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Summary

Bayesian additive regression trees (BART) is a flexible prediction model/machine learning 

approach that has gained widespread popularity in recent years. As BART becomes more 

mainstream, there is an increased need for a paper that walks readers through the details of BART, 

from what it is to why it works. This tutorial is aimed at providing such a resource. In addition to 

explaining the different components of BART using simple examples, we also discuss a 

framework, the General BART model, that unifies some of the recent BART extensions, including 

semiparametric models, correlated outcomes, statistical matching problems in surveys, and models 

with weaker distributional assumptions. By showing how these models fit into a single framework, 

we hope to demonstrate a simple way of applying BART to research problems that go beyond the 

original independent continuous or binary outcomes framework.
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1 ∣ INTRODUCTION

Bayesian additive regression trees (BART; Chipman et al.1) has gained popularity in the 

recent years among the research community with numerous applications including 

biomarker discovery in proteomic studies2, estimating indoor radon concentrations3, 

estimation of causal effects4,5, genomic studies6, hospital performance evaluation7, 

prediction of credit risk8, predicting power outages during hurricane events9, prediction of 

trip duration in transportation10, and somatic prediction in tumor experiments11. BART has 

also been extended to survival outcomes12,13, multinomial outcomes14,15, and semi-

continuous outcomes16. In the causal inference literature, notable papers that promote the 

use of BART include Hill5 and Green and Kern17. BART has also been consistently among 

the best performing methods in the Atlantic causal inference data analysis challenge18,19,20. 

In addition, BART has been making inroads in the missing data literature. For the imputation 

of missing covariates, Xu et al. 21 proposed a way to utilize BART for the sequential 

imputation of missing covariates, while Kapelner and Bleich22 proposed to treat missingness 

in covariates as a category and set up the splitting criteria so that the eventual likelihood in 
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the Metropolis-Hasting (MH) step of BART is maximized. For the imputation of missing 

outcomes, Tan et al.23 examined how BART can improve the robustness of existing doubly 

robust methods in situations where it is likely that both the mean and propensity models 

could be misspecified. Other more recent attempts to utilize or extend BART include 

applying BART to quantile regression24, extending BART to count responses25, using BART 

in functional data26, applying BART to recurrent events27, identifying subgroups using 

BART28,29,30, using BART as a robust model to impute missing principal strata to account 

for selection bias due to death31, decision making and uncertainty quantification for 

individualized treatment regimes32, as well as competing risks33.

The widespread use of BART has resulted in many researchers starting to use BART as a 

reference model for comparison when proposing new statistical or prediction methods. A 

few recent examples include Liang et al.34, Nalenz and Villani35, and Lu et al.36. This 

growing interest for BART raises a need for an in-depth tutorial paper to help researchers 

better understand the method. The first portion of this paper is aimed at addressing this.

The second portion of our work revolves around extensions of BART beyond the original 

independent continuous or binary outcomes setup. Recent papers involved extensions of 

BART to semiparametric models37, correlated outcomes38, statistical matching problems in 

surveys39, and more flexible outcome distributions40. Although these papers were written 

separately, they share a common feature in their framework. In brief, when estimating the 

posterior distribution, they subtract a latent variable from the outcome and then model this 

residual as BART. This idea, although simple, is powerful because this can allow researchers 

to easily extend BART to problems that they may face in their data set without having to 

rewrite or re-derive the Monte Carlo Markov Chain (MCMC) procedure for drawing the 

regression trees in BART. We summarize this idea in a framework unifying these models 

that we call, the General BART model. We believe that by presenting our General BART 

model framework and linking it with the models in these four papers as examples, it will be 

a valuable tool for researchers who are trying to incorporate and extend BART to solve their 

research problems.

Our in-depth review of BART in Section 2 focuses on three commonly asked questions 

regarding BART: What gives BART flexibility? Why is it called a sum of regression trees? 

What are the mechanics of the BART algorithm? In Section 3, we demonstrate the superior 

performance of BART compared to the Bayesian linear regression (BLR) when data are 

generated from a complicated model. We then describe the application of BART to two real-

life data sets, one with continuous outcomes and the other with binary outcomes. Section 4 

lays out the framework for our General BART model that allows BART to be extended to 

semiparametric models, correlated outcomes, survey, and situations where a more robust 

assumption for the error term is needed. In each of these examples, we describe how the 

prior distributions are set and how the posterior distribution is obtained. We conclude with a 

discussion in Section 5.
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2 ∣ BAYESIAN ADDITIVE REGRESSION TREES

We begin our discussion with the independent continuous outcomes BART. We argue that 

BART is flexible because it is able to handle non-linear main effects and multi-way 

interactions without much input from researchers. To demonstrate how BART handles these 

model features, we explain using a visual example of a regression tree. We then illustrate the 

concept of a sum of regression trees using a simple example with two regression trees. We 

next show how a sum of regression trees accommodate non-linear main and multi-way 

interaction effects. We provide two perspectives to show how BART determines these non-

linear effects automatically. First, we discuss the BART mechanism using a visual and 

detailed breakdown of the BART algorithm at work with a simple example, providing the 

intuition for each step along the way. Second, we provide a more rigorous explanation of the 

BART MCMC algorithm by discussing the prior distribution used for BART and how the 

posterior distribution can be calculated. Finally, we show how BART handles independent 

binary outcomes.

2.1 ∣ Continuous outcomes

2.1.1 ∣ Single regression tree—To understand BART we first introduce regression 

trees. Suppose we have covariates x = (x1,…, x5) and outcome y. A regression tree 

represents the conditional expectation of y given x. We provide a visual representation of a 

hypothetical, simple regression tree in Figure 1. Each place where there is a binary decision 

split is called a node. At the top node (root), there is a condition x2 < 100. If x2 < 100 is true, 

we follow the path to the left, otherwise we follow the path to the right. Assuming that x2 < 

100 is true, we see that we arrive at a node which is not split upon. This is called a terminal 

node and the parameter μ1 = 1.19 is the assigned value of E[y∣x] for any x where x2 < 100. 

Suppose instead that x2 < 100 is not true. Then, moving along the right side, another internal 

node with condition x4 < 200 is encountered. This condition would be checked and, if this 

condition is true (false), we follow the path to the left (right). This process continues until 

we reach a terminal node and the parameter μi in that terminal node is assigned as the value 

of E[y∣x], where μi is the mean parameter of the ith node for the regression tree. So, for 

example, a subject k with xk1 = 30, xk2 = 120, xk3 = 115, xk4 = 191, and xk5 = 56 would be 

assigned a value of μ2 = 2.37 for E[y∣x]. The value would be exactly the same for another 

subject k′ who instead had covariates xk′1 = 130, xk′2 = 135, xk′3 = 92, xk′4 = 183, xk′5 = 

10.

We denote by T the binary tree structure itself - the various binary split decision rules of the 

form {xq < c} versus {xq > c}, c ∈ ℝ. The vector of parameters associated with T, i.e. the 

collection of terminal node parameters, is denoted by M ={μ1,…,μb}, where b is the number 

of terminal nodes. Defining a regression tree as g(x; T, M), we can view g(x; T, M) as a 

function that assigns the conditional mean E[y∣x] to the parameter μi ∈ M i.e. μi = g(x; T, M) 

↦ E(y∣x) via binary decision rules denoted as T. Note that we have not discussed how these 

binary decision rules in a regression tree are created by BART and how uncertainty about 

which covariate to split on and which value to split on, is quantified. We will address that 

when we introduce the BART priors and algorithms.
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Regression tree as an analysis of variance (ANOVA) model: Another way to think of the 

regression tree in Figure 1 is to view it as the following analysis of variance (ANOVA) 

model:

y = μ1I{x2 < 100} + μ2I{x2 ≥ 100}I{x4 < 200}I{x3 < 150}
+ μ3I{x2 ≥ 100}I{x4 < 200}I{x3 ≥ 150}I{x5 < 50}
+ μ4I{x2 ≥ 100}I{x4 < 200}I{x3 ≥ 150}I{x5 ≥ 50}
+ μ5I{x2 ≥ 100}I{x4 ≥ 200} + ε,

where I{.} is the indicator function and ε ~ N(0, σ2). We can see that the term μ1 I{x2 < 

100} corresponds to the terminal node on the top left corner of Figure 1, μ2I{x2 ≥ 100}I{x4 

< 200}I{x3 < 150} corresponds to the terminal node just below μ1 = 1.19, and so on. We can 

think of μ1I{x2 < 100} as a main effect, because it only involves the second variable x2, 

while μ2I{x2 ≥ 100}I{x4 < 200}I{x3 < 150} is a three way interaction effect involving the 

second (x2), fourth (x4), and third variable (x3). By viewing a regression tree as an ANOVA 

model, we can easily see why a regression tree and hence, BART, which is made up of a sum 

of regression trees, is able to handle main and multi-way interaction effects.

2.1.2 ∣ Formal definition—We now formally define BART. Suppose we have a 

continuous outcome y and p covariates x = (x1,…, xp). The goal is a model that can capture 

complex relationships between x and y, with the aim of using it for prediction. BART 

attempts to estimate f(x) from models of the form y = f(x)+ε, where, for now, ε ~ N(0, σ2). 

To estimate f(x), a sum of m regression trees is used i.e. f (x) = ∑ j = 1
m g(x; T j, M j). Thus, 

BART is often presented as

y = f (x) + ε = ∑
j = 1

m
g(x; T j, M j) + ε .

(1)

where Tj is the jth binary tree structure (recall T from Section 2.1.1) and Mj = {μj1,…, μjbj} 

is the vector of terminal node parameters associated with Tj. The number of trees m, is 

usually fixed at a large number, e.g., 50, 100, or 200. For example Bleich et al.41 suggests 

that 50 is often adequate. Note that some authors may also refer to the BART prior in the 

model setup as f ~BART. In addition, some readers may recognize that using y = μ + f(x) + ε 
may be more appropriate because by using (1), some form of centering for the y’s would be 

required. In fact, a transformation of y to center it at 0 is often done in the background of the 

BART algorithm (details given in the Appendix). We adopted (1) to be consistent with the 

definition used by most of the literature.

2.1.3 ∣ Sum of regression trees—We next focus on the sum of regression trees, 

f (x) = ∑ j = 1
m g(x; T j, M j). We begin by using an example with m = 2 trees and p = 3 
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covariates. Suppose we were given the two trees in Figure 2. The resulting conditional mean 

of y given x is E[y ∣ x] = ∑ j = 1
2 g(x; T j, M j). Consider the hypothetical data from n = 10 

subjects given in Table 1. We can see that the quantity that is being ‘summed’ and eventually 

allocated to E(y∣x) is not the regression tree or tree structure, but the value that each jth tree 

structure assigns to the subject. This is one way to think of a sum of regression trees. It 

allocates a sum of parameters μji to E[y∣x] of the subject. Note that contrary to initial 

intuition, it is the sum of μji’s that are allocated rather than the mean of the μji’s. This is 

mainly because BART calculates each posterior draw of the regression tree function g(x; Tj, 
Mj) using a leave-one-out concept, which we shall elaborate shortly.

Another way to view the concept of a sum of regression trees is to think of the regression 

trees in Figure 2 as ANOVA models (recall our single regression tree example). Then, the 

sum of regression trees for this simple example is just the following ANOVA model:

y = g(x; T1, M1) + g(x; T2, M2) + ε
= μ11I{x1 < 100}I{x2 < 200} + μ12I{x1 < 100}I{x2 ≥ 200} + μ13I{x1 ≥ 100}
+ μ21I{x3 < 100} + μ22I{x3 ≥ 100}I{x2 < 200} + μ23I{x3 ≥ 100}I{x2 ≥ 200} + ε .

Note that this does not imply that BART is an ANOVA model. This is because, in BART, 

each MCMC iteration produces a possibly different ANOVA model. These models are 

posterior draws from the target model distribution f(x).

Non-linearity of BART: From this simple example, we can see how BART handles non-

linearity. Each single regression tree is a simple step-wise function or ANOVA model. When 

we sum regression trees together, we are actually summing together these ANOVA models 

or step-wise functions, and as a result, we eventually obtain a more complicated step-wise 

function which can approximate the non-linearities in the main effect and multiple-way 

interactions. It is this ability to handle non-linear main and multiple-way interaction effects 

that makes BART a flexible model. But unlike many flexible models, BART does not require 

the researcher to specify the main and multi-way interaction effects.

Prior distributions: In the examples above, we have taken the trees as a given, including 

which variables to split on, the splitting values, and the mean parameters at each terminal 

node. In practice, each g(x; Tj, Mj) is unknown. We therefore need prior distributions for 

these functions. Thus, we can also think of BART as a Bayesian model where the mean 

function itself is unknown. A major advantage of this approach is that uncertainty about both 

the functional form and the parameters will be accounted for in the posterior predictive 

distribution of y.

Before getting into the details of the prior distributions and MCMC algorithm, we will first 

walk through a simple example to build the intuition.

2.1.4 ∣ BART machinery: a visual perspective—In our simple example, we have 

three covariates x = (x1, x2, x3) and a continuous outcome y. We will now run the BART 

MCMC algorithm with m = 4 regression trees for 5 iterations on this data set. At each 
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iteration, we present the regression tree structures to illustrate how the algorithm works at 

each step. As mentioned previously, we typically would choose a large number for m, for 

example, 50. Here we are using just 4 trees to illustrate the key ideas.

The first step in the algorithm is initialization of the four regression trees to single root nodes 

(See “Initiation” in Figure 3). Since all four regression trees are single root nodes, the 

parameters initialized for these nodes would be μ ji
(0) = y

m = y
4 .

With this initialization in place, BART starts to draw the tree structures for each regression 

tree in the first MCMC iteration. Without loss of generality, let us start with determining (T1, 

M1), the first regression tree. This is possible because the ordering of the regression tree 

calculation does not matter when computing the posterior distribution. We first calculate 

r1 = y − ∑ j ≠ 1g(x; T j, M j) = y − [g(x; T2, M2) + g(x; T3, M3) + g(x; T4, M4)] = y − 3 × y
4 . Then a 

MH algorithm is used to determine the posterior draw of the tree structure, T1 for this 

iteration. The basic idea of MH is to propose a new tree structure from T1, call this T1
∗, and 

then calculate the probability of whether T1
∗ should be accepted, taking into consideration: 

r1 ∣ T1
∗ (the likelihood of the residual given the new tree structure), r1∣T1 (the likelihood of 

the residual given the previous tree structure), the probability of observing T1
∗, the 

probability of observing T1, the probability of moving from T1
∗ to T1, and the probability of 

moving from T1 to T1
∗. For example, if the new tree proposed T1

∗ consists of a single root 

node of x2 < 100, then the likelihood of r1 ∣ T1
∗ would be 

N(μ11
(0)I{x2 < 100} + μ12

(0){x2 ≥ 100}, σ2) (recall the ANOVA representation of a regression tree) 

and the likelihood of r1 ∣ T1 would be N(μ11
(0), σ2). More rigorous and technical details are 

provided in the Appendix. We describe the different types of moves from T1 to T1
∗ in detail 

in the next subsection. If T1
∗ is accepted, T1 is updated to become T1

∗ i.e. T1 = T1
∗. Else, 

nothing would be changed for T1. From Figure 3, we can see that T1
∗ was not accepted in the 

first iteration so the tree structure remains as a single root node. The algorithm then updates 

M1 based on the new updated regression structure for T1, in our context draw μ11
(1) from 

μ11
(1) ∣ T1, r1, σ, and moves on to determine (T2, M2). Details of how to calculate μ ji

(b) ∣ T j, rj, σ 

where b is the iteration index can be found in the Appendix.

To determine (T2, M2), again the algorithm calculates 

r2 = y − ∑ j ≠ 2g(x; T j, M j) = y − [g(x; T1, M1) + g(x; T3, M3) + g(x; T4, M4)] = y − (μ11
(1) + 2 × y

4 ), 

where μ11
(1) is the updated parameter for regression tree 1. Similarly, MH is used to propose a 

new T2
∗ and r2 is used to calculate the acceptance probability to decide whether T2

∗ should be 

accepted. Again, we see from Figure 3 that T2
∗ was not accepted. For (T3, M3), the MH 
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iteration result is more interesting because the newly proposed T3
∗ was accepted and we can 

see from Figure 3 that a new tree structure was used for T3 in Iteration 1. This new tree 

structure produces two terminal node parameters μ31
(1) and μ32

(1) which can be drawn from 

μ31
(b) ∣ T3, r3, σ and μ32

(b) ∣ T3, r3, σ respectively. As a result, when calculating r4, this becomes 

r4 = y − (μ11
(1) + μ12

(1) + μ31
(1)I{x3 < 0.48} + μ32

(1)I{x3 ≥ 0.48} + μ41
(1)). T4

∗ was not accepted and a 

single node was updated as the tree structure for (T4, M4). Once the regression tree draws 

are complete, BART then proceeds to draw the posterior distribution of σ2, the variance of 

the error term in (1). More details will be given in the next subsection.

Figures 3 and 4 give the full iterations from initiation to iteration 5. From these figures we 

can see how the four regression trees grow and change from one iteration of the MCMC to 

another. This iterative process runs for a burn-in period (typically 100 to 1 000 iterations), 

before those draws are discarded, and then run for as long as needed to obtain a sufficient 

number of draws from the posterior distribution of f(x). After any full iteration in the 

MCMC algorithm, we have a full set of trees. We can therefore obtain a predicted value of y 
for any x of interest (simply by summing the terminal node μji’s). By obtaining predictions 

across many iterations, we can easily obtain a 95% prediction interval. Another point to note 

is how shallow the regression trees are in Figures 3 and 4 with a maximum depth of 3. This 

is because the regression trees are heavily penalized (via the prior) to reduce the likelihood 

for a single tree to grow very deep. This concept (boosting) is similar to that found in the 

machine learning literature, where many weak models (learners) combined together can 

outperform a single strong model.

2.1.5 ∣ A rigorous perspective on the BART algorithm—Now that we have a 

visual understanding of how the BART algorithm works, we shall give a more rigorous 

explanation. First, we start with the prior distributions for BART. The prior distribution for 

(1) is p[(T1, M1), …, (Tm, Mm), σ]. The assumption is that {(T1, M1), …, (Tm, Mm)} and σ 
are independent and that (T1, M1), …, (Tm, Mm) are independent of each other. Then the 

prior distribution can be written as
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p[(T1, M1), …, (Tm, Mm), σ] = p[(T1, M1), …, (Tm, Mm)]p(σ)

= ∏
j = 1

m
p(T j, M j) p(σ)

= ∏
j = 1

m
p(M j ∣ T j)p(T j) p(σ)

= ∏
j = 1

m
∏
i = 1

b j
p(μ ji ∣ T j) p(T j) p(σ) .

(2)

For the third to fourth line in (2)recall that Mj = {μj1,…, μibj} is the vector of terminal node 

parameters associated with Tj and each node parameter μji is usually assumed to be 

independent of each other. Equation (2) implies that we need to specify priors μji∣Tj, σ, and 

Tj. The priors for μji∣Tj and σ are usually given as μ ji ∣ T j~N(μμ, σμ
2) and σ2~IG ν

2 , νλ
2

respectively, where IG(a, b) is the Inverse-Gamma distribution with shape parameter a and 

rate parameter b. Note that the representation of the prior for σ2 is a slight departure from 

most BART literature which often use the Inverse-Chisquare to represent the same prior 

distribution. We employed the Inverse-Gamma representation here because it is a more 

convenient form for the benefit of the reader.

The prior for p(Tj) is more interesting and can be specified using:

1. The probability that a node at depth d = 0, 1, … would split, which is given by 
α

(1 + d)β . The parameter a ∈ {0, 1} controls how likely a node would split, with 

larger values increasing the likelihood of a split. The number of terminal nodes is 

controlled by parameter β > 0, with larger values of β reducing the number of 

terminal nodes. This aspect is important as this is the penalizing feature of BART 

which prevents BART from overfitting and allowing convergence of BART to the 

target function f(x)42.

2. The distribution used to select the covariate to split upon in an internal node. The 

default suggested distribution is the uniform distribution. Recent work by 

Ročková and van der Pas43 and Linero44 have argued that the uniform 

distribution does not promote variable selection and should be replaced if 

variable selection is desired.

3. The distribution used to select the cutoff point in an internal node once the 

covariate is selected. The default suggested distribution is the uniform 

distribution.

Tan and Roy Page 8

Stat Med. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The setting of the other parameters for the BART priors is rather technical, so we refer 

interested readers to the Appendix.

The prior distribution would induce the posterior distribution:

p[(T1, M1), …, (Tm, Mm), σ ∣ Y] ∝ p[Y ∣ (T1, M1), …, (Tm, Mm), σ] × p[(T1, M1), …, (Tm, Mm), σ]

which can be simplified into two major posterior draws using Gibbs sampling. First, draw m 
successive

p[(T j, M j) ∣ T− j, M− j, y, σ]

(3)

for j = 1,…, m, where T−j and M−j consist of all the tree structures and terminal nodes except 

for the jth tree structure and terminal node; then, draw

p[σ ∣ (T1, M1), …, (Tm, Mm), y]

(4)

from IG(ν + n
2 , {νλ + ∑[y − f (x)]2} 2).

To obtain a draw from (3), note that this distribution depends on (T−j, M−j, y, σ) through

r j = y − ∑
h ≠ j

g(x; Th, Mh),

the residuals of the m–1 regression sum of trees fit excluding the jth tree (recall our visual 

example in the previous subsection). Thus (3) is equivalent to the posterior draw from a 

single regression tree rj = g(x; Tj, Mj) + ε or

p[(T j, M j) ∣ r j, σ] .

(5)

We can obtain a draw from (5) by first integrating out Mj to obtain p(Tj∣rj, σ). This is 

possible since a conjugate normal prior on μji was employed. We draw p(Tj∣rj, σ) using a 

MH algorithm where, first, we generate a candidate tree T j
∗ for the jth tree with probability 
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distribution q(T j, T j
∗). The details of the new tree proposal are given in the next paragraph. 

We then accept T j
∗ with probability

α(T j, T j
∗) = min 1,

q(T j
∗, T j)

q(T j, T j
∗)

P(r j ∣ x, T j
∗, M j)

P(r j ∣ x, T j, M j)
P(T j

∗)
P(T j)

.

(6)

where 
q(T j

∗, T j)

q(T j, T j
∗)

 is the ratio of the probability of how the previous tree moves to the new tree 

against the probability of how the new tree moves to the previous tree, 
P(r j ∣ x, T j

∗, M j)
P(r j ∣ x, T j, M j)

 is the 

likelihood ratio of the new tree against the previous tree, and 
P(T j

∗)
P(T j)

 is the ratio of the 

probability of the new tree against the previous tree.

A new tree T j
∗ can be proposed given the previous tree Tj using four local steps: (i) grow, 

where a terminal node is split into two new child nodes; (ii) prune, where two terminal child 

nodes immediately under the same non-terminal node are combined together such that their 

parent non-terminal node becomes a terminal node; (iii) swap, the splitting criteria of two 

non-terminal nodes are swapped; (iv) change, the splitting criteria of a single non-terminal 

node is changed. Once we have the draw of p(Tj∣rj, σ), we then draw 

p(μ ji ∣ T j, r j, σ)~N([σμ
2∑r ji] [niσμ

2 + σ2], [σ2σμ
2] [niσμ

2 + σ2]), where rji is the subset of 

elements in rj allocated to the terminal node parameter μji and ni is the number of rji’s 

allocated to μji. We derive p(μji∣Tj, rj, σ), (4), and (6) for the grow and prune steps as an 

example in the Appendix. Other possible moves have also been proposed in literature. 

Interested readers can refer to the following papers45,46,47,48.

2.2 ∣ Binary outcomes

For binary outcomes, BART can be extended using a probit model. Specifically, we may 

write

P(y = 1 ∣ x) = Φ[ f (x)]

(7)

where Φ[.] is the cumulative distribution function of a standard normal distribution. With 

such a setup, only priors for (T1, M1),…, (Tm, Mm) are needed. The same decomposition in 
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(2) without σ can be employed and the similar prior specifications for μji∣Tj and Tj can be 

used. An important note that some readers may not notice is that such a setup in (7) shrinks 

f(x) toward 0 and hence shrinking Φ[f(x)] toward 0.5. This may not be what researchers 

want nor anticipate and hence, if it is more desirable to shrink Φ[f(x)] toward a value p0 ∈ 
(0, 1) that is not 0.5, the strategy is to replace f(x) in (7) with fc = f(x) + c where the offset c 
= Φ−1[p0]. The setup of the remaining parameters are slightly different from that of 

continuous outcomes and we describe the details in the Appendix.

To estimate the posterior distribution, data augmentation49 can be used. We assume that y = 

I(z > 0) where z is a latent variable drawn as follows:

z~N( − ∞, 0)[ f (x), 1] if y = 0,
z~N(0, ∞)[ f (x), 1] if y = 1

with N(a,b))[μ, σ2] being a truncated normal distribution with mean μ and variance σ2 

truncated at (a, b). Next, we can treat z as the continuous outcome for a BART model with

z = f (x) + ε

(8)

where ε ~ N(0, 1) because we employed a probit link. The usual posterior estimation for a 

continuous outcome BART with σ ≡ 1 can now be employed on (8) for one iteration in the 

MCMC. The updated f(x) can then be used to draw a new z and this new z can be used to 

draw another iteration of f(x). The process can then be repeated until convergence.

3 ∣ ILLUSTRATING THE PERFORMANCE OF BART

3.1 ∣ Posterior performance via synthetic data

We generated a synthetic data set with p = 3, n = 1000 and, the true model for y is

y = 0.5 + 0.1x1 + 0.3x2
2 + 0.7 sin(x3) + 0.2x1x2 + 0.9 ∣ x1x3 ∣ + 0.4 exp(x2x3) + 0.8 log( ∣ x1x2x3 ∣ ) + ε

with each xp ~ N(0, 1) and ε ~ N(0, 2). The goal is to demonstrate that BART can predict y’s 

effectively even in complex, non-linear models, and also properly account for prediction 

uncertainty. We will compare results of BART against that of a parametric Bayesian linear 

regression (BLR) model. To this end, we randomly selected 970 samples as the training set 

and then use the remaining 30 samples as the testing set. Note that in practice, we commonly 

see a 60(training)-40(testing) or a 70(training)-30(testing) split being used although more 

rigorous splits have been suggested50. We employed a different split because a graphical 

presentation of 300 or 400 results would not be feasible. We also varied the number of trees 

used by BART to illustrate how varying m affects the performance of BART. We plotted the 

point estimate and 95% credible interval of the 30 randomly selected testing data points and 
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compared them with their true values in Figure 5. The code to implement this simulation can 

be found in our Supporting Information.

We can see from Figure 5 that most of the point estimates of BLR were far away from their 

true values and many of the true values were not covered by the 95% credible interval. For 

BART with a single tree, although the true values were mostly covered by the 95% credible 

interval, the point estimates were far from their true values. When we increased the number 

of trees to 50 in BART, we see a significant improvement in terms of bias (closeness to the 

true values) compared to both BLR and BART with m = 1. In addition, we see a narrowing 

of the 95% intervals. As we increase the number of trees, the point estimate and 95% 

intervals stabilize. In other words, we might see a big difference between m = 1 and m = 50, 

and virtually no difference between m = 200 and m = 20 000. In practice, the idea is to 

choose a large enough value for m so that BART approximates the results that would have 

been obtained if more trees were used. Although as we increase m, the computation 

efficiency would decrease, the fact that each regression tree is a weak learner still allows 

BART to finish computation within a reasonable amount of time. Hence, Chipman et al.1 

suggested m = 200 originally but later researchers agree that m = 50 is often adequate41. 

Alternatively, one could determine a sufficiently large m using cross validation1, but that 

would be computationally expensive.

3.2 ∣ Predicting the Standardized Hospitalization Ratio from the 2013 Centers for 
Medicare and Medicaid Services Dialysis Facility Compare data set

We next present an example to demonstrate how BART can be applied to a data set to 

improve prediction over the usual multiple linear regression (MLR) model. The 2013 

Centers for Medicare and Medicaid Services Dialysis Facility Compare data set contains 

information regarding 105 quality measures and 21 facility characteristics of all dialysis 

facilities in the US, including US territories. This data set is available publicly. We provide 

the data set we downloaded and code in our Supporting Information. We are interested in 

finding a model that can better predict the standardized hospitalization ratio (SHR). This 

quantity is important because a large portion of dialysis cost for End Stage Renal Disease 

(ESRD) patients can be attributed to patient hospitalizations.

Table 2 shows some descriptive statistics for this data set. SHR was adjusted for a patient’s 

age, sex, duration of ESRD, comorbidities, and body mass index at ESRD incidence. We 

removed 463 facilities (7%) with missing SHR values because of small patient numbers. We 

also removed peritoneal dialysis (PD) removal greater than 1.7 Kt/V because of the high 

proportion of missingness (80%). We combined pediatric hemodialysis (HD) removal 

greater than 1.2 Kt/V with adult HD removal greater than 1.2 Kt/V because most facilities 

(92%) do not provide pediatric HD. We re-categorized the chain names to “Davita”, 

“Fresenius Medical Care (FMC)”, “Independent”, “Medium”, and “Small”. “Medium” 

consists of chains with 100-500 facilities while “Small” are chains with less than 100 

facilities. To estimate patient volume, we used the maximum of the number of patients 

reported by each quality measure group: Urea Reduction Ratio (URR), HD, PD, 

Hemoglobin (HGB), Vascular Access, SHR, SMR, STR, Hypercalcemia (HCAL), and 
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Serum phosphorus (SP). We also logarithm-transformed (log) SHR, SMR, and STR so that 

the theoretical range for these log standardized measures will be −∞ to ∞.

For our analysis, we used the log-transformed SHR as the outcome and the variables in 

Table 2 as the predictors. We used the root mean squared error (RMSE) of a 10-fold cross-

validation to compare the prediction performance from multiple linear regression (MLR), 

Random Forest (RF), and BART. For RF and BART, we used the default settings from the R 
packages randomForest and BayesTree respectively. The 10 RMSEs produced by each 

method from the 10-fold cross validation is provided in Figure 6. It is clear from this figure 

that BART and RF produce very similar prediction performances and are better compared to 

MLR. The mean of these 10 values also suggested a similar picture with MLR producing a 

mean of 0.24 while RF and BART produced a mean of 0.23.

3.3 ∣ Predicting left turn stops at an intersection

We next present another illustration of BART on a real example, but this time with a binary 

outcome. In Tan et al.51, the authors were interested in predicting whether a human driven 

vehicle would stop at an intersection before making a left turn. Left turns are important in 

countries with right side driving because most vehicle conflicts including crashes at 

intersections occur during left turns. Accurate predictions about whether a human driven 

vehicle would stop before executing a left turn could help driverless vehicles improve 

decision making at intersections. More details about this data set can be found in Tan et al.
51. In brief, the data comes from the Integrated Vehicle Based Safety System (IVBSS) study 

conducted by Sayer et al.52. This study collected driving data from 108 licensed drivers in 

Michigan between April 2009 and April 2010. Each driver drove one of the 16 research 

vehicles fitted with various recording devices to capture the vehicle dynamics while the 

subject is driving on public roads for 12 days.

For this example, we focused on the vehicle speed at 50, 51, …, 56 meters away from the 

center of an intersection and whether we could utilize this vehicle dynamic to predict 

whether the driver would stop (vehicle speed < 1m/s) in the future (0, 1, …, 49 meters from 

the center of an intersection). Similar to Tan et al.51, we performed a principal components 

analysis (PCA) on the vehicle speeds (50, 51,…, 56 meters) and took the first 3 principal 

components (PCs) as the predictors. Tan et al.51 took the first 3 PCs as predictors because 

they found that using the first 3 PCs as predictors improved prediction performance 

compared to using the original vehicle speeds. In addition, adding more PCs beyond the first 

3 did not improve prediction performance. We ran a 10-fold cross-validation on this data set 

and compared the binary prediction results of logistic regression, RF, and BART. Since the 

outcome of interest for this data set was binary, we used the area under the receiver 

operating curve (AUC) to determine the prediction performance instead of the RMSE, which 

is more suited for continuous outcomes.

Figure 7 shows the results of the 10 AUCs produced by each method from the 10-fold cross 

validation. BART performed better than either logistic regression or RF in predicting 

whether the human-driven vehicle would stop in the future at an intersection before making 

a left turn. This is also evident from the mean of the 10 cross validation AUC values 
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produced by each method. BART produced a mean of 0.81 compared to 0.79 from logistic 

regression, and 0.78 from RF.

4 ∣ GENERAL BART MODEL

Recently researchers have extended or generalized BART to a wider variety of settings, 

including clustered data, spatial data, semiparametric models, and to situations where more 

flexible distributions for the error term is needed. Taking a closer look at these recent 

extensions, we found a common and unifying theme. It enables the proposed models to be 

fitted without having to do extensive re-derivation for the posterior algorithm described in 

Section 2. By unifying the models in these various papers into one single approach, we 

believe it will aid the application of BART to a wider variety of situations. In addition, we 

hope the discussion of our approach would be able to spark inspiration for further, possibly 

more complicated extensions of BART.

To set up our General BART model, suppose once again that we have a continuous outcome 

y and p covariates x = {x1,…, xp}. Suppose also that we have another set of q covariates w = 

{w1,…,wq}, such that no two columns in x and w are the same. Then, we can extend (1) as 

follows:

y = f (x) + h(w, Θ) + ε

(9)

where h(.) is a function that works on w using parameter Θ, and ε ~ G(Σ) can be any 

distribution with parameter Σ.

Assuming that {(T1, M1), …, (Tm, Mm)}, Θ, and £ are independent, the prior distribution for 

(9) would be p[(T1, M1),…, (Tm, Mm)]p(Θ)p(Σ). Assuming again that the (Tj, Mj)’s are 

independent of each other, p[(T1, M1),…, (Tm, Mm)] can be decomposed into 

∏ j = 1
m ∏i = 1

b j p(μ ji ∣ T j) p(T j). The priors needed are thus p(μji∣Tj), p(Tj), p(Θ), and p(Σ). 

Note that it is possible to model Θ and Σ jointly so that the prior distribution becomes 

∏ j = 1
m ∏i = 1

b j p(μ ji ∣ T j) p(T j)p(Θ, Σ) instead. We shall see this in Example 4.4.

To obtain the posterior distribution of p[(T1, M1),…, (Tm, Mm), Θ, Σ∣y], Gibbs sampling can 

be used. For P[(T1, M1),…, (Tm, Mm)∣Θ, Σ, y], this can be seen as drawing from the 

following model

y = f (x) + ε

(10)
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where y = y − h(w, Θ), which is just a BART model with a modified outcome y . Hence, the 

BART algorithm presented in Section 2 can be used to draw {(T1, M1),…, (Tm, Mm)}. 

Similarly, p[Θ∣(T1, M1),…, (Tm, Mm), Σ, y] can be obtained by drawing from the model

y′ = h(w, Θ) + ε

(11)

where y′ = y – f(x). This posterior draw depends on the function h(.) being used as well as 

the prior distribution specified for Θ. As there are many possibilities where we can set up 

h(.) and Θ, we shall not discuss the specifics here. The examples we present in the 

subsequent subsections will highlight a few of these possibilities we have seen in the 

literature thus far. Finally, drawing from p[Σ∣(T1, M1),…, (Tm, Mm), Θ, y] is just drawing 

from the model

r = y − f (x) − h(w, Θ) = ε .

(12)

Again, many possibilities are available for setting up the prior distribution for Σ and hence 

the distributional assumption for ε. The default is usually ε ~ N(0, σ2) where 

Σ = σ2~IG ν
2 , νλ

2 . Example 4.4 shows a plausible alternative. Iterating through these Gibbs 

steps will give us the posterior draw of p[(T1, M1),…, (Tm, Mm), Θ, Σ∣y].

For binary outcomes, the probit link can once again be used where

P[y = 1 ∣ x] = Φ[ f (x) + h(w, Θ)] .

Under this framework, we will only need priors for p[(T1, M1),…, (Tm, Mm)] and p(Θ). 

p[(T1, M1),…, (Tm, Mm)] can be decomposed once again into ∏ j = 1
m ∏i = 1

b j p(μ ji ∣ T j) p(T j)

if we are willing to assume that the m trees are independent of one another, and data 

augmentation53 can be used obtain the posterior distribution. Again with the assumption that 

y = I(z > 0), we can draw

z~N( − ∞, 0)( f (x) + h(w, Θ), 1) if y = 0,
z~N(0, ∞)( f (x) + h(w, Θ), 1) if y = 1

and then treat z as the outcome for the model in (9). This implies ε ~ N(0, 1) and we can 

apply the Gibbs sampling procedure we described for continuous outcomes using z instead 

of y with Σ = σ = 1. Iterating through the latent draws and Gibbs steps will produce the 

posterior distribution that we require.
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With the general framework and model for BART in place, we are now equipped to consider 

how Zeldow et al.37, Tan et al.38, Zhang et al.39, and George et al.40 extended BART to solve 

their research problems in the next four subsections.

4.1 ∣ Semiparametric BART

The semiparametric BART approach was first developed by Zeldow et al.37. Their work was 

motivated by observational studies where there are many confounders, an exposure, and a 

small number of variables that are of interest as exposure-covariate interaction (heterogenity 

of treatment effect). While a flexible model such as BART could handle the potential 

complex confounding and main effects relationship with the outcome, there is some loss of 

interpretability relative to a parametric model. On the other hand, fully parametric models 

rely on strong assumptions.

Therefore, their idea was to have a semiparametric model, where the exposure and exposure-

covariate interactions had parametric specification, and the nuisance or confounder variables 

were modeled nonparametrically (using BART). In its simplest form, we can reconstruct this 

idea under the framework of (9) as follows. The x covariates are the confounders that have to 

be controlled for, but are not of primary interest. The variables w include the exposure and 

covariates that are of substantive interest as possible effect modifiers. Then,

h(w, Θ) = θ0 + θ1w1 + … + θqwq

where w = {w1,…, wq}, Θ = {θ0,…, θq}, and ε ~ N(0, σ2) with Σ = σ. Prior distributions 

for μji∣Tj, Tj, and σ2 follow the usual distributions we use for BART while Θ ~ MVN (β, Ω). 

Posterior estimation follows the procedure we described in Section 4 using Gibbs Sampling. 

For (10) and (12), since they suggested using the default BART priors, the usual BART 

mechanisms can be applied to obtain the posterior draws. For (11), Θ ~ MVN(β, Ω) implies 

that we can treat this as the usual BLR and standard Bayesian methods could be used to 

obtain the posterior draw for Θ. The framework for binary outcomes follows easily using the 

data augmentation step we describe in Section 4.

4.2 ∣ Random intercept BART for correlated outcomes

Random intercept BART (riBART) was proposed by Tan et al.38 as a method to handle 

correlated continuous or binary outcomes with correlated binary outcomes as the main 

focus. In this work, the authors wanted to predict whether a human driven vehicle would 

stop at an intersection before making a left turn. They used a data set that contained about 

100 drivers with each driver making numerous turns. In a preliminary analysis, they found 

that BART produced better prediction performance. However, BART was designed for 

independent outcomes and not correlated binary outcomes. Hence, they proposed to extend 

BART to handle the correlated binary outcomes in their data set by using a random intercept 

(extensions to random intercept and slope is straight forward).

To re-formulate riBART under the framework of (9), we set h(w, Θ) = wa, where Θ = (a, τ) 

and
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w =

1 0 … 0
⋮ ⋮ ⋱ ⋮
1 0 … 0
0 1 … 0
⋮ ⋮ ⋱ ⋮
0 1 … 0
⋮ ⋮ ⋮ ⋮
0 0 … 1
⋮ ⋮ ⋱ ⋮
0 0 … 1

i. e. w is a n × K matrix, where k indexes the subjects, n = ∑k = 1
K nk, with the first column 

being a vector of (1n1
0n − n1

)T, the second column (0n1
1n2

0n − n1 − n2
)T, and so on until the 

last column (0
n − ∑k = 1

K − 1nk
1nK

)T, where 1i and 0j are row vectors of 1s and 0s with size i and 

j respectively. Let a = {a1,…, aK} where a∣τ2 ~ N(0, τ2), ε ~ N(0, σ2) where Σ = σ, and 

specify the usual BART priors for σ, μji∣Tj, and Tj. a and ε are assumed to be independent. A 

simple prior of τ2 ~ IG(1, 1) could be used although more robust or complicated priors are 

possible. Posterior estimation and binary outcomes then follow the procedure described in 

Section 4 easily.

4.3 ∣ Spatially-adjusted BART for a statistical matching problem

The spatially-adjusted BART approach of Zhang et al.39 was proposed to handle statistical 

matching problems54 that occur in surveys. In statistical matching problems, inference is 

desired for the relationship between two different variables collected from two different 

studies. For example, survey A may collect information on income but survey B collects 

information on health status. Often, subjects in both surveys do not overlap. The relationship 

between income and health status is then desired. To solve this, Zhang et al.39 proposed to 

use the geographical information or information aggregated at the geographical level to 

impute the missing variables. They set up two different models for surveys A and B 

separately but with a shared spatial random effects which takes into account the 

geographical location of each individual. This spatial random effects allow correlation 

among subjects living in adjacent geographical locations to be employed to improve 

inference. Although their approach is specifically set up to handle statistical matching 

problems, a simpler version can be formulated to handle more general spatial data.

To do so, we once again use the general BART model with w and a being the same setup as 

Section 4.2 but with

a ∣ ρ, δ2~N(0, δ2(H − ρC)−1)

(13)
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where C = ckl is a K × K adjacency matrix, l = 1,…, K, with ckl = 1 if group k and group l 
are (spatial) neighbors for k ≠ l; ckl = 0 otherwise; and ckl = 0 if k = l. H is a diagonal K × K 

matrix with diagonals hk = ∑l = 1
K ckl, ρ is a parameter with range (−1, 1), and δ2 is the 

variance component for (13). The parameters ρ and δ2 are prespecified. Finally, ε ~ N(0, σ2) 

and (9) is completed by placing the usual BART priors for σ, μji∣Tj, and Tj. Posterior draws 

again follow the procedures we outline in Section 4.

4.4 ∣ Dirichlet Process Mixture BART

Similar to how BART can be used as a prior for unknown function f(·), Dirichlet process 

(DP) priors are often used as priors for unknown distributions55. We use notation D ~ 

DP(D0, α) if a random distribution D follows a DP prior with base measure D0 and 

concentration parameter α.

For the General BART Model in (9), it is the distribution of ε that is unknown. The 

following DP Mixture BART was proposed by George et al40:

εk ~
i . i . d .

N (ak, σk
2),

(ak, σk
2)~D,

D~D P(D0, ∝ ) .

Although the assumption of εk ~
i . i . d .

N(ak, σk
2) suggests that each subject will have their own 

mean and variance for the error term, draws from a DP are discrete with probability 1. 

Therefore, the number of unique values for (ak, σk
2) at any step in the posterior algorithm will 

be much less than n. Essentially, the distribution of ε can be viewed as a mixture of normals, 

where the number of mixture components is not specified. Lower values of the concentration 

parameter α favor fewer mixture components. Therefore, it is common to specify a prior for 

α that puts more weight on smaller values (i.e., our prior guess is that we will not need many 

mixture components).

Viewing DPMBART as a form of (9), we have h(w, Θ) = wa where w and a have the same 

structure as riBART and p(Θ, Σ) = (ak, σk
2). Note here that we are no longer assuming that ak 

and εk are independent unlike in some of our previous examples.

DPMBART requires specification of D0 and a prior for α. For D0, the commonly employed 

form is p(μ, σ∣ν, λ, μ0, h0) = p(σ∣ν, λ)p(μ∣σ, μ0, h0). George et al.40 specified their priors as

σ2~IG v
2, vλ

2 ; μ ∣ σ~N μ0, σ2
h0

.

The parameter ν is set at 10 to make the spread of error for a single component h tighter. 

The parameter λ is chosen using the idea from how λ is determined in BART with the 

quantile set at 0.95 instead of 0.9 (See Appendix for how λ is determined in BART). For μ0, 

Tan and Roy Page 18

Stat Med. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



because DPMBART subtracts y from y, μ0 = 0. For h0, the residuals of a multiple linear 

regression fit is used to place μ into the range of these residuals, r. The marginal distribution 

of is μ~ λ
h0

tν, where tν is a t distribution with ν degrees of freedom. Let hs be the scaling for 

μ. Given hs = 10, h0 can be chosen by solving

max ∣ rh ∣ = hs
λ

h0
.

For α, the prior used by DPMBART is the same as in Section 2.5 of Rossi56, where the idea 

is to relate α to the number of unique components in (ak, σk
2).

The posterior draw for DPMBART follows most of the ideas discussed in General BART 

where first, the idea of (10) is used to draw (T1, M1),…, (Tm, Mm)∣ak, σk
2. The slight 

difference is to view this as a weighted BART draw with εk ~
i . i . d .

N(0, wkσ2). The second 

draw, (ak, σ2)∣(T1, M1),…, (Tm, Mm) follows (11) which can be solved by using draws (a) 

and (b) of the algorithm in Section 1.3.3 of Escobar and West57. The final draw is α∣(ak, σ2). 

This is obtained by putting α on a grid and using Bayes’ theorem with 

p(α ∣ (ak, σk
2)) = p(α ∣ H) ∝ p(H ∣ α)p(α) where H is the number of unique (ak, σk

2)’s. Another 

way of generating these posterior draws (DPM portion) can be found in Neal58.

5 ∣ DISCUSSION

In this tutorial, we walked through the BART model and algorithm in detail, and presented a 

general model based on recent extensions. We believe this is important because of the 

growing use of BART in research applications. By clarifying the various components of 

BART, we hope that researchers will be more comfortable using BART in practice.

Despite the success of BART, there are a number of papers that point out some of its 

limitations and propose modifications. One such limitation is the suboptimal performance of 

BART with high-dimensional data due to the use of the uniform prior to select the covariate 

to be split upon in the internal nodes. A solution is to allow researchers to place different 

prior probabilities on each covariate59. More sophisticated solutions include using a DP 

prior for selecting covariates44 or using a spike-and-slab prior60. Other solutions have also 

been proposed61,41. Another commonly addressed limitation is the computational speed of 

BART. Due to the many MH steps that BART requires, computation speed of BART can 

often be slow, especially when the sample size n and/or the number of covriates p is large. 

One direction is to parallelize the computational steps in BART, for example, Pratola et al.62, 

Kapelner and Bleich59, and Entezari et al.63 The other direction is to improve the efficiency 

of the MH steps which leads to the reduction in the number of trees needed. Notable 

examples include Lakshminarayanan et al.64, where particle Gibbs sampling was used to 

propose the tree structure Tj’s; Entezari et al.63, where likelihood inflated sampling was used 

to calculate the MH steps, and more recently He et al.48, where they proposed to use a 

different tree-growing algorithm which grows the tree from scratch (root node) at each 
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iteration. Other less discussed issues with BART include the problem of under estimation of 

the uncertainty of BART caused by inefficient mixing when the true variation is small47, 

inability of BART to handle smooth functions65, and inclusion of many spurious interactions 

when the number of covariates is large66. Finally, the posterior concentration properties of 

BART have also been discussed recently by Ročková and van der Pas43, Ročková and 

Saha42, and Linero and Yang65. These works provide theoretical proof of why BART has 

been successful in many data applications we have seen thus far.

A second component we focused on was how we can extend BART using a very simple idea 

without having to re-write the whole MCMC algorithm to draw the regression trees. We 

term this framework General BART. Special cases of this model have already been used by 

various authors to extend BART to a variety settings. By unifying these methods under a 

single framework and showing how these methods are related to the General BART model, 

we hope to provide researchers with the start of a roadmap for new extensions. For example, 

researchers working with longitudinal data may want a more flexible modeling portion for 

the random effects and hence may want to model h(w, Θ) as BART. Another possibility is to 

combine the ideas in Examples 4.1, 4.2, and 4.4, i.e. correlated outcomes with an 

interpretable linear model portion and robust error assumptions.

We do note that the critical component of our General BART framework is re-writing the 

model in such a way that the MCMC draw of the regression trees can be done separately 

from the rest of the model. In situations where this is not possible, re-writing of the MCMC 

procedure for the regression trees may be needed. An example of this would occur if, rather 

than mapping the outcome to a parameter at the terminal node of a regression tree, it is 

mapped to a regression model. However, we feel that the general BART model is flexible 

enough to handle many of the extensions that might be of interest to researchers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Example of a regression tree g(x; T, M) where μi is the mean parameter of the ith node for 

the regression tree.
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FIGURE 2. 
Illustrating the sum of regression trees using a simple two regression tree example.

Tan and Roy Page 25

Stat Med. Author manuscript; available in PMC 2020 November 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Initiation of BART to iteration 3 of the MCMC steps within BART with m = 4.
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FIGURE 4. 
Iterations 4 and 5 of the MCMC steps within BART with m = 4.
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FIGURE 5. 
Posterior mean and 95% credible interval of Bayesian linear regression (BLR) and BART 

with m = 1, 50, 100, 150, 200 for 30 randomly selected testing set outcomes. n = 1000, 

black=true value, red=model estimates.
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FIGURE 6. 
Root mean squared error (RMSE; y-axis) for the 10-fold cross-validation of multiple linear 

regression (MLR), random forest, and Bayesian additive regression trees of log transformed 

standardized hospitalization ratio (SHR). x-axis indicates the RMSE for the xth fold.
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FIGURE 7. 
Area under the receiver operating characteristic curve (AUC; y-axis) for the 10-fold cross-

validation of logistic regression, random forest, and Bayesian additive regression trees of left 

turn stop probabilities at an intersection. x-axis indicates the AUC for the xth fold.
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TABLE 1

The values of f (x) = ∑ j = 1
2 g(x; T j, M j) from the regression trees in Figure 2.

Subject y x1 x2 x3 g(x; T1, M1) g(x; T2, M2) f(x)

1 y1 −182 235 −333 μ12 μ21 μ12 + μ21

2 y2 54 339 244 μ12 μ23 μ12 + μ23

3 y3 −106 −50 −682 μ11 μ21 μ11 + μ21

4 y4 −80 −62 −320 μ11 μ21 μ11 + μ21

5 y5 −123 198 −77 μ11 μ21 μ11 + μ21

6 y6 175 108 −46 μ13 μ21 μ13 + μ21

7 y7 −44 11 136 μ11 μ22 μ11 + μ22

8 y8 −131 −10 −70 μ11 μ21 μ11 + μ21

9 y9 −56 68 257 μ11 μ22 μ11 + μ22

10 y10 7 324 282 μ12 μ23 μ12 + μ23
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TABLE 2

Descriptive statistics of dialysis facility characteristics and quality measures (n=5,774).

Parameters (% missing) Mean (s.d)/Frequency (%) Parameters (% missing) Mean (s.d)/Frequency (%)

Arterial Venous Fistula (3) 63.27 (11.22) Number of stations 18.18 (8.27)

Avg. Hemoglobin<10.0 g/dL (5) 12.86 (10.32) Serum P. (2) 28.52 (5.13)

Chain name: Shift after 5pm?

 Davita 1,812 (31)  Yes 1,097 (19)

 FMC 1,760 (30)  No 4,677 (81)

 Independent 820 (14) SHR 1.00 (0.31)

 Medium 740 (13) SMR (2) 1.02 (0.29)

 Small 642 (12) STR (7) 1.01 (0.54)

Patient volume* 100.07 (60.93) Type:

Facility Age (years) 14.47 (9.81)  All (HD, Home HD, & PD) 1,443 (25)

For profit?  HD & PD 1,897 (33)

 Yes 4,967 (86)  HD & Home HD 103 (2)

 No 806 (14)  HD alone 2,331 (40)

HD≥1.2 Kt/V (4) 88.52 (9.85) URR≥65% (7) 98.77 (3.04)

Hypercalcemia (3) 2.37 (3.20) Vas. Catheter>90 days (3) 10.74 (6.66)

*
Estimated
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