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Abstract

Background & Aims: As an NAD+-dependent deacetylase and a key epigenetic regulator, 

sirtuin 6 (SIRT6) has been implicated in the regulation of metabolism, DNA repair, and 

inflammation. However, the role of SIRT6 in alcoholic liver disease (ALD) remains unclear. The 

aim of this study was to investigate the function and mechanism of SIRT6 in ALD pathogenesis.
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Methods: We developed and characterized Sirt6 knockout (KO) and transgenic (Tg) mouse 

models that were treated with either control or ethanol diet. Hepatic steatosis, inflammation, and 

oxidative stress were analyzed using biochemical and histological methods. Gene regulation was 

analyzed by luciferase reporter and chromatin immunoprecipitation assays.

Results: The Sirt6 KO mice developed severe liver injury manifested by a remarkable increase of 

oxidative stress and inflammation whereas the Sirt6 Tg mice were protected from ALD via 

normalization of hepatic lipids, inflammatory response, and oxidative stress. Our molecular 

analysis has identified a number of novel Sirt6-regulated genes that are involved in anti-oxidative 

stress, including metallothionein 1 and 2 (Mt1 and Mt2). Mt1/2 genes were down-regulated in the 

livers of Sirt6 KO mice and alcoholic hepatitis patients. Overexpression of Mt1 in the liver of Sirt6 
KO mice improved ALD by reducing hepatic oxidative stress and inflammation. We also identified 

a critical link between SIRT6 and metal regulatory transcription factor 1 (Mtf1) via a physical 

interaction and functional coactivation. Mt1/2 promoter reporter assays showed a strong 

synergistic effect of SIRT6 on the Mtf1 transcriptional activity.

Conclusions: Our data suggest that SIRT6 plays a critical protective role against ALD and it 

may serve as a potential therapeutic target for ALD.

Lay summary: Liver, the primary organ for ethanol metabolism, can be damaged by the 

byproducts of ethanol metabolism including reactive oxygen species. In this study, we have 

identified a key epigenetic regulator SIRT6 that plays a critical role in protecting liver from the 

oxidative stress-induced liver injury. Thus, our data suggest that SIRT6 may be a potential 

therapeutic target for alcohol-related liver disease.

Graphical Abstract
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Introduction

Chronic and excessive alcohol consumption causes nearly half of liver cirrhosis-associated 

mortality in the United States, but there remains no effective treatment for the underlying 

liver disorder [1]. An early stage of alcohol-related liver disease (ALD), which is featured as 

simple hepatic steatosis, is reversible; however, chronic and excessive alcohol consumption 

can lead to progressive steatohepatitis (ASH) and fibrosis, and in some cases, the disease 

further progresses to cirrhosis and even hepatocellular carcinoma [2, 3]. Alcohol-induced 

hepatic steatosis initially manifests as lipid droplet accumulation in the liver, but as the liver 

tissue gets injured by the lipid overload, circulated and resident immune cells including 

Kupffer cells and infiltrated macrophages and neutrophils respond to the liver injury by 

producing inflammatory cytokines, such as TNF-α and IL-1β. Chronic alcohol drinking and 

drinking patterns such as binges can lead to repeated liver injury, inflammation, and 

oxidative stress [2, 4]. Therefore, there is a clinical need for the better understanding of ALD 

pathogenesis and identification of therapeutic targets.
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As a critical epigenetic regulator of nicotinamide adenine dinucleotide (NAD+)-dependent 

histone deacetylase, sirtuin 6 (SIRT6) has been implicated in the regulation of longevity, 

genome stability, metabolism and inflammation [5–24]. Regarding metabolic functions of 

SIRT6, it decreases hepatic triglycerides (TG) and total cholesterol (TC) by suppressing 

their biosynthesis-related genes [9, 17, 18, 25–27]. Sirt6 systemic knockout (KO) leads to 

severe hypoglycemia and premature death [8, 23]. Hepatocyte-specific Sirt6 knockout mice 

manifest hepatic steatosis even on a regular chow diet [9]. In addition, SIRT6 also plays a 

critical role as an anti-inflammatory regulator by suppressing pro-inflammatory cytokines 

such as interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF) α [7, 22, 28, 29]. 

Furthermore, SIRT6 has been shown to reduce oxidative stress in the ischemic brain, 

nonalcoholic fatty liver, and mesenchymal stem cells via regulation of nuclear factor 

erythroid 2-related factor 2 (NRF2) [11, 30, 31]. However, the role of SIRT6 in ALD 

remains unclear. In this study, we aimed to examine the hepatic function of SIRT6 using 

preclinical ALD mouse models and identify the underlying molecular mechanism.

Materials and Methods

Human hepatic tissue samples

Human liver samples were obtained from control subjects and patients with alcoholic 

cirrhosis (AC) or alcoholic hepatitis (AH) under the institutional review board protocols 

approved by the Indiana University School of Medicine and Johns Hopkins University 

School of Medicine, respectively (Supplementary Tables S1 and S2).

Animals

All animal care and experimental procedures were approved by the Institutional Animal 

Care and Use Committee of Indiana University School of Medicine and Xinxiang Medical 

University in accordance with National Institutes of Health guidelines for the care and use of 

laboratory animals. As the phenotypes were similar in males and females, the data presented 

here were primarily from male mice.

Statistical analysis

Data were presented as mean ± standard error (SEM). Comparisons between two groups 

were performed using nonparametric Mann-Whitney U tests and comparisons between 

multiple groups were analyzed using nonparametric Kruskal-Wallis tests (GraphPad, La 

Jolla, CA). Differences with a p value < 0.05 were considered statistically significant. Error 

bars represent ± SEM.

For further details regarding the materials and methods used in this study, please refer to the 

CTAT table and supplementary data.

Results

SIRT6 is decreased in the livers of alcoholic cirrhosis patients and ALD mice

To assess the relevance of hepatic SIRT6 to ALD, we analyzed SIRT6 protein in hepatic 

tissues of control subjects and alcoholic cirrhosis (AC) patients (Supplementary Table S1) as 
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well as mouse models of ALD. Our data showed that hepatic SIRT6 protein levels were 

significantly decreased in the livers of AC patients compared to those in controls (Fig. 1A). 

For the ALD mouse models, we tested two ethanol feeding protocols modified from a 

previous report by Bin Gao’s laboratory [32]. In the first protocol, wild-type (WT) mice 

were fed a Lieber-DeCarli liquid diet containing 5% (vol/vol) ethanol for 4 weeks. In the 

second protocol, WT mice were fed a 6% (vol/vol) ethanol diet for 15 days and administered 

a single binge of ethanol (6 g/kg) on day 16. In both ALD models, hepatic Sirt6 protein 

levels were decreased 50–60% in the ethanol-treated mice compared to the pair-fed mice 

(Fig. 1B and Fig. S1A).

Deletion of hepatic Sirt6 exacerbates liver injury and ALD.—To further investigate 

the role of Sirt6 in the ALD pathogenesis, we used the loss-of-function approach by 

generating an inducible Sirt6 knockout (Sirt6 KO) mouse model using a floxed Sirt6 mouse 

strain and an Mx1-Cre line. Upon exposure to synthetic poly(I:C), the Cre transgene is 

activated via an interferon-inducible mechanism. Numerous reports have shown that the 

Mx1-Cre is very efficient for hepatic gene manipulation due to an exposure to a high-

concentration of poly(I:C) in the liver [33–37]. To confirm that hepatic Sirt6 was deleted in 

the Sirt6 KO mice, we performed immunoblot analysis of Sirt6 in multiple tissues including 

liver, heart, skeletal muscle, spleen, white adipose tissue, brain, and lung. Our data showed 

that the Sirt6 gene was efficiently deleted in the liver but not in other tissues analyzed (Fig. 

S1C–E). As a functional validation, a Sirt6 substrate — acetylated histone H3 lysine 9 

(H3K9Ac) — was elevated in the liver due to the Sirt6 deficiency (Fig. S1C,D). To 

investigate the role of Sirt6 in ALD, control floxed Sirt6 (LoxP) and Sirt6 KO mice were 

subjected to either a control (pair-fed) or a Lieber-DeCarli diet containing 6% (vol/vol) 

ethanol for 15 days and administered an oral gavage of 6 g/kg ethanol on day 16. Diet 

consumption was comparable in both dietary groups (data not shown). Body weights for 

both genotypes on the same diet were not significantly different although the LoxP animals 

on the ethanol diet were lighter than those on the control diet at multiple time points during 

the experiment (Fig. S2A). Liver weights or liver to body weight ratios were not 

significantly different between LoxP and Sirt6 KO mice (Fig. S2B,C). Serum ALT levels 

were remarkably increased in the Sirt6 KO mice on either diet compared to the LoxP mice 

(Fig. 1C). Hepatic triglycerides and cholesterol were also elevated in the Sirt6 KO mice on 

both diets compared to the control mice (Fig. 1D,E). This is consistent with elevated 

expression of lipogenic genes including Srebp1c and Fasn (Fig. S3A). Histological analysis 

revealed that Sirt6 KO mice had higher levels of oxidative stress in the liver, as indicated by 

an elevation of a lipid peroxidation marker 4-HNE and reactive oxygen species (ROS) 

shown by DHE and DCFDA staining (Fig. 1F). Biochemical analysis of hepatic H2O2 and 

glutathione (GSH) also showed increased oxidative stress and decreased antioxidant 

capacity (Fig. 1G,H). Interestingly, real-time qPCR analysis showed that induction of 

metallothionein 1 (Mt1), an anti-oxidative stress gene, by ethanol was significantly impaired 

in the liver of Sirt6 KO mice (Fig. 1I). Additionally, mRNA levels of a number of anti-

oxidant genes showed a trend of downregulation in the liver of Sirt6 KO mice, including 

glutathione-disulfide reductase (Gsr), catalase (Cat), and superoxide dismutase 1 (Sod1) 

(Fig. S3B).
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To assess the role of hepatic Sirt6 deficiency in hepatic inflammation, we first performed 

immunofluorescence (IF) analysis of F4/80 (a marker for macrophage/Kupffer cell) and 

MPO (a marker for neutrophil) in the liver sections of LoxP and Sirt6 KO mice. Sirt6 

deficiency increased the number of F4/80-positive cells even on the control diet and the 

ethanol diet further increased that number whereas the ethanol diet increased the number of 

neutrophils in both LoxP and Sirt6 KO mice to the similar levels. (Fig. 2A,B and Fig. S4A–

C). Additionally, pro-inflammatory cytokines including TNF-α, IL-1β, and IL-6 in the liver 

were significantly increased in the ethanol diet-fed Sirt6 KO mice while anti-inflammatory 

IL-10 was decreased in the Sirt6 KO livers compared to the LoxP livers (Fig. 2C–F). Hepatic 

mRNA levels of Ccl2, Il1b, and Il6 genes were also highly induced in the ethanol-treated 

Sirt6 KO livers (Fig. 2G).

To examine the hepatocyte-specific function of Sirt6, we also generated another Sirt6 
knockout mouse model using Alb-Cre (Sirt6-HepKO). The Sirt6-HepKO mice also 

developed fatty liver disease and liver injury on a 5% (vol/vol) ethanol Lieber-DeCarli diet, 

confirming the role of hepatic Sirt6 in the protection against the alcohol-induced hepatic 

steatosis and liver injury (Fig. 3A–F). Real-time qPCR analysis of Tnf, Il6, Mt1 and Mt2 
genes showed that the expression of the Tnf and Il6 genes was elevated in the ethanol-treated 

Sirt6-HepKO livers and the induction of the Mt1 and Mt2 genes was impaired in the Sirt6-

HepKO livers (Fig. 3G). RNA-seq analysis revealed that 116 and 136 genes were 

significantly upregulated in the Sirt6-HepKO livers compared to WT livers under the control 

or ethanol diet condition, respectively, and 68 of them were common for both dietary 

conditions (Fig. S5A,B). In addition, 42 and 90 genes were significantly down-regulated in 

the Sirt6-HepKO livers under the control or ethanol diet condition, respectively, and 10 of 

them were shared by both dietary conditions (Fig. S5A,B). Pathway analysis further revealed 

that pathways like steroid hormone biosynthesis, retinol metabolism, and ascorbate and 

aldarate metabolism were up-regulated and pathways involved in innate immune response 

and defense response were down-regulated (Fig. S6).

SIRT6 knockdown in a cell model of ALD leads to dysregulation of lipid 
homeostasis and oxidative stress.—To verify the animal data in a human liver cell 

model, we created a stable SIRT6 knockdown cell line of VL-17A, which is derived from 

human HepG2 cell line but stably expresses human alcohol dehydrogenase (ADH) and 

cytochrome P450 family 2 subfamily E member 1 (CYP2E1), using the CRISPR-Cas9 

approach. Both IF imaging and Western blot analysis confirmed that SIRT6 was efficiently 

knocked down (Fig. S7A–C), and ethanol (50 mM) treatment for 48 hrs further decreased 

SIRT6 protein and enzymatic activity (Fig. S7B–D). SIRT6 deficiency increased neutral 

lipid accumulation (BODIPY staining) and intracellular TG and TC under the control and 

ethanol treatment conditions (Fig. 4A–C). We also measured ROS in live cells using 

CellROX fluorescent probe (red fluorescence), and our data showed that SIRT6 deficiency 

dramatically increased ROS levels after the ethanol treatment (Fig. 4D). Cellular H2O2 

levels were significantly increased in the SIRT6 knockdown cells under both control and 

ethanol treatments (Fig. 4E); whereas cellular GSH levels were decreased in the SIRT6 
knockdown cells under both control and ethanol conditions (Fig. 4F). Real-time qPCR 

analysis also showed a trend of downregulation of MT1A gene in the SIRT6-deficient cells 
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under either control or ethanol condition (Fig. 4G). Overall, our data from the VL-17A cell 

model are consistent with the findings in the Sirt6 KO mice.

Hepatic Mt1 overexpression ameliorates ethanol-induced liver injury and ALD 
in Sirt6-deficient mice.—As Mt genes play a critical role in anti-oxidative stress, we 

hypothesized that overexpression of Mt1 may improve ALD in the Sirt6 KO mice. To test 

this hypothesis, we generated the Sirt6 knockout mice by injection of poly(I:C) and initiated 

the ethanol feeding protocol (Fig. S8A). On day 12 after the ethanol feeding, control LoxP 

and Sirt6 KO mice were injected with either adenoviral GFP (control) or Mt1 (1 × 109 pfu/

mouse). Three days later, the animals were given a single ethanol (6 g/kg) gavage. Mt1 
mRNA levels were increased 150-fold in LoxP and 78-fold in Sirt6 KO mouse livers, 

respectively (Fig. S8B). Ethanol-induced liver injury was largely normalized in both LoxP 

and Sirt6 KO mice by Mt1 overexpression as indicated by serum ALT levels (Fig. 5A). 

Hepatic TG and TC in the Sirt6 KO mice tended to decrease after the Mt1 overexpression 

(Fig. 5B,C). Histological analysis also showed significant improvement of lipid peroxidation 

(4-HNE staining) and ROS levels (DHE and DCFDA staining) in both control and Sirt6 KO 

mice after the Mt1 overexpression (Fig. 5D). Biochemical analysis also confirmed that Mt1 
overexpression decreased hepatic H2O2 and increased GSH levels (Fig. 5E,F). Real-time 

qPCR analysis showed that Mt1 overexpression also increased expression of antioxidant 

genes such as Gsr and Cat but had no effect on lipid metabolism genes (Fig. S8D,E).

In addition, we also analyzed the effect of Mt1 overexpression on hepatic inflammation. 

F4/80 and MPO imaging analysis showed that Mt1 overexpression reduced the number of 

macrophage and neutrophils in the liver tissue (Fig. 6A,B). Mt1 overexpression also 

significantly lowered TNF-α, IL-1β, and IL-6 in control and Sirt6 KO livers (Fig. 6C–E). 

Real-time qPCR analysis showed a significant down-regulation of proinflammatory cytokine 

Tnf and an upregulation of anti-inflammatory cytokine Il10 (Fig. 6F).

Hepatic Sirt6 overexpression in mice protects against ALD.—To confirm that 

Sirt6 indeed has a protective role in ALD, we also generated a hepatocyte-specific Sirt6 
transgenic mice using a floxed STOP cassette in front of the Sirt6 transgene and Alb-Cre. 

Sirt6 protein was increased by 4-fold in the transgenic mouse liver (Fig. S9A,B). After 

challenged with an ethanol diet (6% vol/vol) and a single ethanol binge (6 g/kg), Sirt6 
transgenic mice had lower serum ALT and hepatic TG and TC (Fig. 7A–C). Histological 

analysis also showed that Sirt6 transgenic mice had lower lipid peroxidation and ROS levels 

and less inflammation (Fig. 7D). Mt1 gene expression tended to increase in the liver of Sirt6 
transgenic mice (Fig. S9C). Hepatic H2O2 levels were decreased and GSH levels were 

increased in the Sirt6 transgenic liver (Fig. S9D,E). The inflammatory gene Ccl2 was 

downregulated in the Sirt6 transgenic liver (Fig. S9F). Anti-oxidative stress genes including 

Gpx3, Gsr, Sod1, and Sod2 were upregulated and lipogenic genes like Srebp1c and Fasn 
were downregulated in the liver of Sirt6 transgenic mice (Fig. S9H). Hepatic cytokine 

analysis also showed a significant decrease in the levels of TNF-α and IL-1β and a trend of 

decrease in IL-6 in the Sirt6 transgenic liver (Fig. 7E–G).

Hepatic Mt1 gene is directly regulated by SIRT6 through activation of Mtf1.—
To investigate whether SIRT6 directly controls Mt gene expression, we performed luciferase 
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reporter assays for the proximal promoters of mouse Mt1 and Mt2 genes. Indeed, both Mt1 
and Mt2 promoters were activated by SIRT6. Moreover, SIRT6 and metal regulatory 

transcription factor 1 (Mtf1) had a synergistic effect on those Mt gene promoters (Fig. 8A 

and Fig. S10A,B). The activation by SIRT6 required its enzymatic activity as the 

catalytically inactive SIRT6 mutant (H133Y) could not activate the Mt1 gene promoter (Fig. 

8A). Chromatin immunoprecipitation (ChIP) qPCR analysis further confirmed that SIRT6 

was associated with the chromatin in the promoters of human MT1A and MT2A genes in 

VL-17A cells (Fig. 8B and Fig. S10C). To assess whether SIRT6 and Mtf1 physically 

interact, we performed coimmunoprecipitation (Co-IP) analysis by co-transfection of the 

tagged constructs in HEK 293T cells. Indeed, SIRT6 interacted with Mtf1 as well as FOXO3 

(a positive control) (Fig. 8C). Additionally, wild-type but not catalytically inactive mutant 

SIRT6 (H133Y) deacetylated Mtf1 (Fig. 8D). Furthermore, SIRT6 overexpression decreased 

and SIRT6 knockdown increased the Mtf1 acetylation levels, suggesting that Mtf1 

acetylation is modulated by SIRT6 (Fig. 8E,F).

To examine the relevance of the newly identified SIRT6-MTF1-MTs pathway in human 

ALD, we obtained 12 human liver samples including 6 normal controls and 6 alcoholic 

hepatitis (AH) explants (Supplementary Table S2). Western blot analysis showed that 

SIRT6, MTF1, and MT1/2 protein levels were decreased more than 50% compared to the 

normal controls (Fig. 8G,H). Real-time qPCR analysis also revealed that mRNA levels of 

SIRT6, MTF1, MT1A, MT2A genes were also decreased ranging from 50% (SIRT6 and 

MTF1) to over 90% (MT1A and MT2A) (Fig. 8I). These data suggest that SIRT6, MTF1, 

and MTs may be involved in human ALD.

Discussion

In this work, we have demonstrated a critical role of SIRT6 in anti-oxidative stress against 

the ethanol-induced liver injury and ALD using both cell and animal models. Our 

investigation has begun from an interesting observation that ethanol significantly down-

regulates hepatic SIRT6 expression in both human alcoholic cirrhosis and mouse ALD 

livers. By using two Sirt6 knockout mouse models, we have confirmed that animals with 

hepatic Sirt6 deficiency are predisposed to alcoholic liver disease. Mx1-Cre mediated Sirt6 
gene knockout is generally believed to target poly(I:C) and interferon α/β-responsive cells 

including hematopoietic cell lineages and liver cells [33–40]. Previous studies have shown 

that within a few days of induction of the Mx1-Cre, the floxed sequences can be almost 

completely deleted in the liver and lymphocytes whereas deletions are partial in other tissues 

[33]. Since both Mx1-Cre- and Alb-Cre-mediated Sirt6 knockout mice share the general 

phenotype of ALD, we believe that hepatic Sirt6 deficiency is largely responsible for the 

ethanol-induced hepatic steatosis, oxidative stress, and inflammation. However, we cannot 

rule out that Sirt6-deficient Kupffer cells and other immune cells might also play a 

significant role in the pathogenesis of ALD in the Sirt6 KO mouse model. To test that 

hypothesis, macrophage/Kupffer cell-specific Sirt6 knockout mouse model will be needed 

for future investigation.

Once ingested, ethanol is rapidly absorbed by stomach and intestine and delivered to liver 

for metabolism. The first biochemical reaction is conversion of ethanol to acetaldehyde 
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mainly by alcohol dehydrogenases and to a lesser extent by CYP2E1 and catalase [41]. 

Acetaldehyde is very toxic and can cause cellular damage and trigger immune reaction. 

Additionally, under conditions of excessive or chronic intake of ethanol, CYP2E1 not only 

generates ROS including superoxide anion radical and H2O2, but also produces highly 

reactive conjugated adducts [41]. Thus, excessive ethanol intake is believed to exhaust 

hepatic capacity of endogenous antioxidants including the GSH-GSSG system [2]. As an 

adaptive response to the oxidative stress environment, MT genes are strongly induced by 

ethanol intake. MTF1 has been previously shown to be the key transcription factor for the 

induction of MT genes [42, 43]. In this work, we have identified a novel coactivator of 

MTF1 — SIRT6. Our data suggest that as an NAD+-dependent deacetylase SIRT6 can 

activate MTF1 by deacetylation whereas the catalytic inactive mutant of SIRT6 cannot 

activate MTF1. The induction of MT genes by the synergistic action of SIRT6 and MTF1 

can boost the hepatic defense mechanism against the ethanol-induced oxidative stress, tissue 

damage, and inflammation (Fig. S11). Our MT1 overexpression data support a critical role 

of MT1 in the protection against ALD. Previous studies using MT1 transgenic mice have 

found similar benefits in the ALD animal model [44].

As SIRT6 is decreased in the liver of ALD mice and AC/AH human patients, it suggests that 

SIRT6 can be a potential therapeutic target for ALD. Our Sirt6 transgenic mouse data 

strongly support the salutary effects of Sirt6 against ALD, including a decrease in hepatic 

triglycerides and cholesterol, reduction of ROS and inflammatory cytokines, and an increase 

in hepatic antioxidant capacity (elevated GSH and Gsr, Gpx3, Sod1, and Sod2 gene 

expression). Since SIRT6 is an NAD+-dependent enzyme, an increase in cellular NAD+ level 

is expected to boost the SIRT6 enzymatic activity. Therefore, modulation of SIRT6 protein 

levels or its enzymatic activity can be a useful strategy for improving ALD. Moreover, 

additional study is needed to elucidate the detailed mechanisms that orchestrate the 

regulation from ethanol intake to epigenetic regulation of MT1/2 gene transcription and anti-

oxidative stress by SIRT6.

In summary, here we have reported the novel findings on hepatic Sirt6 function in the ALD 

animal models and AC/AH human livers. Hepatic Sirt6 is down-regulated in ALD mice and 

AC/AH patients, and hepatic Sirt6 deficiency exacerbates dyslipidemia, inflammation, 

oxidative stress, and tissue injury in the liver. Hepatic Sirt6 overexpression reverses the 

ethanol-induced damages in mice. As one of the potential mechanisms by which hepatic 

Sirt6 protects against ALD, Sirt6 enhances the transcriptional induction of Mt1 and Mt2 
genes by coactivating Mtf1, and Mt1/2 boost the liver defense system against alcoholic 

toxicity by ameliorating ROS, inflammation, and tissue injury. Therefore, SIRT6 may serve 

as a promising therapeutic target for ALD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• SIRT6 deficiency is predisposed to the development of alcoholic liver disease.

• SIRT6 overexpression ameliorates the alcoholic liver disease.

• SIRT6 induces metallothionein genes to protect against oxidative stress.

• SIRT6 coactivates metal regulatory transcription factor 1.
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Fig. 1. Hepatic SIRT6 protein levels are decreased in the patients with alcoholic cirrhosis and 
hepatic Sirt6 deletion aggravates oxidative stress in an ALD mouse model.
(A) Western blot and quantification analysis of SIRT6 protein in the liver of normal controls 

and alcoholic cirrhosis (AC) patients (n=3–5/group). (B) Western blot and quantification 

analysis of Sirt6 in hepatic tissues from WT male mice that were fed with a control diet 

(Pair-fed) or 5% ethanol (ETOH, vol/vol) diet (ETOH) for 4 weeks. (C-I) Control LoxP and 

Sirt6 KO male mice were pair-fed or ethanol-fed (6% vol/vol) for 15 days plus a single 

binge (6 g/kg) on day 16. (C) Serum ALT measurements. (D, E) Hepatic triglycerides (TG) 

and total cholesterol (TC) measurements. (F) Mouse hepatic staining by H&E, IHC 

detection of 4-HNE, and fluorescence analysis of ROS by DHE and DCFDA dyes. (G) 

Hepatic H2O2 measurements. (H) Hepatic GSH measurements. (I) Hepatic Mt1 mRNA 

analysis by qPCR. Data are presented as mean ± S.E.M. Nonparametric Mann-Whitney U 

tests were used for statistical analysis. In panel B, #p < 0.05 (n = 4–5/group). In panels C-I, 

#p < 0.05 and ##p < 0.01 for LoxP vs. Sirt6 KO; *p < 0.05 and **p < 0.01 for Pair-fed vs. 

ETOH for the same genotype (n=4–6/group). Images were captured by light microscopy for 

H&E and IHC staining (200× magnification), and fluorescence images were obtained using 
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a fluorescence microscope (200× magnification). Scale bars: 50 μm. ALT, alanine 

transaminase; DCFDA, dichlorofluorescin diacetate; DHE, dihydroethidium; GSH, 

glutathione; 4-HNE, 4-hydroxynonenal; IHC, immunohistochemistry; qPCR, quantitative 

PCR; ROS, reactive oxygen species.
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Fig. 2. Ethanol-induced inflammation is worsened in hepatic Sirt6 deficient mice.
Control LoxP and Sirt6 KO male mice were pair-fed or ethanol-fed (6% vol/vol) for 15 days 

plus a single binge (6 g/kg) on day 16. (A) Representative immunofluorescent staining of 

F4/80 and MPO in mouse liver sections. (B) Quantification of positive staining cells in Panel 

A. (C-F) Hepatic cytokine measurements: TNF-α (C), IL-1β (D), IL-6 (E), and IL-10 (F). 

(G) mRNA analysis of inflammation related genes in the liver of control LoxP and Sirt6 KO 

mice by qPCR. Data are presented as means ± S.E.M. #p < 0.05 and ##p < 0.01 for LoxP vs. 

Sirt6 KO; *p < 0.05 and **p < 0.01 for Pair-fed vs. ETOH for the same genotype (n=4–6/

group). IF images were obtained using a fluorescence microscope (400× magnification). 

Scale bars: 50 μm. MPO, myeloperoxidase; qPCR, quantitative PCR.
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Fig. 3. Hepatocyte-specific Sirt6 knockout (HepKO) mice develop alcoholic liver disease.
Control LoxP and Sirt6 HepKO female mice were pair-fed or ethanol-fed (5% vol/vol) for 

10 days plus a single binge (5 g/kg) on day 11. (A) Western blot analysis of Sirt6 in the liver 

of control LoxP and HepKO mice. (B) Representative H&E stained liver sections (100× 

magnification). (C) Representative liver sections stained by oil Red O (200× magnification). 

(D, E) Hepatic TG and TC measurements. (F) Serum ALT measurements. (G) mRNA 

analysis of Tnf, Il6, Mt1, and Mt2 genes in the liver of control LoxP and HepKO mice. Data 

are presented as means ± S.E.M. #p < 0.05 for LoxP vs. Sirt6 HepKO; *p < 0.05, **p < 0.01 

for Pair-fed vs. ETOH for the same genotype (n=4–5/group). Scale bars: 50 μm. TC, total 

cholesterol; TG, triglyceride.
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Fig. 4. Knockdown of SIRT6 in an ALD cell model leads to lipid dysregulation and oxidative 
stress.
(A) BODIPY staining of neutral lipids in VL-17A cells that were transduced with control 

sg_GFP or sg_SIRT6 lentiviruses. (B, C) Cellular TG and TC measurements. (D) ROS 

detection by CellROX fluorescent probe in live VL-17A cells. (E-G) VL-17A cells were 

either not treated or treated with 50 mM ethanol for 48 hrs before they were harvested for 

measurements of intracellular H2O2 (E), GSH (F), or MT1A mRNA (G). Data were 

presented as mean ± S.E.M (n = 3–4/group). #p < 0.05 for sg_GFP vs. sg_Sirt6; *p < 0.05 

for Control vs. ETOH for the same sgRNA. Fluorescence images were obtained using a 

fluorescence microscope (630× magnification). Scale bars: 10 μm. GSH, glutathione; ROS, 

reactive oxygen species; TC, total cholesterol; TG, triglyceride.
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Fig. 5. Hepatic Mt1 overexpression ameliorates ethanol-induced oxidative stress in the liver.
Control LoxP and Sirt6 KO male mice were pair-fed or ethanol-fed (6% vol/vol) for 15 days 

plus a single binge (6 g/kg) on day 16. Adenoviral vectors were injected on day 12 of 

ethanol feeding. (A) Serum ALT levels. (B, C) Hepatic TG and TC measurements. (D) H&E 

staining, IHC analysis of 4-HNE, and fluorescence analysis of ROS using DHE and DCFDA 

dyes in mouse liver sections. (E, F) Hepatic H2O2 and GSH measurements. Data were 

presented as mean ± S.E.M (n = 8/group). #p < 0.05, ##p < 0.01, and ###p < 0.001 for Ad_ 

GFP vs. Ad_Mt1; *p < 0.05, **p < 0.01, and ***p < 0.001 for LoxP vs. Sirt6 KO for the 

same adenoviral vector. Images were captured by light microscopy for H&E and IHC 

staining (200× magnification), and fluorescence images were obtained using a fluorescence 

microscope (200× magnification). Scale bars: 50 μm. ALT, alanine transaminase; DCFDA, 

dichlorofluorescin diacetate; DHE, dihydroethidium; GSH, glutathione; 4-HNE, 4-

hydroxynonenal; IHC, immunohistochemistry; qPCR, quantitative PCR; ROS, reactive 

oxygen species; TC, total cholesterol; TG, triglyceride.
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Fig. 6. Hepatic Mt1 overexpression dampens ethanol-induced inflammation.
Control LoxP and Sirt6 KO male mice were pair-fed or ethanol-fed (6% vol/vol) for 15 days 

plus a single binge (6 g/kg) on day 16. Adenoviral vectors were injected on day 12 of 

ethanol feeding. (A) Representative images of F4/80 and MPO staining in the liver sections. 

(B) Quantification of positively stained cells in Panel A (n=5). (C-E) Measurements of 

proinflammatory cytokines including TNF-α, IL-1β, and IL-6 in the mouse liver tissues 

(n=8). (F) mRNA analysis of inflammation related genes in the liver of LoxP and Sirt6 KO 

mice (n=4). Data are presented as means ± S.E.M. #p < 0.05 and ##p < 0.01 for LoxP vs. 
Sirt6 KO; *p < 0.05 and **p < 0.01 for Ad_ GFP vs. Ad_Mt1 for the same genotype. 

Fluorescence images were obtained using a fluorescence microscope (400× magnification). 

Scale bars: 50 μm. MPO, myeloperoxidase.
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Fig. 7. Hepatic Sirt6 overexpression protects against ALD in mice.
WT and Sirt6 transgenic (Tg_Sirt6) male mice were fed with a 6% ethanol (vol/vol) diet for 

15 days plus a single binge (6 g/kg) on day 16. (A) Serum ALT measurements. (B, C) 

Hepatic TG and TC measurements. (D) H&E staining, IHC analysis of 4-HNE, ROS 

analysis by DHE and DCFDA dyes, and F4/80 and MPO staining. (E-G) Measurements of 

proinflammatory cytokines including TNF-α, IL-1β, and IL-6 in the liver tissues of WT and 

Sirt6 transgenic mice. Data are presented as means ± S.E.M (n = 4–6/group). #p < 0.05 and 

##p < 0.01 for WT vs. Tg_Sirt6. H&E and IHC images were captured using a light 

microscope (200× magnification), and fluorescence images were obtained using a 

fluorescence microscope (200× magnification). Scale bars: 50 μm. ALT, alanine 

transaminase; DCFDA, dichlorofluorescin diacetate; DHE, dihydroethidium; 4-HNE, 4-

hydroxynonenal; IHC, immunohistochemistry; ROS, reactive oxygen species; TC, total 

cholesterol; TG, triglyceride.
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Fig. 8. SIRT6 induces hepatic Mt1 gene expression by interaction and activation of Mtf1.
(A) Mt1 gene promoter activity analysis by transfection of luciferase reporters and GFP, 

SIRT6, SIRT6 (H133Y), or Mtf1 plasmids in HEK 293T cells (n =6–7/group). (B) ChIP 

qPCR analysis of the association of SIRT6 and MTF1 with the proximal promoter of the 

human MT1A gene under the ethanol treatment condition in VL-17A (n =4/group). (C) Co-

IP analysis of an interaction between SIRT6 and Mtf1 in HEK 293T cells. (D) Mtf1 

deacetylation analysis by cotransfection of Mtf1 and SIRT6 or SIRT6 (H133Y) in VL-17A 

cells. (E) Dose-dependent Mtf1 deacetylation analysis in VL-17A cells. (F) Mtf1 acetylation 

analysis in SIRT6-deficient VL-17A cells. (G, H) Western blot and quantification analysis of 

SIRT6, MTF1, and MT1/2 proteins in the liver of normal controls and AH patients (n=6). (I) 

qPCR analysis of SIRT6, MTF1, MT1A, and MT2A mRNAs in the liver of normal controls 

and AH patients (n=6). Data are presented as mean ± S.E.M. In panels A and B: #p < 0.05, 

##p < 0.01, and ###p < 0.001 vs. GFP or PPIA; *p < 0.05, **p<0.01, and ***p<0.001 for 

the indicated promoter reporter assays. In panels H and I: #p < 0.05 and ##p < 0.01 for AH 
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vs. Control. ACTN, actinin; AH, alcoholic hepatitis; ChIP, chromatin immunoprecipitation; 

Co-IP, co-immunoprecipitation; qPCR, quantitative PCR.
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