Neumann boundary condition with no-transpiration. A priori 
testing was performed to assess the validity of the slip condition in the context of filtered 

DNS data.

The slip boundary condition was implemented in LES of channel flow to gain a better 

insight into its capabilities and shortcomings. One of the key properties, made possible by 

transpiration, is that the correct wall stress can always be achieved by an appropriate 

combination of slip lengths. This property is crucial when the grid resolution in the near-

wall region does not capture the buffer and logarithmic layer dynamics, which may result in 

an under- or over-prediction of the wall stress. We have derived the consistency conditions 

for coupling the wall stress with the slip boundary condition in channel flows and flat-plate 

boundary layers, and showed that such constraints are sufficient to guarantee the correct wall 

stress. Another advantage emanates from the non-zero Reynolds stress at the wall. This is 

not only consistent with the filtered velocity fields, but also alleviates the well-known 

problem of wall-stress under-estimation by commonly used SGS models. We have also 

assessed the sensitivities of one-point statistics to grid refinements, changes in Reτ and 

different SGS models. The role of imposing zero mean mass flow through the wall by proper 

calculation of the slip parameters has also been shown to be a key component of the model.

Finally, we have tested the performance of a dynamic slip wall model, WSIM, in an LES of 

a plane turbulent channel flow at various Reynolds numbers and grid resolutions. The model 

was able to correctly capture the overall behaviour of the optimal slip length for a wide 

range of grid resolutions and Reynolds numbers. The results have been compared with those 

from the EQWM and the no-slip boundary condition. In all cases, WSIM performed 

substantially better than the no-slip, and the predictive error in the mean velocity profile was 

found to be less than 10 % for Reτ < 10000 and all grid resolutions investigated. The model 

was also tested for a LES of three-dimensional transient channel flow, where the 

performance was similar to that of the EQWM, and a zero-pressure-gradient flat-plate 

turbulent boundary layer at Reθ up to 10000, where the error in the friction coefficient was 

less than 4%.

The present work has established the foundations and underlying principles for using the slip 

boundary condition for dynamic wall-modelled LES, free of a priori tunable parameters. 

Based on the principles laid out in this paper, new formulations of the wall-stress-invariant 

condition can be explored to account for the dependency on SGS models and numerical 

filtering operations documented in the Appendix.
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Appendix.: Wall-stress invariant model: additional sensitivity analysis

Four additional cases were computed to analyse the sensitivity of the WSIM to ΔR, grid 

anisotropy, shape of the test filter and choice of SGS model. The effect of ΔR turned out to 

be negligible for the plausible range of values ΔR = [1.4, 1.8], and the measured difference in 

ℰ was less than 1 %. Regarding grid anisotropy, coarsening case 2D-WSIM-4200-G1 by a 

factor of two in the streamwise and spanwise directions had a negligible effect on ℰ. While 

coarsening in both the streamwise and spanwise directions simultaneously by a factor of two 

had a larger effect with ℰ increasing to ≈8 %. The error trend for anisotropic grids also 

follows the results shown in figure 13(a) when scaled with grid size based on cell volume, Δ 
= (Δ1Δ2Δ3)1/3. This shows that the wall model is robust to mild grid anisotropies.

In contrast, the test filter shape and SGS model highly impacted the prediction of the mean 

flow. Case 2D-WSIM-4200-G1 was repeated using test filter based on the trapezoidal rule, 

and the error increased from 2.5% to 32% (figure 19). When 2D-WSlM-4200-G1 was run 

using the AMD model (Rozema et al. 2015), the stress provided by the SGS model τ12
SGS was 

larger than uτ
2, and the slip length prediction by WSIM was clipped to zero due to the excess 

of wall stress, reverting the boundary condition to no-slip. Although this is consistent with 

the fact that τ12
SGS > uτ

2 (see figure 8a), it also implies that the correct stress at the wall can 

never be obtained through the slip boundary condition with a single slip length in this case. 

It was shown in § 3 that the slip lengths in the wall-normal direction must be larger than 

those in the wall-parallel direction to drain the excess of stress supplied by the SGS model. 

This suggests that WSIM should be generalised to a formulation with a different slip length 

in each spatial direction to overcome this limitation. It also remains to study the near-wall 

behaviour of various SGS models in the wall-modelled grid limits in more detail.
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Figure 1. 
Sketch of the slip boundary condition with transpiration u2 |w ≠ 0  for a flat wall.
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Figure 2. 
(Colour online) Sketch of the change in effective kernel approaching the wall.
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Figure 3. 
(Colour online) Joint PDF of (a) u1|w and ∂u1/ ∂x2|w, (b) u2|w and ∂u2/ ∂x2|w and (c) u3|w and 

∂u3/ ∂x2|w for box-filtered DNS with Δi = 0.01δ (○), 0.02δ (∇) and 0.03δ (◇) at Reτ ≈ 950. 

For each probability distribution the contours are 50 % and 95 %. The straight-dashed lines 

are obtained by the least-squares fitting to the joint PDF. (d) The l1 dependence on Reτ with 

Δ2 = 0.05δ (black, bottom) and Δ2 = 0.1δ (blue, top) calculated from box-filtered DNS 

channel flow data (○), and estimation from box-filtered logarithmic layer approximation 

l1/δ = Δ2/(2δ)[log(ReτΔ2/(2δ)) − 1] + κBΔ2/(2δ) with κ = 0.41 and B = 5.3 (dashed line).
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Figure 4. 
Mean streamwise velocity profile as a function of (a) outer units and (b) wall units for 

DSM-2000 (l1, l2) = (0.008δ,0.008δ), ○; DSM-2000-s1 (l1, l2) = (0.008δ, 0.004δ), ∇; 

DSM-2000-s2 (l1, l2) = (0.004δ, 0.008δ), □; DSM-2000-s3 (l1, l2) = (0.097δ, 0.045δ), ×; 

and DNS (dashed line).
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Figure 5. 
(a) Streamwise, spanwise and wall-normal r.m.s. velocity fluctuations (from top to bottom), 

and (b) mean Reynolds stress contribution for DSM-2000 (l1, l2) = (0.008δ, 0.008δ), ○; 

DSM-2000-s1 (l1, l2) = (0.008δ, 0.004δ), ∇; DSM-2000-s3 (l1, l2) = (0.097δ, 0.045δ), ×; 

and DNS (dashed line).
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Figure 6. 
(Colour online) Instantaneous snapshot of the streamwise velocity at the wall for (a) box-

filtered DNS (Reτ ≈ 2000), and (b) wall-modelled LES (DSM-2000) of channel flow for the 

x1 − x3 plane. For both cases, the filter or grid size is Δi/δ = 0.050, i = 1, 2, 3. Colours 

indicates velocity in wall units.
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Figure 7. 
(a) Effect of SGS models on the mean velocity profile for li = 0.008δ. (b) The mean velocity 

profiles have been shifted to compare the shapes of the mean velocity profile, where the shift 

is given by Δu = u1
+(δ) − u1

+DNS(δ). Dynamic Smagorinsky model (○), constant coefficient 

Smagorinsky model (□), anisotropic minimum-dissipation model (◇) and no model (∇) are 

given for the turbulent channel with Reτ ≈ 2000. DNS (dashed line).
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Figure 8. 
Eddy viscosity, vt, as a function of wall-normal height with li = 0.008δ for: (a) DSM-2000 

(○) and AMD-2000 (∇); and (b) DSM-2000 (○), DSM-4200 (∇) and DMS-2000-c2 (□).
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Figure 9. 
Effect of (a) the grid resolution and (b) Reynolds number on the mean velocity profile for li 
= 0.008δ: (a) Δi/δ = 0.050 (○), 0.077 (∇), and 0.100 (□); (b) Reτ ≈ 950 (∇), Reτ ≈ 2000 

(○), Reτ ≈ 4200, (□). DNS (dashed line).
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Figure 10. 
(Colour online) (a) Mean slip lengths l normalised by θavg, the average momentum 

thickness, (b) the friction coefficient from the LES with slip boundary condition (black —) 

and the empirical friction coefficient from White & Corfield (2006) (red ○), and (c) the 

instantaneous (black solid line) and time-averaged (red dashed line) wall-normal velocities 

at the wall as a function of Reθ.
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Figure 11. 
(a) Mean streamwise velocity profile and (b) r.m.s. streamwise (×), spanwise (○) and wall-

normal (∇) fluctuation profiles at Reτ ≈ 6500. Symbols are for LES. DNS from Sillero et al. 
(2013) (dashed line).
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Figure 12. 
(Colour online) (a) Plots of ℒ( ● ), ℒ + ℱ( ○ ) and ℳ(∇) computed from LES of channel 

flow using the slip boundary condition with fixed l equal to l = 0.35lopt = 0.003δ, l = lopt = 

0.009δ, and l = 1.70lopt = 0.015δ. (b) The slip lengths lℒ( ● ), lℒ + ℱ( ○ ) normalised by the 

optimal slip length. Here ΔR was assigned to be 1.6 (see § 5.1). The vertical dotted lines are l 
= lopt. Red arrows highlight the improvement achieved by including the control term ℱi j. 

See the text for further details.
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Figure 13. 
Error in the streamwise mean velocity profile, ℰ, as a function of (a) grid size (for Reτ ≈ 
4200) and (b) Reynolds number (for grid G1). WSIM (○) and EQWM (◇). The predicted 

slip lengths l/δ for WSIM (solid lines) and optimal slip lengths (dashed lines) as a function 

of (c) grid resolution for Reτ ≈ 4200 and (d) Reynolds number for grid G1.
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Figure 14. 
(a) Mean velocity profiles and (b) streamwise r.m.s. velocity fluctuations for WSIM at Reτ ≈ 
4200 for grid G0 (∇), G1 (○) and G2 (□). DNS for Reτ ≈ 4200 (dashed line). (c) Mean 

velocity profiles and (d) streamwise r.m.s. velocity fluctuations for WSIM at Reτ ≈ 2000 

(□), 4200 (○), 8000 (∇) and 20000 (◇) for grid G1. DNS for Reτ ≈ 4200 (dashed line).
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Figure 15. 
Wall stress in (a) streamwise and (b) spanwise directions as a function of time for the WSIM 

(○), EQWM (◇) and NS (×).
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Figure 16. 
Mean (a) streamwise and (b) spanwise velocity profiles as a function of x2/δ at tu tuτ0/δ = 0 

(solid lines), 4.5 (dashed lines) and 9 (dotted lines) for the WSIM (○) and EQWM (◇).
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Figure 17. 
(Colour online) Empirical friction coefficient from White & Corfield (2006) (red ○) and the 

friction coefficient from WSIM (black ——).
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Figure 18. 
Mean streamwise velocity profile for (a) Reθ ≈ 6500 and (b) Reθ ≈ 8000, and the r.m.s. (c) 

streamwise (×), (d) spanwise (○) and wall-normal (∇) fluctuation profiles at Reθ ≈ 6500. 

WSIM (symbols) and DNS (Sillero et al. 2013) or experiment (Österlund 1999) (dashed 

line).
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Figure 19. 
Mean streamwise velocity profile for the WSIM for a filter using Simpson’s rule (○) and 

trapezoidal rule (×). DNS (dashed line). See § 5.1 for details regarding the test filter 

operators.
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Table 1.

List of cases. The numerical experiments are labelled following the convention [SGS model]-[Reτ](-[other 

cases]). SGS models used are the dynamic Smagorinsky model (DSM), constant coefficient Smagorinsky 

model (SM), anisotropic minimum-dissipation model (AMD) and no model (NM). Grid resolutions different 

from the baseline case are denoted by c1 and c2. Three additional cases with different slip length than the 

baseline case are labelled s1, s2 and s3. See the text for details.

Case SGS model Reτ Δi
+ Δi/δ l1/δ l2/δ

DSM-2000 DSM 2003 100 0.050 0.008 0.008

DSM-2000-s1 DSM 2003 100 0.050 0.008 0.004

DSM-2000-s2 DSM 2003 100 0.050 0.004 0.008

DSM-2000-s3 DSM 2003 100 0.050 0.097 0.045

DSM-2000-c1 DSM 2003 154 0.077 0.008 0.008

DSM-2000-c2 DSM 2003 200 0.100 0.008 0.008

DSM-950 DSM 934 46 0.050 0.008 0.008

DSM-4200 DSM 4179 210 0.050 0.008 0.008

AMD-2000 AMD 2003 100 0.050 0.008 0.008

SM-2000 SM 2003 100 0.050 0.008 0.008

NM-2000 NM 2003 100 0.050 0.008 0.008
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Table 2.

Grid resolutions in outer units. The first column contains the label used to name LES cases for the 2-D and 3-

D channel flow simulations computed with different grids. The second, third and fourth columns are the 

streamwise, wall-normal and spanwise grid resolutions, respectively.

Grid label Δ1/δ Δ2/δ Δ3/δ

G0 0.080 0.080 0.080

G1 0.050 0.050 0.050

G2 0.025 0.025 0.025
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