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Abstract

Cancer has been one of the most threatening diseases to human health. There have been many 

efforts devoted to the advancement of radiology and transformative tools (e.g. non-invasive 

computed tomographic or CT imaging) to detect cancer in early stages. One of the major goals is 

to identify malignant from benign lesions. In recent years, machine deep learning (DL), e.g. 

convolutional neural network (CNN), has shown encouraging classification performance on 

medical images. However, DL algorithms always need large datasets with ground truth. Yet in the 

medical imaging field, especially for cancer imaging, it is difficult to collect such large volume of 

images with pathological information. Therefore, strategies are needed to learn effectively from 

small datasets via CNN models. To forward that goal, this paper explores two CNN models by 

focusing extensively on expansion of training samples from two small pathologically proven 

datasets (colorectal polyp dataset and lung nodule dataset) and then differentiating malignant from 

benign lesions. Experimental outcomes indicate that even in very small datasets of less than 70 

subjects, malignance can be successfully differentiated from benign via the proposed CNN 

models, the average AUCs (area under the receiver operating curve) of differentiating colorectal 

polyps and pulmonary nodules are 0.86 and 0.71, respectively. Our experiments further 

demonstrate that for these two small datasets, instead of only studying the original raw CT images, 

feeding additional image features, such as the local binary pattern of the lesions, into the CNN 

*Author to whom correspondence should be addressed. jerome.liang@sunysb.edu. 

Conflict of interest statement
All authors have no any financial and personal relationships with other people or organizations that could inappropriately influence 
(bias) this work.

HHS Public Access
Author manuscript
Comput Med Imaging Graph. Author manuscript; available in PMC 2020 October 01.

Published in final edited form as:
Comput Med Imaging Graph. 2019 October ; 77: 101645. doi:10.1016/j.compmedimag.2019.101645.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models can significantly improve classification performance. In addition, we find that our explored 

voxel level CNN model has better performance when facing the small and unbalanced datasets.
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characterization; pathologically proven datasets

1. Introduction

As reported from World Health Organization (WHO), cancer is the second leading cause of 

death globally, and is responsible for an estimated 9.6 million deaths in 2018 (WHO, 2018). 

Globally, about 1 in 6 deaths is due to cancer (WHO, 2018). Lung and colorectal cancers are 

the most common strains of cancer, resulting in around 2.09 and 1.80 million deaths in the 

year of 2018 (WHO, 2018). In recent years, efforts have been devoted to the advancement of 

radiology and transformative tools (e.g. non-invasive computed tomographic or CT imaging) 

to detect and diagnose cancers in the early stage, which would significantly increase the 

survival rates of cancer patients (Forstner et al., 1995; Gurney, 1996; Bipat et al., 2004; Chen 

et al., 2004; International Early Lung Cancer Action Program Investigators, 2006; Doi, 

2007; Frangioni, 2008; Popovtzer et al., 2008). While the early detection rate has 

significantly increased, the false positive (FP) detection rate has also increased significantly, 

rendering a challenging task for reducing the FP rate for the diagnosis or true detection, 

particular for the differentiation of malignance from benign detections (Wang et al., 2008; 

Jayasurya et al., 2010; Sun et al., 2013; Zięba et al., 2014). This differentiation or 

classification problem is most related to the machine learning (ML) filed, where a learning 

algorithm is trained firstly to learn from a dataset (which includes some identifiable labels) 

to identify some patterns and make relevant decisions corresponding to identifiable labels 

and then the learning algorithm is expect to perform well for a desired task, for example 

differentiating malignant from benign lesions. Despite great progress in the ML field, better 

classification algorithms are always desired to achieve better classification performance. A 

good classification algorithm is extremely desirable for cancer diagnosis because of limited 

datasets with pathologically proven ground truth available for the training (Ciompi et al., 

2015; Hua et al., 2015; Rouhi et al., 2015; Shen et al., 2015; Ribeiro et al., 2016; Sun et al., 

2016; Zhang et al., 2017; Shen et al., 2017).

In recent years, machine deep learning (DL) algorithm based artificial intelligence (AI) has 

been a hot trend to assist experts to ease the burden of their jobs with reasonably good or 

better performance in all fields (Ngiam et al., 2011; Mnih et al., 2013; Deng and Yu, 2014; 

Schmidhuber, 2015; LeCun et al., 2015). DL algorithms, e.g. convolutional neural network 

(CNN), have shown encouraging classification performance on medical images (Lo et al., 

1995; Sahiner et al., 1996; Li et al., 2014; Milletari et al., 2016; Liu et al., 2018; Zhang et 

al., 2018). Compared with traditional ML/pattern recognition algorithms, the major 

advantage of CNN is that the CNN architectural model can autonomously learn to extract 

high-level features to pursue the best classification performance. Instead of designing the 

handcrafted features for classification, CNN designs proper models to learn distinguishable 
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features from input data, yield the corresponding optimal classification results, and achieve a 

good generalization performance for the prediction. It is worth noting that, due to the huge 

number of parameters that need to be trained for the designed model, DL algorithms always 

need large datasets to satisfactorily train the model and obtain meaningful features for better 

performance. For example, the ImageNet is a widely used and growing image dataset with 

around 14,197,122 labeled images (Deng et al., 2009). In the medical imaging field, 

especially in the cancer imaging area, it is very difficult and extremely expensive to collect 

large number of images from patients with pathologically proven ground truth. Therefore, 

the available datasets are always small in volume.

To effectively learn from small medical imaging datasets via CNN models, some reports 

focus on expanding the training dataset volume (Dellana and Roy, 2016; Wong et al., 2016; 

Wigington et al., 2017; Salamon and Bello, 2017; Yedroudj et al., 2018). For example, a new 

concept called “transfer learning” uses huge datasets like ImageNet with natural images to 

initialize and optimize the weights of the model, then to fine the weights by using the 

medical images (Van Opbroek et al., 2015; Tajbakhsh et al., 2016; Shin et al., 2016). 

However, whether natural images have the similar patterns as the medical images are under 

debated, especially when the medical images are quite unique (like CT images), thus this 

option is interesting but lacks fundamental understanding between natural images and 

medical images. Another example is expanding the medical images at multi-scale, which 

means cutting the original raw images into patches at different level of field of vision (Shen 

et al., 2015; Keuper et al., 2016; Quan et al., 2016). This way can significantly improve the 

size of the training dataset based on the original medical images, however, some challenges 

will be encountered, e.g. how to assign the labels to those patches when some patches only 

contain a few polyp/nodule tissues, will those patches affect the performance, etc.? Thus, 

how to study small dataset via CNN models is still a tough challenge.

For the purpose of relieving the challenges in the medical applications of small 

pathologically proven datasets, we proposed two CNN models to investigate their learning 

capability and classification performance between malignant and benign polyps/nodules. 

The first model is multi-channel-multi-slice two-dimensional CNN model (MCMS-2D 

CNN). The advantage of the MCMS-2D CNN model is that expanding the training datasets 

offers an opportunity to (1) use multi-channel strategy to include all kinds of feature maps 

available, like the original raw images, the local binary pattern (LBP) maps (to include the 

texture information), the histogram of gradient (HOG) maps and the gradient of images (to 

include the edge information), and (2) learn abstract features from multi-slice images of 

each polyp/nodule volume. It is worth noting that pathologically proven datasets are always 

small and unbalanced. To better deal with unbalanced datasets, we designed the second 

CNN model, which is voxel-level one-dimensional CNN model (V-1D CNN). The 

advantage of V-1D CNN is that the training datasets can be expanded significantly by 

treating the inputs at the image voxel level (the number of voxels can be very large even 

though the dataset is small). For example, one polyp/nodule volume may contain hundreds 

of image voxels, thus using voxel level inputs will significantly expanding the training 

datasets. By this simple, innovative idea, we will learn and predict each voxel in the training 

stage. And after gather all the information from voxels, we would expect to have an 

improved model to label each polyp/nodule as either malignant or benign. We agree that 
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when we generate inputs at voxel level, noises will be inevitability produced into the training 

datasets. However, it is a tradeoff problem, the benefits are more training samples and their 

local information can be used to improve the classification performance.

The rest of the paper is designed as follows: in the Method section, we will present the 

above-mentioned two pathologically proven datasets of polyps and nodules and describe the 

proposed two CNN models. In the Results section, we will show the classification 

performance of these two CNN models and report quantitative measures on the classification 

performance. In the Discussion and Conclusion section, we will summarize the major 

contributions and outline the weaknesses of the proposed two CNN models for our future 

research interest to overcome them.

2. Method

In this study, we proposed two CNN models to study the classifier to differentiate malignant 

from benign nodules/polyps on small datasets. The proposed pipeline is consisting of four 

major steps: (1) extracting and generating the inputs for the CNN models; (2) designing the 

CNN models to study the differences between malignant and benign; (3) adopting the 

validation approach to evaluate the performance of the model we learned; and (4) studying 

the performance of the model via statistical analysis.

2.1. Datasets and Inputs of CNN Models

As we know, most publicly available cancer image datasets are not pathologically proven, 

e.g. a very commonly used dataset: LIDC-IDRI (Armato et al., 2011). Although many 

studies have used non-pathologically proven datasets and achieved very good classification 

performance to differentiate malignant from benign lesions, without the ground truth for the 

labels to confirm their classification performance, their clinical impacts are limited. For 

example, Litjens et al. (2017) mentioned that for many nodules in the LIDC dataset, the 

experts have different opinions and different labels (marked lesions belonging to one of three 

categories (“nodule > or =3 mm,” “nodule <3 mm,” and “non-nodule > or =3 mm”), thus 

bias will be inevitable included for the labelling, which is called “label noise”. Another 

example is shown in Han et al. (2015), they mentioned that according to the rules of 

constructing the LIDC-IDRI database, the malignancy assessments are defined in five levels, 

i.e., 1, 2, 3, 4, and 5, from benign to malignant. Since group “3” means the malignancy of 

the corresponding nodule is uncertain, thus the nodules with label “3” could be treated in 

two different ways in the study, i.e. either “3” belongs to benign class or “3” belongs to 

malignant class. It is interested to see that the classification performances of the two ways 

are largely different (one is about 0.91 AUC, another one is about 0.78 AUC). Thus, further 

experiments on pathologically proven datasets are needed. As one major motivation of this 

study, two small pathologically proven datasets were used to evaluate our CNN models. The 

data information is listed in Table 1. The sample sizes of the two pathologically proven 

datasets are relatively small (both N <70). Specifically, the lung nodule dataset is quite 

unbalanced (73% malignant). For our pathologically proven datasets, experts went through 

the 3D CTC images slice by slice and identified the suspicious region of interest (ROI), then 

drawn the boundaries, so these two datasets are clinically meaningful.
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Dataset 1:  The patient, who was scheduled for CT scan at University of Wisconsin, USA, 

was recruited to this study under informed consent after approval by the Institutional Review 

Board. Tube voltage is 120 kVp and dose is followed by automatic exposure control. A total 

of 59 patients with 63 polyp masses, including 31 benign and 32 malignant. In the category 

of benign, four sub-categories are recorded from the pathology reports, they are Serrated 

Adenoma (3 cases), Tubular Adenoma (2 cases), Tubulovillous Adenoma (21 cases), Villous 

Adenoma (5 cases). In the category of malignant, it is Adenocarcinoma only (32 cases). In 

total, 51% are males and 49% are females. The patient age ranges from 45.9 to 91.6 years 

old (mean age of 66.5 years old). The size of the polyp masses ranges from 3 to 8 cm (mean 

of 4.2cm). The patients were scanned by a routine clinical non-contrast CT scanning 

protocol covering the entire abdomen volume. Each abdominal CT image volume consists of 

more than 400 image slices, each image slice has an array size of 512×512, and each image 

element or voxel is nearly cubic with edge size of 1mm. Contour of each polyp image slice 

inside the CT abdominal image volume was drawn by experts on a slice-by-slice manner 

using a semi-automated segmentation algorithm. Because of a relatively large polyp size, 

every drawn polyp contour can be allocated into an image array size of 48×48. Depending 

on the size of the polyp volume, the number of the 48×48 image slices can vary from 17 to 

103. The routing CT scan, the drawn polyp borders, and the pathological labels of each 

polyp were inputted for the proposed CNN-based machine learning pipeline for polyp 

classification.

Dataset 2:  The patient, who was scheduled for CT-guided lung nodule needle biopsy at 

Stony Brook University Hospital, USA, was recruited to this study under informed consent 

after approval by the Institutional Review Board. Tube voltage is 120 kVp and dose is 

followed by automatic exposure control. A total of 66 patients with 67 lung nodules, 

including 18 benign and 49 malignant. The average age of the patients is 69.5 years old, 

ranging from 33 to 91 years old, and 52% of the patients are males and 48% are females. 

The diameter of these nodules ranges from 0.91 to 13.08 cm (mean size of 3.15 cm). Each 

patient underwent a routine clinical non-contrast CT scanning protocol covering nearly the 

entire chest volume, resulting in more than 200 image slices of 512×512 array size, and each 

image voxel is nearly cubic with edge size of 1mm. The border of each nodule image slice 

inside the routine patient CT scan was drawn by experts on a slice-by-slice manner using a 

semi-automated segmentation algorithm. All the drawn nodule image slices can be allocated 

into an image array size of 32×32. Depending on the size of the nodule volume, the number 

of the 32×32 image slices can vary from 5 to 61. The routing CT scan, the drawn nodule 

borders, and the pathological labels of each lung nodule were inputted for the CNN-based 

machine learning pipeline for classification of the lung nodules.

As we mentioned in the introduction that CNN models require huge training samples to train 

the models and update the associated weights, the key problem of our pathologically proven 

dataset is the small sample sizes (both Ns < 70). When the sample size is small, it is very 

challenging to optimize the weights for optimal CNN model performances. Thus, we would 

like to emphasize that one of the major goals of this study is to investigate both 1D and 2D 

CNN models for their potential to mitigate the challenge.
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In addition to augmenting the training samples from the raw CT images (in the datasets) by 

the 2D CNN models, we also explore the gain by including different image features of the 

raw images as the input data, like LBP, HOG, and so on. The assumption here is that under 

the condition of small dataset sample size, manually providing classical image features as 

the inputs can help to obtain optimal weights or the abstract features for the CNN 

classification with less demand of training samples and sophisticated training processes. 

More details about the image features are provided below.

2.1.1. LBP Feature—Local Binary Pattern (LBP) is a very famous and efficient texture 

operator. It labels the pixels of an image via thresholding the neighborhood of each pixel and 

considering the result as a binary number (Ojala et al., 1996). In the image processing and 

computer vision field, LBP is a very popular operator to extract the texture information from 

local regions, which contributes a lot in texture analysis. LBP related algorithms has been 

very successful in image processing and computer vision field, e.g. face analysis and 

medical imaging analysis. Especially, in medical image field, LBP is always a key feature 

that we would like to utilize to classify the different class of images (Unay et al., 2007; 

Nanni et al., 2010; Nanni et al., 2012).

2.1.2. Gradient Feature—Gradient of an image will record the change in the intensity 

or color along a direction in an image. In image processing and computer vision field, the 

gradient is one of the most important characteristics of the images. For example, for the 

purpose of detecting the edges, Canny edge detector will be utilized based on the image 

gradient. In details, image gradients can be used to extract information and thus gradient 

images are always created. Like the LBP feature, image gradient also contains very 

important discriminate information and, therefore, it is commonly used in the image 

classification, registration and reconstruction fields (Chakraborty et al., 1996; Mudigonda et 

al., 2000).

2.1.3. HOG Feature—In the object detection field, histogram of oriented gradients 

(HOG) is a very commonly used feature descriptor, which focus on discovering and 

computing the occurrences of gradient orientation within the local regions (Dalal and Triggs, 

2005). The major concept is that the appearance and shape of the object can be well 

represented by the information from the distribution of gradients in local regions. Thus, 

HOG feature descriptor can provide representative features for the objects and then those 

features have great performance in the tasks of classification problem, especially in the 

medical imaging analysis (Song et al., 2012; Song et al., 2013).

2.2. Architecture of the Proposed CNN Models

CNN is one of the popular supervised learning algorithms in the DL field (Lo et al., 1995; 

Sahiner et al., 1996; Li et al., 2014; Milletari et al., 2016; Liu et al., 2018; Zhang et al., 

2018). It has super advantages in the tasks of detection and classification, e.g. one of the 

major advantages is CNN models can be thought of the automatic feature extractors from the 

image. A CNN model is usually composed of alternate convolutional and pooling layers to 

extract higher level features to describe the original inputs, then several fully connected 

layers (FCL) are followed to perform classification. In this study, considering the small 
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datasets we have, we designed two CNN models accordingly: one is the MCMS-2D CNN 

model, and the other is the V-1D CNN model. These two models have their own 

architectures and advantages, but the common thing is that they are designed to expand the 

training samples and pursuing better classification performance. Details of each model are 

shown in the following parts.

2.2.1. Multi-Channel-Multi-Slice-2D CNN Model—The basic concept of MCMS-2D 

CNN model is that during the training process, we can not only provide raw images but also 

provide some meaningful image features from the deformation of raw images as the training 

samples. To be more specific, when we adopt the CNN model to do the classification, 

usually we don’t need to manually design the features from input images, after the training 

process is completed, model will automatically extract the effective features from the inputs 

for the task of classification. However, in this study, the dataset is too small, which means it 

is hard to provide enough training samples for the CNN model. This will lead to insufficient 

learning and would be hard for the model to extract meaningful features and achieve the 

good classification performance. So, we decide to directly feed some image features to the 

model and let the model study meaningful features both from raw images and image 

features. We assume that by feeding proper image features, it will be easier for the model to 

study and extract high-level features from the training samples and achieve better 

classification performance.

As shown in Figure 2, multiple channels are utilized for studying different image features 

separately for this model. The number of channels of the CNN model is not pre-determined 

but depends on the data fitting. Starting from channel #1, the number of channels keep 

increasing by adding more image feature types until the classification performance cannot be 

improved, i.e. if channel #3 (Gradient image feature slices) cannot improve the performance, 

it will be discarded and channel #4 (HOG image feature slices) will be the next one waiting 

to be tested. At the end, the number of channels is determined when the best performance 

achieved. The image features mentioned in Section 2.1 will be the major focus for this study. 

In details, for each polyp/nodule, we have segmented CT images (ROI drawn by experts 

from the original CT slices) and extracted their corresponding images features. Each CT 

image slice can generate its corresponding image feature slices, hence, for each polyp/

nodule, same size of the dataset is obtained for each image feature type, i.e. each polyp/

nodule has the same number of the CT image slices, LBP image feature slices, HOG image 

feature slices and gradient image feature slices. In addition, the multi-slice concept is 

introduced into the models. Although the number of the raw CT slices is different from each 

polyp/nodule, we would like to fix ‘m’, which is the number of the slices we picked up along 

the top slice of the polyp/nodule to the bottom slice by a certain interval. Then we use those 

slices to represent the corresponding polyp/nodule. For each channel of the MCMS-2D CNN 

model, the size of the training inputs will be fixed as M * n * n , where M is equals to m * 

objtrain, and n is the length of the input slices, objtrainis the number of the polyp/nodule in the 

training dataset. The label of each slice is based on the label of its belonging polyp/nodule 

from the pathological report. Then, regarding how to decide ‘m’, we have two principles. 

First, we want ‘m’ to be large, bigger ‘m’ will generate larger training dataset with more 

slices in total, which will benefit the training process of proposed CNN model. Second, we 
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don’t want ‘m’ to be too large because many small polyps/nodules may not have that many 

slices to use. So, this is a kind of trade off problem. In the MCMS-2D CNN model, kernel 

size is set to 5 * 5 by experimental experience, dropout layer is employed to improve overfit 

on neural networks after the last convolutional layer, batch-normalization layer is added for 

higher speed of training and better classification performance, ReLU is used as the activation 

function. Please refer to Table 2 about the structure of the CNN model.

2.2.2. Voxel-Level-ID CNN Model—In Section 2.2.1, we proposed the MCMS-2D 

CNN model with multi-channel and multislices inputs. Multi-channel can provide more 

feature maps and multi-slices can expand training samples significantly. However, the 

training samples from one subject/case is still small, resulting in only approximately dozens 

of slices with several channels. This is still far away from the expectation of training CNN 

models. So, we would like to pay more attention on how to significantly expand the training 

samples in this V-1D CNN model. The basic concept of V-1D CNN model is to generate 

training samples at the voxel-level. Instead of working on the whole slice each time for the 

classification, we would like to dedicate deep into the voxel level, study and abstract 

meaningful features for each voxel with a relatively small region of interested (ROI). In this 

way, the training samples can be extremely expanded. As an initial attempt, we would like to 

collect the intensity attributes surrounding each voxel and stretch those attributes as a 1D 

vector for the training dataset. An example is shown in the Figure 3B. In the V-1D CNN 

model, we will predict a label on the voxel level, either malignant or benign, by 

differentiating the pattern of their intensity attribute vectors.

For this model, certain number of voxels are randomly chosen from each whole polyp/

nodule volume to represent the characteristic of the whole volume of polyp/nodule. Their 

labels are given based on the label of whole polyp/nodule from the pathological report. In 

details, the total number of voxels we are prepared to select are prorated to each slice based 

on the size of polyp/nodule area for each slice, then the attributes of selected voxels are 

reshaped into vectors as the input, and then feed those vectors into the V-1D CNN model for 

the classification. The ROI is set to 7 * 7 as shown in Figure 3. Several 1D convolutional 

layers are added to the model, two convolutional layers are used for illustration, the size of 

the filter is set to 21 and 11, the number of the filter is set to 32 and 64, respectively. Global 

average layer is used to generate fully connected layer with output labels. ReLU is used as 

the activation function. Please refer to Table 3 for more details about the architecture of the 

V-1D CNN model.

2.2.3. Voting Algorithm—The above-mentioned CNN models are working on either 

slice level or voxel level, thus, voting algorithm will be utilized to gather the class of the 

polyp/nodule for each slice/voxel and then predict a final label for every testing polyp/

nodule volume. Specifically, for the MCMS-2D CNN model, we will validate every slice of 

each testing polyp/nodule and determine whether malignant slices are significant. If 

significant, the polyp/nodule will be labeled as “1”, otherwise, labeled as “0”. For the V-1D 

CNN model, we will count the malignant voxels and benign voxels (voxels within the 

boundaries drawn by experts) and determine whether malignant voxels are significant. If 
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malignant voxels are significant, the polyp/nodule will be labeled as “1”, otherwise, labeled 

as “0”. The general steps are summarized into the pseudocodes as follows:

Voting algorithm

function vote (x):

   Input: x represents prediction labels of each slice/voxel of testing polyp/nodule

   Output: Final label of the testing polyp/nodule

  M(x) = the number of slices/voxels that x belongs to malignant (label of “1”);

  B(x) = the number of slices/voxels that x belongs to benign (label of “0”);

  Significant(x) = M(x)/(M(x)+B(x));

  Whether Significant(x) is significant (e.g. we use 0.5 as a threshold to judge significant)

    If yes,

        then the testing polyp/nodule is labeled as “1”

    If no,

        then the testing polyp/nodule is labeled as “0”

  Return the final label

After the application of the voting algorithm, the information from each slice/voxel can be 

gathered and summarized. Based on the voting strategies, we will have the final predictive 

label for each testing polyp/nodule.

2.3. Validation Strategy

Cross-validation is a validation technique for assessing how the results of a statistical 

analysis will generalize to an independent dataset. It is mainly used in settings where the 

goal is prediction, and one wants to estimate how accurately a predictive model will perform 

in practice. To evaluate the classification performance of the proposed CNN models, the 

cross-validation algorithm is utilized. Due to the small sample sizes, two most extreme 

cross-validation approaches are considered in this study: two-fold and leave-one-out cross-

validations.

For the two-fold cross-validation, the whole sample is randomly divided into two equal 

parts. One part is used for training and the other is used for validation. Two-fold validation is 

an extreme case that the training set is the smallest compared to other fold validation (e.g. 

10-fold or 5-fold validation). Therefore, the two-fold validation may have the worst 

performance of classification.

For the leave-one-out cross-validation, one polyp/nodule will be randomly selected at each 

time. All the polyps/nodules are used as the training set, and the left one is used for 

validation, repeat this procedure until all the polyps/nodules have been chosen as the left one 

and been used as the validation from the trained CNN models. The leave-one-out cross-

validation is another extreme and it has the largest training set. Therefore, it may have the 

best classification performance. However, the shortage of the leave-one-out cross-validation 

is that sometimes overfitting may happen, and bias may be encountered in unbalanced 

datasets.
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In summary, for the two small and unbalanced datasets, both two-fold and leave-one-out 

cross-validations were used to evaluate the classification performance for the proposed 

models. Multiple runs are adopted for both the two-fold cross-validation and the leave-one-

out cross-validation, e.g. twenty runs for two-fold strategy and ten runs for leave-one-out 

strategy for proposed models, then the classification performances are averaged as the final 

performance. Due to the page limit, the results of two-fold cross validation under the 

toughest condition will be presented in this paper. The leave-one-out cross-validation is 

summarized in the Appendix as reference.

2.4. Statistical Analysis

To thoroughly understand the classification performance of the proposed models, the 

following commonly used validation measurements are used:

True positive (TP): malignant correctly identified as malignant.

False positive (FP): benign incorrectly identified as malignant.

True negative (TN): benign correctly identified as benign.

False negative (FN): malignant incorrectly identified as benign.

Accuracy (ACC): The correct prediction from the whole dataset.

ACC = TP + TN
whole validation dataset

(1)

True positive rate (TPR):

TPR = TP/ TP + FN

(2)

False positive rate (FPR):

FPR = FP/ FP + TN

(3)
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Area under the curve (AUC): It is used in classification analysis in order to determine which 

of the used models predicts the classes best. An example of its application is receiver 

operating characteristic (ROC) curves. In ROC, the FPR is defined as x-axis and TPR is 

defined as y-axis.

Sensitivity (SE): the ability of the test to correctly identify those patients with the disease.

Sensitivity = TP
TP + FP

(4)

Specificity (SP): the specificity of a clinical test refers to the ability of the test to correctly 

identify those patients without the disease.

Speci f icity = TN
TN + FN

(5)

Based on above-mentioned validation measurements, we can have a better knowledge about 

the model we trained. In addition, AUC, ACC, SE and SP are used to evaluate the 

classification performance from different viewpoints. Also, we can use these measurements 

to compare the classification performance between different models. The advantages and 

disadvantages of proposed models can be well represented from these measurements.

3. Results

The proposed CNN models are implemented using Keras (the Python Deep Learning 

library) and Quadra P4000 is used as the GPU. Four different statistical measurements (i.e. 

AUC, ACC, SE and SP) are used for testing the validation performance. Two-fold cross 

validation strategy are used to show the classification performance in the results part.

3.1. Malignant-Benign Classification Performance on the Polyp Dataset

The MCMS-2D CNN model is applied on the polyp dataset. For each run, 31 polyps (16 

malignant and 15 benign polyps) are randomly chosen as the training dataset, 32 remaining 

polyps (16 malignant and 16 benign polyps) are then automatically recognized as the 

validation dataset. Two channels are finally determined as raw images and LBP feature 

maps. In each channel, the size of each slice is set to 48*48, the total number of 

convolutional layers are three for each channel separately. The filter size is 5*5 and the 

number of filters for each layer is 64, 128 and 128, respectively. Twenty slices are used to 
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represent one polyp volume. Please refer to Table 2 for more details about the architecture of 

the proposed CNN model.

3.1.1. Two-Fold Cross-Validation via MCMS-2D CNN Model—The average result 

of two-fold cross-validation are shown in Table 4. Both AUC (Mean±SD): 0.86±0.06 and 

ACC (Mean±SD): 0.83±0.06 are relatively consistent across the different runs. The results 

indicate that the MCMS-2D CNN model has reasonably good classification performance. In 

addition, the SE and SP are quite good, which have very important clinical impact. For the 

diagnosis on the pathologically proven datasets, SE represents the probability to correctly 

recognize the malignant polyp and it is clinically important because we should not ignore 

any malignant lesion. Then, to reveal the effectiveness of our proposed model, comparison 

experiments are adopted.

3.1.2. Comparison between the Proposed Model and state-of-the-art Models
—To better understand the classification performance of the MCMS-2D CNN model on the 

polyp dataset, we compared it to a traditional machine learning algorithm, i.e. the optimized 

Haralick texture model (Song et al., 2014; Hu et al., 2016), and several well-known CNN 

models, i.e. VGG-16 (Simonyan and Zisserman, 2014), VGG-19 (Simonyan and Zisserman, 

2014) and AlexNet (Krizhevsky et al., 2012), the parameters from those models are carefully 

designed and optimized. The well published optimized Haralick texture model uses the 

Random Forest (RF) strategy to choose the representative features to do the classification, 

please refer to (Song et al., 2014; Hu et al., 2016) for more technique details. The 

classification results of all the comparison models are shown in the Appendix Table C1, the 

comparisons among those models are provided in the Figure 4. Compared our proposed 

CNN model with optimized Haralick texture model, the AUCs of two models are similar. 

However, the MCMS-2D CNN model has higher ACC, SE and SP than the optimized 

Haralick texture model. In addition, the standard deviations of the MCMS-2D CNN model is 

a little bit smaller than the optimized Haralick texture model, which means that the 

MCMS-2D CNN model has more consistent classification performance in different runs. 

Compared our proposed CNN model with other well-known CNN models, we can clearly 

identify that our proposed CNN model outperforms those well-known CNN models on this 

polyp dataset. Among three well-known CNN models, VGG-16 has better classification 

performance, AlexNet is the second and VGG-19 gets the worst performance.

We already know well that CNN architecture like VGG-16, VGG-19 and AlexNet work 

great for the big data classification, however for the small dataset, the classification 

performance dropped when the layers become deeper (e.g. VGG-16 is about 0.83 AUC, but 

VGG-19 is only 0.74 AUC). The possible reason is that when the layers go deeper, the 

advantage is that more abstract information can be extracted, but the disadvantage is also 

obvious, as more weights need to be trained which requires a larger training dataset. Thus, 

we believe that for the small medical image dataset, like the proposed pathologically proven 

dataset in this paper, instead of using those deep CNN architecture with many convolutional 

layers, some simple CNN architecture (like the MCMS-2D model we proposed) can also 

solve the classification problem quite well.
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3.2. Malignant-Benign Classification Performance on the Lung Nodule Dataset

The lung nodule dataset is much more difficult to be classified than the polyp dataset, 

because it is not only a small dataset (only 67 lung nodules), but also badly unbalanced (18 

benign and 49 malignant nodules). As we know, unbalanced dataset will significantly affect 

the training procedure, especially for the small dataset. Too small number of the training set 

from one category will be a big concern for the binary classification problem.

3.2.1. Two-Fold Cross-Validation via MCMS-2D CNN Model—To adopt the two-

fold cross-validation for the proposed MCMS-2D CNN model on the lung nodule dataset, 34 

nodules (24 malignant and 10 benign nodules) are randomly chosen as the training set in 

each run, and the remaining 33 nodules (25 malignant and 8 benign modules) are then 

automatically recognized as the testing set. Two channels are finally determined as raw 

images and LBP feature images. In each channel, the size of each slice is set to 32*32, and 

the total number of convolutional layers is two for each channel separately. The filter size is 

5*5 and the number of filters for each layer is 64 and 128, respectively. Ten slices will be 

used to represent one lung nodule.

The classification performance of the MCMS-2D CNN model is shown in Table 5. The 

classification performance is obviously dropped compared with the performance of the 

polyp dataset, and it is believed to be reasonable because this dataset is extremely 

unbalanced. In the training set, there are only 10 benign nodules and 10 slices for each 

nodule, which means that there are only 100 slices for the benign category. Since the CNN 

models require large datasets, there is a major concern that insufficient learning may occur 

in the training process.

3.2.2. Two-Fold Cross-Validation via V-1D CNN Model—To overcome the 

challenge of unbalanced, the V-1D CNN model was adopted to analyze the lung nodule 

dataset. Similar to Section 3.2.1, 34 nodules (24 malignant and 10 benign nodules) are 

randomly chosen as the training set in each run, and the remaining 33 nodules (25 malignant 

and 8 benign modules) are then automatically recognized as the testing set. The ROI is set to 

7 * 7, two 1D convolutional layers are added to the model, the size of the filter is set to 21 

and 11, respectively. In total, 2000 voxels are picked up from each lung nodule volume. The 

proposed model can extremely expand the training samples, as we mentioned in the Section 

2.2.2, and this model should be less affected by insufficient learning problem. Please refer to 

Table 3 for more details about the architecture of the proposed CNN model. The 

classification performance of the V-1D CNN model is shown in Table 6.

The results show that the V-1D CNN model achieves better performance than the 

MCMS-2D CNN model, especially for AUC, SE and SP (ACC has less meaning in 

unbalanced dataset), with approximate 5% improvement in each measure. Although the 

number of malignant training samples is still much larger than benign training samples, the 

V-1D CNN model can successfully study the differences between benign and malignant 

lesions based on the voxel level training samples we generated. The bias caused by the large 

malignant training set is less in the V-1D CNN model than the MCMS-2D CNN model. The 

main reason of the V-1D CNN model having overall better performance could be that the 
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V-1D CNN model can offer sufficient training samples even the training dataset is badly 

unbalanced. This will help to avoid the insufficient learning problem from the category with 

less cases. As a result, V-1D CNN model is more suitable for the small and unbalanced 

dataset.

3.2.3. Comparison among Proposed Models and state-of-the-art Models—
Similar to the analysis of the polyp dataset, we also tested the lung nodule dataset using the 

optimized Haralick texture model and well-known CNN models to compare the 

classification performance with two proposed models, the classification performance results 

are shown in the Appendix Table D1. The comparison performances among all the models 

are shown in Figure 5. Between our proposed two CNN models, the MCMS-2D CNN model 

has inferior classification performance than the V-1D CNN model in all validation measures, 

which may possibly due to insufficient learning. In addition, among our proposed two 

models and the optimized Haralick texture model, the optimized Haralick texture model has 

the lowest values of AUC, ACC and SP but not SE. This finding indicates that CNN models 

have the potential ability to achieve better classification performance even when the dataset 

is quite small and unbalanced. Furthermore, we compared the well-known CNN models with 

our proposed CNN models, the results are very interesting. When we use deep CNN 

architecture to study this dataset, we found that the specificity measurement is very small 

(around 0-0.15), but the sensitivity is almost consistent to 1, this phenomenon clearly 

indicates that it is tough for deep CNN to study this dataset, therefore, most cases are 

identified as malignancy. The possible reason is that most cases from this dataset are 

malignancy, it is hard to learn abstract features from benign ones within such a small number 

of cases, thus no representative and distinguishable features are well trained and learned. 

This is additional evidence that we should design unique models to deal with small datasets.

By studying large number of local regions from malignant and benign nodules, the V-1D 

CNN model can achieve around 0.71 AUC and it demonstrates that V-1D CNN model 

indeed works well for the small and unbalanced datasets. Due to the shortage of the training 

samples, the MCMS-2D model works a little bit worse, but still achieve reasonable 

classification performance. We also find that by feeding voxel-level local information into 

the V-1D CNN model, we can achieve quite good classification performance, that is to say, 

local information from malignances and benigns are also distinguishable. This is a very 

interesting finding, we always want to differentiate malignant from benign lesions via whole 

volume, however, too many overlap information in the whole volumes will bias the results 

when we identify malignant or benign lesion at whole volume level. Instead, V-1D CNN 

model gives another way of thinking, we can identify malignant from benign lesions firstly 

at voxel level and then predict the final label for the whole volume via voting algorithm.

4. Discussion and Conclusion

In this paper, we proposed two CNN models to identify the malignant from benign lesions 

and adopt the models to two small and unbalanced pathologically proven datasets. This work 

is at an early stage of the field which adopts deep learning approaches to focus on 

pathologically proven datasets. The MCMS-2D CNN model can achieve relatively good 

classification performance in small datasets, and the model is very consistent across different 
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datasets. However, the V-1D CNN model works better for the small and unbalanced dataset. 

Its power of extremely expanding the training set provides lots of benefits for the 

classification on the unbalanced dataset. In general, the results demonstrated that the 

proposed models have their own advantages on studying small datasets. Reasonably good 

classification performance can be achieved on two datasets, e.g. 0.86 AUC for the polyp 

dataset and 0.71 AUC for the lung nodule dataset.

The first thing worth noticing again is always about the dataset. We would like to claim 

again that studying the pathologically proven datasets are necessary. In previous studies, 

most researches use datasets without the pathologically record, which brings a very serious 

concern about the ground truth labeling of those nodules/polyps. In order words, how to 

avoid the labeling noises is crucial. Litjens et al. (2017) showed an example about the widely 

used lung CT LIDC-IDRI dataset (Armato et al., 2011). In the LIDC-IDRI dataset, 

pulmonary nodules were annotated by four radiologists independently, those experts 

reviewed annotations from others, but no consensus was forced. The results showed that 

only 25% nodules are totally agreed to be a nodule, for the others, they could not reach 

clearly conclusions (Armato et al., 2011). Han et al. (2015) showed another example that 

when the label definition of the nodule is different in the LIDC-IDRI dataset, the 

classification performances are largely different (one is about 0.91 AUC, another one is 

about 0.78 AUC). Thus, when using those datasets, we should have careful consideration of 

how to deal with noise and uncertainty. Even though quite good classification performances 

have been achieved from many studies using datasets without the pathologically record (e.g. 

studies using the LIDC-IDRI dataset), the real performance of differentiating malignant 

from benign lesions is still not fully known yet. One simple and straightforward solution is, 

to use the pathologically proven datasets.

Since the pathologically proven datasets are always small, we need to design a proper CNN 

model to fit for the small data. In this study, we pointed out that instead of studying the raw 

CT images only, we would like to study the feature images of the raw CT images too. The 

strategy is using multi-channel CNN to feed the raw images and their feature images into the 

model via different channels and study them simultaneously. The main idea is if we don’t 

have large dataset to thoroughly train the CNN model, can we directly send meaningful 

feature images to the CNN model and train the CNN model to achieve better classification 

performance? In Section 2.2.1, we designed our model with multiple channels, and we 

examined three commonly used feature images to verify our ideas. The conclusion is that 

additional feature images indeed improved the classification performance of the trained 

CNN model. In details, when only raw images were used, the classification of MCMS-2D 

CNN on the polyp dataset is about 0.78 AUC. When the LBP feature images were added as 

the second channel, the MCMS-2D CNN model can achieve around 0.86 AUC, which is a 

huge improvement. However, when the third channel was added with either gradient images 

or HOG feature images, there were no further gains, and this phenomenon is consistent with 

the lung nodule dataset. This indicates that, adding proper feature images could help to train 

better classification performance when the dataset is small. Furthermore, the results show 

that, for the polyp and lung nodule diagnosis, LBP features are more important than gradient 

images and HOG feature images as it will bring more effective features for the model to 

differentiate malignant from benign lesions. To show the effectiveness of the MCMS-2D 
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CNN model we proposed, the average AUC of different experiment designs are listed in 

Table 7.

As shown in Table 7, AUC progressed as more slices and LBP added to the MCMS-2D 

CNN model. Only 0.76 AUC was achieved when one slice with max region of polyp tissues 

from each polyp was used to train the CNN model. There was 2% improvement in AUC by 

using multi slices from each polyp, 4% additional improvement by using multiple channels 

and finally 4% more improvement by using the proper number of slices for each polyp 

volume.

However, pathologically proven datasets are not only small but also very unbalanced at 

times, e.g. the lung nodule dataset in this study. It will become tougher for the MCMS-2D 

CNN model to overcome the unbalanced problem even with multi-channel and multi-slice 

inputs. The classification results of differentiating the lung nodule dataset using the 

MCMS-2D CNN model demonstrated that the number of the inputs were still quite small for 

the unbalanced dataset. Like studies in Liu et al. (2018), Zhang et al. (2018) and Oliveira 

and Viana (2018), the voxel level 1D CNN model has its superiority and can achieve 

reasonably good classification performance. These studies inspired us to propose a V-1D 

CNN model to extremely expand the training samples at the voxel level and overcome the 

small and unbalanced issues. From the results shown in the Section 3.2, the results indicate 

that V-1D CNN model has big advantage to overcome small and unbalanced issues. Its 

superpower of expanding the training samples can help the CNN model to study from huge 

number of inputs, which will provide more benefits than the noises the method produced. Of 

course, the V-1D CNN model has its own concerns and shortages, e.g. 1D signals contains 

less information when compared with 2D slices or 3D cubes. But, on the other hand, the 

training samples are expanding significantly, which will help us to train better CNN models 

with better classification performance. In the V-1D CNN model, two important parameters 

need more attention. One key factor is to confirm the level of the down-sampling to 

represent whole polyp/lung nodule. In this study, 1000 and 2000 voxels per polyp/nodule 

volume were explored and 2000 voxels achieved the best performance. The other one is the 

size of the ROI (local region) for each voxel, 5*5 square and 7*7 square were explored, and 

7*7 square performed better. These two parameters will affect the classification performance 

a lot and furthermore studies are needed to better understand the relationship between these 

two parameters and the classification performances and may reveal key information to 

differentiate malignant from benign lesions.

In addition to the two-fold cross-validation approach, the leave-one-out cross-validation 

were also utilized, and the results are presented in the Appendix. For the polyp dataset, the 

MCMS-2D CNN model achieved similar classification performances between the two-fold 

and leave-one-out cross-validation approaches. For the lung nodule dataset, the two-fold 

cross-validation approach outperformed the leave-one-out cross-validation approach. This 

interesting phenomenon demonstrated that bias will be produced into leave-one-out cross-

validation when this dataset is not only small but also unbalanced and this bias will greatly 

affect the MCMS-2D CNN model. However, the classification performance of V-1D CNN 

model is still quite good and consistent between two-fold and leave-one-out cross-validation 

performances, indicating that the V-1D CNN model can not only overcome the bias from the 
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unbalanced dataset, but also achieve good classification performance via studying the local 

information.

In summary, the MCMS-2D CNN model can offer good classification performance if the 

dataset has reasonably amount of training samples. Another important finding about the 

MCMS-2D CNN model is that if some typical feature images (e.g. the LBP pattern of the 

raw images) are manually added as extra inputs, the classification performance can be 

improved, especially for the small dataset. Furthermore, if the dataset is too small and 

unbalanced, V-1D CNN model can offer better performance via extremely expanding the 

training samples. Even though the V-1D CNN model has its own limitations, we find the 

importance of the voxel-level concept, which can overcome extremely small sample size and 

unbalanced issues and achieve meaningful results.

The limitations for the proposed CNN models are also provided here for the discussion. 

First, setting and tuning the parameters from the CNN models are still the key problems but 

very challenging. For example, for the MCMS-2D CNN model, the number of the slices we 

want to use largely dependents on the dataset itself, it could be varied a lot for different 

datasets, which is quite time consuming to search for the proper values; similar to the V-1D 

CNN model, when we use voxel level concept, the number of the voxels we would like to 

pick up from the whole volume is quite important and those numbers will significantly 

impact the classification results, so the down-sampling rate is important but need to be tested 

to achieve the good result. Second, the proposed CNN models still didn’t fully study all the 

information from the dataset. In the MCMS-2D CNN model, we fix the number of slices we 

would like to use for each volume, thus some slices may not be used at all; similar to V-1D 

CNN model, for the voxels we picked up, the representative features will be generated from 

2D matrix into 1D vectors, as we shown in the Figure 3B, some topology information will 

be missed during this process. Those are the key factors to optimize our proposed models 

and additional improvement can be expected.

For the future work, on one hand, we will continue collecting polyps/nodules with pathology 

reports to enrich our pathologically proven datasets. On the other hand, we would like to 

further optimize the proposed CNN models. For the MCMS-2D CNN model, we would like 

to firstly study how to better tune the parameters for the model, then we will investigate on 

collecting and feeding more texture features to the CNN models to pursuit better 

classification performance. For the V-1D CNN model, we also would like to first study how 

to better tune the parameters for the model, then apply this voxel-level concept onto voxel-

level two-dimensional (V-2D) CNN or voxel-level three-dimensional (V-3D) CNN models to 

both expanding the training samples and include more information for each voxel. We 

believe that more information for each voxel will let us study the data better and bring us 

better classification performance. In addition, we would like to further investigate whether 

local information could provide additional help to diagnosis malignant/benign lesions and 

we will optimize our models once we enlarge our pathologically proven datasets.
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Appendix

A. Leave-One-Out Cross-Validation Performance via the MCMS-2D CNN 

Model on the Polyp Dataset

Average results of the leave-one-out cross-validation approach for the polyp dataset are 

shown in the Table A.1. The MCMS-2D CNN model achieved 0.87 AUC, with a standard 

deviation of 0.02. Both SE and SP are relatively high, and ACC is 0.84. These results 

demonstrate the robustness of the proposed MCMS-2D CNN Model.

Table A.1.

Classification performance of the MCMS-2D CNN model on the polyp dataset using the 

leave-one-out cross validation (Mean±SD).

Model AUC ACC Sensitivity Specificity

MCMS-2D CNN Model 0.87±0.02 0.84±0.02 0.89±0.02 0.75±0.04

B. Leave-One-Out Cross-Validation Performance via the proposed CNN 

models on the Lung Nodule dataset

Average results of the leave-one-out cross-validation approach for the lung nodule dataset 

are shown in Table B.1. The performance of MCMS-2D CNN model is poor with an AUC of 

0.55 and a SP of 0.22. On the contrary, the V-1D CNN model has better performance, AUC 

is approximate 0.70 with a standard deviation of 0.04. SE is comparable to the performance 

of the MCMS-2D CNN mode, while SP is 25% better than the MCMS-2D CNN model.

Table B.1.

Classification performance of proposed CNN models on lung nodule dataset (Mean±SD).

Model AUC ACC Sensitivity Specificity

MCMS-2D CNN Model 0.55±0.07 0.74±0.01 0.83±0.12 0.22±0.17

V-1D CNN Model 0.70±0.03 0.76±0.03 0.80±0.05 0.47±0.05

The results of Appendix A and Appendix B are averaged from 10 separate runs.

C. Two-Fold Cross-Validation Performance via the comparison models on 

the Polyp Dataset

Table C.1

Classification performance of several well-known CNN architectures on polyp dataset.

Model AUC ACC Sensitivity Specificity

Alex-net CNN 0.78±0.07 0.78±0.06 0.73±0.13 0.83±0.10

Vgg-16 CNN 0.83±0.06 0.81±0.06 0.78±0.09 0.85±0.10
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Model AUC ACC Sensitivity Specificity

Vgg-19 CNN 0.74±0.07 0.74±0.05 0.72±0.12 0.75±0.13

Haralick Feature RF 0.86±0.05 0.78±0.05 0.81±0.10 0.74±0.12

D. Two-Fold Cross-Validation Performance via the comparison models on 

the Lung Nodule Dataset

Table D.1

Classification performance of several well-known CNN architectures on lung nodule dataset.

Model AUC ACC Sensitivity Specificity

Alex-net CNN 0.61±0.10 0.76±0.02 0.96±0.06 0.14±0.20

Vgg-16 CNN 0.52±0.10 0.76±0.01 0.99±0.03 0.06±0.11

Vgg-19 CNN 0.49±0.08 0.76±0.01 0.99±0.01 0.02±0.08

Haralick Feature RF 0.61±0.07 0.67±0.05 0.85±0.08 0.18±0.12
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Highlights

• Proposed two CNN models to classify small cancer image dataset 

(Malignance/Benign).

• Combine raw images and LBP features can improve the classification on 

small data.

• Proposed V-1D model can better study the small and unbalanced dataset.

• Local information from lung nodule significantly improves the M/B 

classification.
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Figure 1. 
The flowchart of our proposed pipeline.
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Figure 2. 
The major architecture of MCMS-2D CNN model.
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Figure 3. 
The major architecture of V-1D CNN model. Box A shows an example of extracting ROI 

from the voxel. Box B shows the details about how we stretch those attributes of ROI as a 

1D vector for the training.
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Figure 4. 
Classification performance from different models on the polyp dataset. For each validation 

measurement, results of all 5 models are shown by sequence with different color, means and 

standard deviations are shown in each bar.
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Figure 5. 
Classification performance from different models on lung nodule dataset. For each 

validation measurement, results of all the models are shown by sequence with different 

color. Means and standard deviations are shown in each bar.
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Table 1.

Two pathologically proven small datasets.

Dataset Malignant N (%) Benign N (%) Total Pathological Report

Colorectal Polyps 32 (51%) 31 (49%) 63 Yes

Lung Nodules 49 (73%) 18 (27%) 67 Yes
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Table 2:

Architecture of a standard two-channel MCMS-2D CNN model for Polyp dataset with parameters

2D-CNN Channel 1 Channel 2

structure1 2D Convolutional Layer (5*5, 64) 2D Convolutional Layer (5*5, 64)

structure2 Activation “Relu” Activation “Relu”

structure3 BatchNormalization BatchNormalization

structure4 MaxPooling2D (2*2, strides=l) MaxPooling2D (2*2, strides=l)

structure5 2D Convolutional Layer (5*5, 128) 2D Convolutional Layer (5*5, 128)

structure6 Activation “Relu” Activation “Relu”

structure7 BatchNormalization BatchNormalization

structure8 MaxPooling2D (2*2) MaxPooling2D (2*2)

structure9 2D Convolutional Layer (5*5, 128) 2D Convolutional Layer (5*5, 128)

structure10 Activation “Relu” Activation “Relu”

structure11 MaxPooling2D (2*2) MaxPooling2D (2*2)

structure12 Dropout (0.5) Dropout (0.5)

structure13 Flatten() Flatten()

structure14 Merge(channel 1 &channel 2)

structure15 Dense

structure16 Dense

structure17 Dense, activation=softmax
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Table 3:

Architecture of a standard V-1D CNN model for Lung nodule dataset with parameters

1D-CNN

structure1 1D Convolutional Layer (21,32)

structure2 BatchNormalization

structure3 Activation “Relu”

structure4 Maxpooling1D (2)

structure5 1D Convolutional Layer (11,64)

structure6 BatchNormalization

structure7 Activation “Relu”

structure8 Maxpooling1D (2)

structure9 GlobalAveragePooling1D

structure10 Dense, activation=softmax
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Table 4.

Classification performance of the MCMS-2D CNN model on the polyp dataset (Mean±SD).

Model AUC ACC Sensitivity Specificity

MCMS-2D CNN Model 0.86±0.06 0.83±0.06 0.85±0.07 0.79±0.11
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Table 5.

Classification performance of MCMS-2D CNN model on lung nodule dataset (Mean±SD).

Model AUC ACC Sensitivity Specificity

MCMS-2D CNN Model 0.66±0.09 0.77±0.03 0.76±0.09 0.46±0.16
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Table 6.

Classification performance of V-1D CNN model on the lung nodule dataset (Mean±SD).

Model AUC ACC Sensitivity Specificity

V-1D CNN Model 0.71±0.08 0.78±0.03 0.8±0.11 0.53±0.15
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Table 7.

Average AUC of different experiment designs on the polyp dataset.

Max-Slice-Raw Multi-Slices-Raw MCMS-Raw-LBP-10Slices MCMS-Raw-LBP-20Slices

AUC 0.76 0.78 0.82 0.86
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