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Abstract

OBJECTIVE.—Renal masses comprise a heterogeneous group of pathological conditions, 

including benign and indolent diseases and aggressive malignancies, complicating management. In 

this article, we explore the emerging role of imaging to provide a comprehensive noninvasive 

characterization of a renal mass—so-called “virtual biopsy”—and its potential use in the 

management of patients with renal tumors.

CONCLUSION.—Percutaneous renal mass biopsy (RMB) remains a valuable method to provide 

a presurgical histopathologic diagnosis of renal masses, but it is an invasive procedure and is not 

always feasible. Accumulating data support the use of imaging features to predict histopathology 

of renal masses. Imaging may help address some of the inherent limitations of RMB, and in 

certain settings, a multimodal clinical approach may allow decreasing the need for RMB.
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In the United States, there has been a steady increase in the incidence of kidney cancer, 

estimated at 65,430 cases in 2018 [1], that is thought to be largely the result of the 

burgeoning use of cross-sectional imaging and the incidental detection of renal masses. 

However, despite an overall aggressive approach in treating these masses, kidney cancer 

mortality has not declined [2–4]. As a result, radiologists and urologists are challenged with 

distinguishing benign from malignant renal masses and determining which cancers are best 

managed with active surveillance (AS), all to avoid overtreatment of benign masses and 

those cancers that are unlikely to affect a patient’s health.
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Kidney cancer is most commonly diagnosed as an incidental small (≤ 4 cm) renal mass 

[2]. However, a substantial number of renal masses of this size are benign (e.g., fat-poor 

angiomyolipoma [AML], oncocytoma) [3] and may appear similar to renal cell carcinoma 

(RCC). The prevalence of benign disease is indirectly correlated with mass size [3]. Benign 

pathology is found in approximately 40% of resected renal masses less than 1 cm and in 

approximately 20% of masses between 1 and 4 cm [4]. The increased incidence of incidental 

renal masses has been associated with an 82% increase in the number of surgical resections 

for benign tumors between 2000 and 2009 in the United States [4].

RCCs are subdivided in the World Health Organization classification into different 

histologic subtypes [5]. The most common subtypes include clear cell RCC (ccRCC), 

which accounts for 70–75% of all RCCs, followed by papillary RCC (pRCC; 10–21%) and 

chromophobe RCC (chrRCC; 5%) [5, 6]. Patient survival depends on a variety of factors, 

including tumor stage, histologic subtype, histologic grade (i.e., International Society of 

Urological Pathology [ISUP] grade), presence of sarcomatoid features, and necrosis. An 

increased frequency of high-grade disease in RCC (i.e., ISUP grades 3 and 4) has been 

documented with increasing tumor size [7, 8]. Specifically, the reported prevalence of 

high-grade tumors is 0% up to 2 cm, 17% between 2 and 4 cm, and approximately 40% 

when larger than 4 cm [8]. Furthermore, ccRCC is associated with a worse prognosis than 

pRCC and chrRCC in patients with similar tumor stage [5, 9].

The American Urological Association guidelines for management of renal masses considers 

AS as a potential option for select patients with T1a (≤ 4 cm) or T1b (> 4 and ≤ 7 cm) 

RCC, particularly those with comorbidities or limited life expectancy [10]. However, AS 

approaches are currently applied primarily to patients with cT1a disease. This is likely 

because of the perceived increased risk of progression during AS in patients with more 

advanced stage disease, despite the reported low risk of metastases in T1b tumors [11]. 

The lack of reliable predictors of oncologic behavior and the potential limitation of tissue 

sampling to adequately predict histologic subtype and grade in larger heterogeneous tumors 

likely limit the applicability of AS in clinical practice for patients with T1b disease. In 

addition to informing AS strategies, an accurate presurgical histologic diagnosis is critical 

for neoadjuvant protocols in patients with localized and locally advanced disease, many of 

whom present with heterogeneous masses. Therefore, there is also an opportunity to apply 

imaging methods for improved characterization of renal masses in these clinical scenarios.

Although percutaneous renal mass biopsy (RMB) is useful today, it typically samples 

a tumor in one location. A noninvasive method that characterizes renal masses and 

provides a virtual assessment of an entire potentially heterogeneous tumor could help direct 

management by determining which patients may or may not be safely considered for AS 

or may benefit from additional evaluation. Similarly, a noninvasive presurgical evaluation 

of the entire tumor may complement RMB and assist in the implementation of neoadjuvant 

therapy protocols. In this article, we explore the emerging role of imaging to provide a 

comprehensive noninvasive characterization of a renal mass—so-called “virtual biopsy”—

and its potential use in the management of patients with renal tumors.
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Need for an Image-Based Virtual Biopsy: Limitations of Percutaneous 

Biopsy

RMB is a valuable method that can provide a presurgical histopathologic diagnosis of solid 

renal masses in many patients. It can be used to guide clinical decisions and treatment 

strategies and to help diagnose hematologic, metastatic, infectious, and inflammatory causes 

[10, 12]. RMB is also the only way to obtain a definitive histopathologic diagnosis before 

percutaneous ablation and can help guide management after treatment. Perhaps its most 

important role is in the diagnosis of benign tumors so that patients with these lesions do 

not undergo unnecessary resection or ablation. Indeed, a statistically significant decrease 

in the surgical resection of benign disease has been reported when RMB is performed 

routinely for T1a disease [13]. However, RMB is not indicated when it is unlikely to affect 

management recommendations or patient preferences (e.g., severe medical comorbidities 

prohibiting treatment); such a patient would likely be managed conservatively regardless of 

histopathology results. Biopsy or aspiration of cystic masses is controversial because of the 

potential for tumor spillage and the high likelihood of obtaining a nondiagnostic result. In 

general, RMB of solid masses is well tolerated with a low rate of reported complications.

Although RMB is now largely accepted in clinical practice [10, 14–16], there are several 

limitations of RMB that an imaging-based virtual biopsy would address. First, biopsy 

is an invasive test. The most common complication is hemorrhage, but the incidence of 

hemorrhage requiring intervention is less than 1% [17,18] (Fig. 1). The risk of needle 

track tumor seeding is rare, with one systematic review of 2979 patients and 3113 RMBs 

reporting only a single case [18]. Clinically significant pain (1.2%), gross hematuria (1.0%), 

and pneumothorax (0.6%) are other less common complications [18]. An additional and 

potentially underrecognized risk is pathologic upstaging. An analysis of 24,548 patients with 

cT1a renal masses in the National Cancer Database from 2010 to 2013 found a 1% increased 

likelihood of upstaging from cT1a to pT3a (i.e., involvement of perirenal fat) in patients 

with RCC undergoing RMB [19].

Second, the results of percutaneous RMB may not be definitive, particularly when the results 

show no malignant cells and a specific benign diagnosis is not rendered. A systematic 

review conducted by Patel et al. [18] reported a pooled sensitivity of 97.5%, specificity of 

96.2%, and positive predictive value (PPV) of 99.8% for RMB. However, the frequency of 

nondiagnostic sampling was 14% and the negative predictive value (NPV) was only 63%, 

indicating that 37% of patients were ultimately found to have malignant disease at time of 

surgical resection despite an initial negative biopsy. Importantly, most reports addressing the 

diagnostic accuracy of RMB include only those masses for which the biopsy was attempted; 

inclusion of patients in whom RMB is considered technically too difficult or unsafe and 

therefore is not pursued would invariably result in a lower diagnostic performance.

Third, perhaps because of the heterogeneity of certain tumors, the reported accuracy of 

RMB for tumor grade has been highly variable, ranging between 52% and 76%, with 16% 

of tumors upgraded from low-grade to high-grade on final surgical pathology [18]. The latter 

is particularly relevant in patients with small renal masses being considered for AS because 

tissue biopsies represent only a small portion of the tumor. Additionally, the accuracy of 
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RMB in diagnosing oncocytomas is limited. A 2017 systematic review of 205 oncocytic 

neoplasms identified by RMB, of which 46 underwent resection, found a PPV of 67% [20].

Finally, RMB adds cost and is billed separately from the imaging test that was used 

to characterize a renal mass. The costs of sedation and image guidance, as well as the 

procedure, are important considerations for diagnostic algorithms that attempt to incorporate 

RMB for a large proportion of solid masses.

Imaging Characterization of Renal Masses: The Virtual Biopsy

The noninvasive characterization of renal masses with imaging has several advantages. First, 

in many cases, it can be performed “for free” during the renal mass protocol imaging test 

that is used for characterization. There is no additional cost to the patient, no added direct 

procedure-related risk, and no subsequent appointment for additional testing. Second, it can 

be used to evaluate an entire tumor, not just a small sample as with RMB. This capability is 

especially important in characterizing heterogeneous tumors. Third, imaging can be repeated 

at multiple time points (e.g., during AS) and can be used to detect changes in mass features 

that may reflect alterations in tumor histology and aggressiveness. It would be impractical 

to repeat an RMB at multiple surveillance time points. Fourth, a noninvasive evaluation with 

imaging is possible in virtually every patient, whereas RMB is sometimes technically too 

difficult or unsafe.

CT

Tumor enhancement characteristics at CT may be used to suggest renal mass histology, with 

several general patterns described. Clear cell RCC is most often hypervascular with a degree 

of enhancement equal to or more than the renal cortex during the corticomedullary phase 

(acquired 40–70 seconds after contrast material injection) [21–23]. In contrast, pRCC almost 

always enhances less than the renal cortex during the corticomedullary phase and shows 

peak enhancement during the nephrographic phase (100–120 seconds after contrast material 

injection) [21–23]. In some cases, pRCC may not reach attenuation thresholds diagnostic for 

enhancement (e.g., ≥ 20 HU) depending on the timing of contrast-enhanced imaging [21, 24, 

25].

Qualitatively distinguishing oncocytoma from ccRCC is challenging at CT because both 

often avidly enhance during the corticomedullary phase [22, 26]. However, other features 

have been suggested to aid in differentiation. The presence of segmental enhancement 

inversion (SEI)—defined as containing both avidly enhancing and hypoenhancing segments 

on the corticomedullary phase that reverse on the nephrographic phase—was initially 

reported to favor oncocytoma [27]. However, SEI is a controversial imaging finding that 

has been disputed by several groups and suffers from a lack of reproducibility and low 

interobserver agreement [28].

A quantitative assessment of attenuation values may add value. Herts et al. [25] found that 

using a tumor-to-aorta ratio of less than 0.25 and a tumor-to-parenchyma ratio of less than 

0.25 resulted in NPVs of 98% and 95%, respectively, for the diagnosis of pRCC. Young et 

al. [21] used multiphasic threshold levels of 106 HU in the corticomedullary phase (40–55 
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seconds), 92 HU in the nephrographic phase (90–120 seconds), and 68 HU in the excretory 

phase (≈ 8 minutes) to achieve 77% accuracy, 86% sensitivity, and 85% PPV to differentiate 

ccRCC from oncocytoma. To distinguish ccRCC from pRCC, an accuracy of 85% was 

achieved using multiphasic threshold levels of 55 HU in the corticomedullary phase, 65 HU 

in the nephrographic phase, and 55 HU in the excretory phase [21]. Similarly, multiphasic 

threshold levels of 75 HU in the corticomedullary phase, 85 HU in the nephrographic 

phase, and 60 HU in the excretory phase were reported to have an accuracy of 85% in 

discriminating ccRCC from chrRCC [21]. These data indicate that contrast-enhanced CT 

can be used to inform the histologic subtype of a solid renal mass. However, CT accuracy 

is not perfect, the available data are mostly retrospective, and a CT-based virtual biopsy 

generally requires obtaining numerous contrast-enhanced phases that increase the radiation 

burden to the patient.

Distinction of fat-poor AML and RCC with CT is challenging. Like ccRCC, these benign 

tumors usually avidly enhance in the corticomedullary phase [29, 30]. However, fat-poor 

AML is most often small (≤ 3 cm), is hyperattenuating relative to renal parenchyma, 

enhances homogeneously, and appears to wash out in delayed contrast-enhanced phases [30, 

31]. Kim et al. [29] used an absolute washout ratio of 13.4 to discriminate fat-poor AML 

from ccRCC and reported a sensitivity of 85%, specificity of 84.2%, PPV of 85.5%, NPV 

of 80%, and accuracy of 85%. The absolute washout ratio they studied was calculated by 

subtracting the attenuation on corticomedullary phase from excretory phase attenuation and 

then dividing by the change in attenuation between corticomedullary phase and unenhanced 

images.

Texture analysis, a technique that assesses heterogeneity of pixel intensities and gray-level 

values in a specific ROI, has been explored at CT to aid in differentiation and classification 

of renal masses. Preliminary experience indicated that entropy (a measure of histogram 

uniformity) and SD were useful in the distinction of ccRCC and non-ccRCC tumors on 

whole-lesion analyses at portal venous phase imaging [32]. Global heterogeneity features 

also have been reported to be significantly greater for sarcomatoid RCC [33]. A 2015 

retrospective study of 16 fat-poor AMLs and 84 RCCs reported accurate differentiation of 

fat-poor AML from RCC using CT texture analysis at unenhanced CT, but that study did not 

have a validation cohort to confirm the texture thresholds reported [34].

Artificial intelligence and machine learning algorithms also have been preliminarily applied 

to differentiate histologic subtypes of renal masses with CT. One pilot study used random 

forest classification, a method that classifies samples into known classes using a hierarchy 

of variables, to generate and apply a model to 19 renal lesions consisting of oncocytomas, 

simple cysts, ccRCCs, and pRCCs. Using data generated from arterial, nephrographic, and 

excretory phase images, the model correctly classified all 19 lesions [35]. The combination 

of machine learning and texture features showed promising results in a pilot study of 58 

patients including 17 fat-poor AMLs [36]. In that study, the accuracy, sensitivity, specificity, 

and AUC for differentiating fat-poor AML from RCC were 93.9%, 87.8%, 100%, and 0.95, 

respectively [36]. However, in each of these studies, the number of included masses was 

very small [35, 36]. Use of machine learning algorithms generally requires a much larger 

dataset to avoid statistical overfitting.
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Although the application of texture analysis and machine learning to subtype renal masses at 

CT is currently an area of intense research, as of 2018, its use is considered preliminary and 

unverified.

MRI

The utility of multiparametric MRI (mpMRI) in the evaluation of renal masses has been 

well described [37–42]. The knowledge of enhancement patterns reported with CT can be 

applied to mpMRI because both iodinated contrast media and gadolinium-based contrast 

media exhibit similar extracellular properties. However, mpMRI offers information about 

many more tissue properties than CT that can be exploited for the characterization of renal 

masses and has the advantage of multiple dynamic phases without the penalty of cumulative 

ionizing radiation.

The use of sequences such as T2-weighted and dual-echo gradient-echo T1-weighted 

imaging together with contrast-enhanced imaging is commonly described as mpMRI and 

has been applied to the characterization of renal masses [43, 44]. Although the role of DWI 

is still under evaluation, this sequence is frequently reported as part of mpMRI protocols 

[44].

Clear cell RCC more often shows hyperintense signal on T2-weighted images relative 

to renal cortex and avid enhancement (205% enhancement) during the corticomedullary 

phase (timed to the arterial phase with a test bolus) [37, 45, 46]. Intratumoral areas of 

hypointense signal on shorter-TE opposed-phase images relative to longer-TE in-phase 

images are secondary to intracytoplasmic microscopic fat and are present in many ccRCCs 

[46–48]. In contrast, pRCC most often appears hypointense on T2-weighted images relative 

to renal cortex and exhibits mild enhancement during the corticomedullary phase (32% 

enhancement), which increases progressively on later phases [37, 47] (Fig. 2). Papillary 

RCC may be isointense to renal cortex or show hyperintense signal on unenhanced T1-

weighted images, the latter of which is thought to be secondary to intralesional hemorrhage. 

Oncocytoma and chrRCC can show variable patterns of signal intensity and enhancement. 

Most commonly, oncocytomas exhibit a degree of enhancement comparable to that of 

ccRCC, whereas chrRCC tends to enhance to a level between ccRCC and pRCC (110% 

enhancement) [37]. In our experience, the eosinophilic variant of chrRCC constitutes an 

exception, with at least some of these tumors showing intense enhancement during the 

corticomedullary phase. The enhancement levels observed in ccRCC, pRCC, and chrRCC 

result in a tumor-to-cortex enhancement ratio of 1.4, 0.2, and 0.6, respectively, using images 

obtained during the corticomedullary phase [37].

As with CT, SEI also can be identified at mpMRI and used to suggest the diagnosis of 

oncocytoma [40, 49]. Kay et al. [40] found that the presence of SEI at mpMRI was an 

independent predictor for the diagnosis of oncocytoma (odds ratio = 16.21; 95% CI, 1.0–

275.4), but the CI was wide (approaching 1) and the interobserver agreement was only 

moderate(κ = 0.49). Rosenkrantz et al. [49] reported SEI in both oncocytomas and chrRCCs, 

making the distinction between these two subtypes based on this imaging finding alone not 

reliable.
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Fat-poor AML is usually homogeneous and is almost always hypointense on T2-weighted 

images relative to renal cortex [46, 47, 50]. The hypointensity on T2-weighted imaging 

also is common with pRCC, but some differences exist that help in differentiation. Fat-poor 

AML commonly exhibits intense enhancement during the corticomedullary phase, whereas 

pRCC has slow progressive enhancement, and pRCC is more likely than fat-poor AML to 

be heterogeneous. Compared with ccRCC, fat-poor AML shows a greater change in signal 

intensity from arterial to delayed phase images [50]. This change in signal intensity can be 

quantified using the arterial-delayed enhancement ratio reported by Sasiwimonphan et al. 

[50]. In their study, the arterial-delayed enhancement ratio was calculated by obtaining the 

difference between signal intensity in the arterial phase images (time of acquisition in that 

study was determined by adding the contrast material arrival time to the aorta to half the 

time of contrast material injection duration, subtracted by half the time of image acquisition 

plus 3 seconds) and unenhanced images, and dividing that difference by the difference 

in signal intensity on delayed phase (3 minutes after contrast injection) and unenhanced 

images. An arterial-delayed enhancement ratio of greater than 1.5 is more frequently seen 

with fat-poor AML than ccRCC. The combination of a T2 ratio of less than 0.9 (i.e., defined 

in the same study as the signal intensity of the tumor relative to renal cortex on T2-weighted 

images) and an arterial-delayed enhancement ratio of greater than 1.5 has a sensitivity and 

specificity of 70% and 99%, respectively, for differentiation of fat-poor AML from RCC 

(Fig. 3). Although this reported sensitivity may be low, a high specificity is arguably more 

desirable in the diagnosis of fat-poor AML because, other than the rare epithelioid variant, it 

is a tumor that does not warrant treatment.

DWI has been explored for the characterization of renal masses. Overall, benign renal 

masses have been reported to show higher apparent diffusion coefficient (ADC) values than 

malignant masses [51]. For example, the ADC values of oncocytomas have been reported 

to be higher (mean ± SD, 2.0 ± 0.08 × 10−3 mm2/s) than those of RCC (1.5 ± 0.08 × 

10−3 mm2/s). However, the low ADCs reported for the general population of RCCs may be 

primarily driven by the markedly impeded diffusion characteristic of pRCC and the impeded 

diffusion seen in a small subset of ccRCCs [52–55]. It is common for ADC values in ccRCC 

to be similar to those of benign masses [54, 55] and higher than those of fat-poor AML 

[56, 57]. Overall, the use of DWI (and ADC) in the characterization of renal masses suffers 

from substantial overlap between benign and malignant diseases that limits its usefulness 

as a single technique [58]. However, DWI may aid in the differentiation of some histologic 

subtypes, particularly when included in a comprehensive mpMRI assessment (discussed 

later), and may help in estimating tumor grade. Marked focal intratumoral impeded diffusion 

increases the likelihood of high-grade ccRCC, with reported sensitivities, specificities, and 

accuracy of 65–90%, 71–83%, and 83%, respectively [58].

Using these previously reported imaging features, mpMRI-based diagnostic algorithms 

have been constructed to assist with characterizing renal masses [40, 41, 59, 60]. An 

algorithm by Kay and Pedrosa [60] has been subsequently tested in both retrospective 

and prospective analyses [40, 41] (Fig. 4). An algorithm by Cornelis and Grenier [59] 

contains similar principles, but to our knowledge the accuracy of that algorithm has not 

been reported. The first step in the algorithm by Kay and Pedrosa [60] assesses the signal 

intensity on T2-weighted images and determines whether the lesion is hyper-, iso-, or 

de Leon et al. Page 7

AJR Am J Roentgenol. Author manuscript; available in PMC 2020 October 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hypointense relative to renal cortex. Masses are then further subdivided by the degree 

of enhancement at corticomedullary phase imaging (i.e., timed with MRI-fluoroscopic 

technique at approximately 40 seconds after contrast material injection) according to 

previously reported enhancement ratios [37]: intense (greater than or equal to renal cortex), 

moderate (near 50% of renal cortex), or mild (near 25–30% of renal cortex). Additional 

features (e.g., presence of microscopic fat, SEI) are then used to favor a particular subtype.

Renal neoplasms hyperintense relative to renal cortex on T2-weighted images include 

ccRCC, oncocytoma, and chrRCC [60]. If a mass is determined to have intense 

enhancement, ccRCC and oncocytoma would be the two primary considerations. Of these, 

the presence of microscopic fat would strongly favor ccRCC. Masses hyperintense relative 

to renal cortex on T2-weighted images and moderately enhancing would primarily include 

oncocytoma and chrRCC, with preliminary findings suggesting the former is favored if SEI 

is present. A substantial overlap exists for renal masses that are isointense to renal cortex 

on T2-weighted images; both RCC and oncocytoma may have this appearance. Among 

T2-isointense masses, ccRCC is suspected if the mass is heterogeneous or has microscopic 

fat, oncocytoma is suspected if SEI is present, chrRCC is suspected if moderately enhancing 

and homogeneous, and pRCC is suspected if there is mild progressive enhancement. 

Finally, among masses that are hypointense to renal cortex on T2-weighted images, fat-

poor AML, pRCC, and rarely ccRCC are possible. Of these, both fat-poor AML and 

ccRCC usually show intense enhancement, whereas pRCC usually shows mild progressive 

enhancement. Impeded diffusion, an arterial-delayed enhancement ratio of greater than 1.5, 

and homogeneity favor fat-poor AML over ccRCC in this subset of renal masses. A decrease 

in signal intensity on longer-TE in-phase imaging relative to shorter-TE opposed-phase 

T1-weighted dual-echo gradient-echo imaging indicates susceptibility artifact and usually is 

attributed to the presence of iron in malignant tumors such as pRCC and, less commonly, 

ccRCC [61].

Canvasser et al. [41] evaluated the utility of this mpMRI-based algorithm to produce a Likert 

score that conveys the likelihood of ccRCC in cT1a renal masses, which they termed the 

“clear cell likelihood score” or “ccLS,” and defined as follows: 1, very unlikely; 2, unlikely; 

3, equivocal; 4, likely; and 5, highly likely. For example, a mass showing hyperintense 

signal on T2-weighted images, intense enhancement, and microscopic fat would receive 

a ccLS of 5 (highly likely ccRCC), whereas a mass showing hypointense signal on T2-

weighted images and mild progressive enhancement would be designated a ccLS of 1 

(very unlikely ccRCC). In that study [41], a ccLS threshold of 4 or greater yielded 79% 

accuracy, 78% sensitivity, and 80% specificity for ccRCC, and a ccLS threshold of 2 or less 

yielded 95% specificity and 93% PPV for non-ccRCC neoplasms (benign and malignant). 

Preliminary prospective data from 125 masses (cT1a–T3) [62] yielded 89.6% accuracy, 

92.3% sensitivity, 85.1% specificity, 91.1% PPV, and 87% NPV for ccRCC using a ccLS 

threshold of 4 or greater and 87.2% accuracy, 68.1% sensitivity, 98.7% specificity, 97% 

PPV, and 83.7% NPV for non-ccRCC neoplasms using a ccLS threshold of 2 or less.
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Technetium-99m-Sestamibi

Technetium-99m-sestamibi is a U. S. Food and Drug Administration–approved radiotracer 

taken up by cells with a high concentration of mitochondria. It has several uses, including 

the assessment of coronary artery disease (by identifying myocardial ischemia) and 

localizing parathyroid adenomas [63, 64]. However, 99mTc-sestamibi also can be used to 

differentiate oncocytomas and hybrid oncocytic-chromophobe tumors (HOCTs) from more 

aggressive renal neoplasms [65–68]. At 99mTc-sestamibi SPECT/CT, oncocytomas show 

radiotracer uptake similar to or above uninvolved renal parenchyma, which is hypothesized 

to be because of densely packed dysfunctional mitochondria [69]. However, the relationship 

between mitochondrial dysfunction and the degree of radiotracer uptake is not well 

understood [70].

Tumors derived from proximal renal tubules, such as ccRCC and pRCC, show less 99mTc-

sestamibi uptake than uninvolved renal parenchyma and oncocytic neoplasms. This is 

believed to be related to the high expression of multidrug resistance pumps that limit 

the accumulation of 99mTc-sestamibi [66, 71]. In a prospective trial involving 50 patients 

with clinical T1 renal masses, 99mTc-sestamibi SPECT/CT was positive in five of six 

oncocytomas, two of two HOCTs, two of four chrRCCs, zero of one AML, and zero 

of 37 ccRCCs or pRCCs, for an overall sensitivity and specificity of 87.5% and 92.5%, 

respectively [68]. Although unable to differentiate between oncocytoma, HOCT, and 

chrRCC, the noninvasive diagnosis of an oncocytic neoplasm is clinically valuable because 

this diagnosis would be typically associated with a benign or indolent tumor. Another 

smaller study of 27 patients reported similar findings; 11 of 12 oncocytomas, three of three 

HOCTs, and one of three pRCC showed radiotracer uptake, whereas the 11 remaining RCCs 

did not [67].

Clinical Implementation of a Multimodal Algorithm for Renal Masses

The ultimate goal of an imaging evaluation of a renal mass is to diagnose benign causes 

that obviate further testing (including RMB) or surgery, identify masses that might be best 

suited for AS, and enable treatment of life-threatening cancers. Historically, all solid renal 

masses without macroscopic fat used to be removed in eligible patients because the risks 

of RMB were deemed too high and the likelihood of benign disease deemed too low to 

warrant an alternative strategy. This paradigm resulted in many benign masses and masses 

of low malignant potential being resected. In recent years, better understanding of the 

natural history of small renal masses and clearer data indicating the relative safety of RMB 

have facilitated adoption of RMB before surgery to establish a histologic diagnosis, predict 

biologic behavior, select patients for AS, and minimize overtreatment. However, there are 

caveats to the routine use of RMB. A renal mass may be in an unfavorable anatomic location 

that is more prone to complication (e.g., hilar mass) [72], and not all masses may require 

RMB (e.g., a mass highly likely to be benign at imaging [e.g., fat-poor AML], a mass highly 

likely to be malignant at imaging [e.g., ccLS of 5] that will undergo treatment regardless 

of RMB results). Therefore, RMB has the greatest potential impact in patients in whom 

the presence of malignancy is uncertain and, more importantly, those in whom AS is being 

contemplated (i.e., to rule out aggressive forms of RCC). Incorporation of mpMRI into 

the workup of an indeterminate renal mass could reduce the number of biopsies, expedite 
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treatment in high-risk patients, minimize complications, and potentially reduce the cost of 

care.

Multiparametric MRI–based diagnostic algorithms provide a framework for a multimodal 

clinical approach to renal masses, a method that could incorporate mpMRI, RMB, and 
99mTc-sestarnibi SPECT/CT. Although this approach would require further prospective 

validation before widespread implementation, there are some compelling use cases that 

should drive this effort forward. For example, although the decision to treat is ultimately 

based on multiple factors, patients with a small renal mass receiving a ccLS of 1 or 2 

could be offered AS without RMB. Most of these masses are slow-growing, indolent pRCCs 

[41, 62, 73]. Follow-up imaging in 6 months and annually thereafter can be used to detect 

growth in the tumor in the rare event in which a tumor with a ccLS of 1 or 2 represents 

a more aggressive histologic diagnosis. In contrast, definitive treatment without RMB can 

be offered for masses with a ccLS of 4 or 5 (PPV for ccRCC in cT1a renal masses of ≈ 
85%) (Fig. 5). Whether this cohort (and those with a ccLS of 2 or 3 and SEI) would benefit 

from preoperative 99mTc-sestamibi SPECT/CT to reduce falsepositive findings related to 

oncocytic neoplasms needs to be determined in cost-effectiveness studies (Fig. 6).

For cT1a renal masses, RMB may have greatest benefit for those with a ccLS of 3 because 

approximately half are ccRCC (Fig. 7). Only 20% of cT1a renal masses are ccLS of 3. 

Restricting biopsy to this group would eliminate 80% of RMBs, result in unnecessary 

surgery (i.e., unbiopsied tumors with a ccLS of 1, 2, 4, or 5) for oncocytoma and fat-poor 

AML in 4.5% and 1.7%, respectively, and result in 4% of ccRCCs being placed on AS [41]. 

The latter should be acceptable given the proven safety of AS for follow-up of small renal 

masses [74]. Incorporation of 99mTc-sestamibi SPECT/CT in cases in which oncocytoma 

is considered on the basis of imaging findings (e.g., SEI) would likely reduce further the 

number of unnecessary surgeries.

Although mpMRI-based diagnostic algorithms have the greatest potential in incidental 

small renal masses, it also may play an important role in the management of patients 

with larger tumors. AS is contemplated in some patients with comorbidities and cT1b–

T2 renal masses. Multiparametric MRI may be complementary to RMB in some patients 

and enable avoidance of RMB in others. Further testing to assess the performance of 

mpMRI in predicting tumor grade would be particularly important for this latter application. 

Similarly, mpMRI may help in the management of patients with locally advanced and 

metastatic disease at presentation in whom selection of various options for systemic therapy 

or debulking nephrectomy or both are being considered.

Conclusion

Data are accumulating that support a greater role of imaging in managing renal masses that 

should eliminate the need for percutaneous RMB in many patients. A diagnostic imaging 

algorithm based largely on mpMRI features that expresses the likelihood of ccRCC shows 

promise in distinguishing benign from malignant small solid renal masses (and possibly 

larger tumors as well) and in predicting histologic subtype (so-called “virtual biopsy”). 

Ultimately, prospective multisite validation and cost-effectiveness studies are required before 
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widespread implementation. Further research is being conducted that will help clarify the 

future role of the virtual biopsy in the management of renal masses.
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Fig. 1. 56-year-old man with left renal mass.
A–C, Unenhanced axial CT image (A) and contrast-enhanced axial CT images acquired 

during corticomedullary (B) and nephrographic (C) phases show homogeneous and 

progressively enhancing mass in posterior medial left kidney (arrow), which is mildly 

hyperattenuating on unenhanced image. Mass was favored to represent papillary renal cell 

carcinoma (pRCC), and patient underwent percutaneous renal mass biopsy.

D, Postbiopsy CT was performed because patient reported pain. Representative unenhanced 

CT image shows moderate perinephric hematoma along posterior left kidney (asterisk). 

Patient was admitted to hospital and observed; no transfusion or other support other than 

observation was reguired. Biopsy confirmed diagnosis of pRCC. After partial nephrectomy, 

final diagnosis of type I pRCC was rendered.
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Fig. 2. 43-year-old woman with 3.5-cm right renal mass.
A, Coronal T2-weighted single-shot fast spin-echo image shows mass arising from lower 

pole of right kidney (arrow), which appears hypointense relative to renal cortex.

B, Subtraction of fat-saturated T1-weighted gradient-echo coronal image acquired during 

corticomedullary phase minus unenhanced acquisition with same parameters shows low-

level enhancement within renal mass (arrow). This lesion received clear cell likelihood score 

of 1. Patient subsequently underwent partial nephrectomy and was found to have papillary 

renal cell carcinoma, International Society of Urological Pathology grade 2.
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Fig. 3. 42-year-old woman with 2.1-cm right renal mass.
A, Coronal T2-weighted single-shot fast spin-echo image shows right upper renal mass 

(arrow), which appears hypointense relative to renal cortex.

B and C, On coronal fat-saturated T1-weighted gradient-echo images acquired during 

corticomedullary (B) and late nephrographic (C) phases, lesion (arrow) shows intense 

enhancement and washout, respectively. Lesion was assigned clear cell likelihood score 

of 2. Because of location of lesion, safe path for percutaneous renal mass biopsy could 

not be identified. Patient underwent partial nephrectomy; histopathology results and positive 

homatropine methylbromide 45 immunostaining confirmed angiomyolipoma.
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Fig. 4. 
Flowchart shows algorithm for characterization of solid renal masses by using imaging 

features on MRI and assigning clear cell likelihood score (ccLS); ccLS is Likert score that 

conveys likelihood of clear cell renal cell carcinoma (ccRCC) and is defined as follows: 1, 

very unlikely; 2, unlikely; 3, equivocal; 4, likely; and 5, highly likely. First step in algorithm 

is to assess signal intensity of renal mass on T2-weighted images and determine whether 

mass is hyper-, iso-, or hypointense relative to renal cortex. Masses are then subdivided by 

degree of enhancement during corticomedullary phase imaging: intense, moderate, or mild. 

Additional features (e.g., presence of microscopic fat, segmental enhancement inversion 

[SEI], appearance on DWI) are then used to ultimately assign ccLS value. ADER = arterial-

delayed enhancement ratio, AML = angiomyolipoma, AMLrare = angiomyolipoma (rare 

presentation), pRCC = papillary renal cell carcinoma, Onco = oncocytoma, chrRCC = 

chromophobe renal cell carcinoma, SIart = signal intensity on arterial phase images, SIpre 

= signal intensity on unenhanced images, SIdel = signal intensity on delayed phase images 

(illustration by Moore E). (Adapted from [75] Radiologic Clinics of North America, Vol. 55, 

Kay FU, Pedrosa I. “Imaging of Solid Renal Masses,” Pages 243–258, Copyright 2018 with 

permission from Elsevier)
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Fig. 5. 47-year-old man with renal mass.
A, Coronal T2-weighted single-shot fast spin-echo image shows mass in medial right kidney 

(arrow) that is heterogeneously hyperintense relative to renal cortex.

B, On coronal fat-saturated T1-weighted gradient-echo image acquired during 

corticomedullary phase, lesion (arrows) shows intense heterogeneous enhancement.

C and D, Region of decreased signal intensity (arrows, C) is present on axial opposed-

phased gradient-echo T1-weighted image compared with in-phase gradient-echo image (D); 

this finding is consistent with microscopic fat within tumor. This lesion was given clear cell 

likelihood score of 5. Patient underwent partial nephrectomy, and histopathology showed 

clear cell renal cell carcinoma, International Society of Urological Pathology grade 3.
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Fig. 6. 57-year-old man with 3.7-cm solid right renal mass.
A, Coronal T2-weighted image shows mildly heterogeneous mass (arrow) centered in 

upper pole of right kidney that is predominantly isointense to renal cortex with slightly 

hyperintense central region.

B, T1-weighted gradient-echo image acquired during corticomedullary phase shows two 

distinct patterns of enhancement in mass: region of intense enhancement peripherally (white 
arrow) and central area of hypoenhancement (black arrow).

C, T1-weighted gradient-echo image acquired during nephrographic phase shows inversion 

of signal intensities. Central area now shows hyperintense signal (black arrow) relative to 

remainder of mass, which now appears hypointense (white arrow). This enhancement pattern 

is consistent with presence of segmental enhancement inversion. This mass should receive 

clear cell likelihood score of 3. Given size of mass, patient underwent renal mass biopsy 

before being placed on active surveillance; histopathology revealed oncocytoma.
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Fig. 7. 44-year-old man with solid right renal mass.
A, Coronal T2-weighted single-shot fast spin-echo image shows mildly heterogeneous mass 

(arrow) is isointense to renal cortex and arising from upper pole of right kidney.

B, Coronal fat-saturated T1-weighted gradient-echo image acquired during corticomedullary 

phase shows moderate enhancement in mass (arrow).

C and D, Axial opposed-phase (C) and in-phase (D) gradient-echo T1-weighted images 

show no intralesional fat. Incidentally, decreased signal intensity (asterisk, C) in liver 

consistent with hepatic steatosis is noted on opposed-phase imaging. This lesion was given 

clear cell likelihood score of 3. Patient underwent percutaneous renal mass biopsy, and 

histopathology revealed chromophobe renal cell carcinoma.
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