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Abstract

Huntington’s disease (HD), an inherited neurodegenerative disorder that principally affects 

striatum and cerebral cortex, is generally thought to have an adult onset. However, a small 

percentage of cases develop symptoms before 20 years of age. This juvenile variant suggests that 

brain development may be altered in HD. Indeed, recent evidence supports an important role of 

normal huntingtin during embryonic brain development and mutations in this protein cause 

cortical abnormalities. Functional studies also demonstrated that the cerebral cortex becomes 

hyperexcitable with disease progression. In this review, we examine clinical and experimental 

evidence that cortical development is altered in HD. We also provide preliminary evidence that 

cortical pyramidal neurons from R6/2 mice, a model of juvenile HD, are hyperexcitable and 

display dysmorphic processes as early as postnatal day 7. Further, some symptomatic mice present 

with anatomical abnormalities reminiscent of human focal cortical dysplasia, which could explain 

the occurrence of epileptic seizures in this genetic mouse model and in children with juvenile HD. 

Finally, we discuss recent treatments aimed at correcting abnormal brain development.

Introduction

Huntington’s disease (HD) can be defined by a triad of motor, cognitive and psychiatric 

symptoms (Harper and Jones, 2002). The most characteristic and debilitating motor 

symptom is the occurrence of uncontrollable dance-like movements (chorea). Psychiatric 

symptoms include depression, mood swings and suicidal ideation. Cognitive symptoms 

typically precede chorea and include sensory and attention deficits (Lawrence et al., 1998; 
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Bates et al., 2002). The cause of HD is a genetic mutation consisting of an expansion of 

CAG repeats in the huntingtin (HTT) gene, localized in the short arm of chromosome 4 (The 

Huntington’s Disease Collaborative Research Group, 1993). When the number of CAG 

repeats exceeds 39, the affected individual will invariably develop HD symptoms sooner or 

later. In addition, there is an inverse relationship between disease onset, severity of 

symptoms, and the number of CAG repeats, such that the longer the repeat length the sooner 

symptoms manifest (Andrew et al., 1993; Penney et al., 1997).

Histopathological studies have demonstrated that the brain regions more susceptible to 

degeneration in HD are the caudate nucleus/putamen and the cerebral cortex (Vonsattel and 

DiFiglia, 1998; Waldvogel et al., 2015). Striatal and cortical projection neurons are 

preferentially lost whereas diverse types of interneurons are spared, with the exception of 

GABAergic parvalbumin (PV)-expressing interneurons (Reiner et al., 2013). Interestingly, 

motor and psychiatric symptoms are tightly correlated with cell loss in the cerebral cortex 

(Thu et al., 2010; Waldvogel et al., 2015). Specifically, motor symptoms correlate with 

primary motor cortex cell loss whereas mood symptoms are associated with cell loss in the 

cingulate cortex (Thu et al., 2010).

Although neurodegenerative changes have long been recognized to underlie HD motor 

symptoms, several clinical and experimental studies have suggested that aberrant cortical 

development may also play an important role in the manifestation of HD symptoms (Paulsen 

et al., 2006; Godin et al., 2010; Tereshchenko et al., 2019). In this review, we discuss why 

we think that faulty cortical development is at the root of some HD functional alterations, in 

particular cortical hyperexcitability. Also, we provide preliminary morphological and 

electrophysiological evidence that in the R6/2 genetic mouse model of HD, cortical 

architecture, neurons, and circuits are altered very early in postnatal development.

Size matters; one mutation, two different forms of HD

HD is generally conceived as an adult-onset neurodegenerative disorder. However, another 

less common (5–10%) juvenile form (JHD, known as rigid or Westphal variant) of the 

disease also exists, typically when the CAG triplet repeat expansion is >65 (Hunnicutt et al., 

2016). Studies have shown that the sex of the transmitting parent, usually the father, exerts a 

major influence on CAG repeat expansion leading to earlier symptom onset (Telenius et al., 

1993). The symptoms of JHD differ from those typically seen in adult-onset HD. Children 

with HD display mental retardation, hyperactivity, and aggressive behavior. Some of these 

children also have microcephaly, suggesting that this form of HD may represent a 

developmental rather than a neurodegenerative disorder (Letort and Gonzalez-Alegre, 2013; 

Hunnicutt et al., 2016). With disease progression, dystonia, rigidity, and chorea also occur. A 

fundamental difference between JHD and adult-onset HD is the high prevalence of epileptic 

seizures in the juvenile form (Rasmussen et al., 2000; Gambardella et al., 2001; Seneca et 

al., 2004). The cause of epileptic seizures remains unknown (Cummings et al., 2009). 

However, we have hypothesized that seizures could be the result of faulty development of 

cortical circuits, similar to those observed in malformations of cortical development (MCD), 

specifically focal cortical dysplasia (FCD) of Taylor (Taylor et al., 1971; Estrada-Sánchez et 

al., 2016). This was based on evidence that in some animal models of HD, and presumably 
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also in human cases, the cerebral cortex progressively becomes hyperexcitable (Cummings 

et al., 2009).

HTT is essential for normal brain development

The HTT protein has multiple functions that include, among many others, vesicle 

trafficking, spindle orientation during cell division, endocytosis, transcriptional regulation, 

maintenance of cell morphology and survival (Saudou and Humbert, 2016). It is also known 

that normal HTT plays a crucial role during development, as lack of this protein is lethal 

(Duyao et al., 1995; Nasir et al., 1995; Zeitlin et al., 1995; Saudou and Humbert, 2016). 

Other studies have shown that embryonic, conditional deletion of HTT from cortical 

pyramidal neurons (CPNs) reduced cortical volume and neuron abundance (Dragatsis et al., 

2017). Similarly, loss of HTT function in subpallial lineages disrupted forebrain interneuron 

species early in life and also led to a number of neurological deficits reminiscent of HD 

(Mehler et al., 2019).

In the past few years, the idea that HD in general, and JHD in particular, is not solely a 

neurodegenerative but also a neurodevelopmental disease, has gained momentum (Godin et 

al., 2010; Durieux et al., 2011; Wiatr et al., 2017). Indeed, the HTT protein may alter 

different aspects of chromatin regulation and transcription during neural development 

(Durieux et al., 2011). For example, in vivo inactivation of HTT by RNA interference or 

deletion of the gene affects spindle orientation and cell fate of cortical progenitors in the 

ventricular zone of mouse embryos, altering the thickness of the developing cortex as well as 

the polarization and migration of newly generated neurons (Godin et al., 2010; Molina-

Calavita et al., 2014). Furthermore, depletion of HTT in post-mitotic projection neurons 

leads to the mislocalization of layer-specific neuronal populations in the mouse neocortex, 

suggesting that HTT, via regulation of RAB11-dependent N-Cadherin trafficking, is critical 

for neuronal migration (Barnat et al., 2017). Importantly, the authors also evinced that 

mutant HTT (mHTT) loses its capacity to promote neuronal migration. Normal HTT also is 

required for the correct establishment of cortical and striatal excitatory circuits and this 

function is lost when the mHTT is present (McKinstry et al., 2014). When cortical HTT 

function is conditionally silenced from CPNs, cortical and striatal excitatory synapses form 

and mature at an accelerated rate through postnatal day (P)21 but exuberant synaptic 

connectivity is lost over time in the cortex, resulting in the deterioration of synapses by 5 

weeks of age (McKinstry et al., 2014). It can thus be postulated that mHTT impairs 

neurodevelopmental pathways (Blockx et al., 2012; Consortium, 2017). Indeed, expression 

of mHTT during early development is sufficient to produce a permanent HD phenotype even 

if expression is terminated at P21. Furthermore, developmental deficits associated with HTT 

function render cells more susceptible to degeneration (Arteaga-Bracho et al., 2016; Molero 

et al., 2016).

Not only is cortical brain development compromised by the presence of mHTT, but CPN 

function itself is altered by the early formation of mHTT aggregates. In R6/2 transgenic 

mice (Mangiarini et al., 1996), intranuclear inclusions can be detected as early as 3 weeks of 

age (Morton et al., 2000; Meade et al., 2002; Cummings et al., 2012). At this age, 

intranuclear inclusions are most abundant in CA1 hippocampal region and cortical layers III-
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V whereas in striatum inclusions are rare (Morton et al., 2000). Using more sensitive 

immunohistochemical methods, diffuse proto-aggregates have been observed in developing 

axonal tracts during embryonic development and early postnatal brains in juvenile and adult-

onset mouse models of HD (Osmand et al., 2016). These axonal aggregates could alter 

synaptic physiology during early postnatal development. In support, using a corticostriatal 

co-culture from YAC128 mice, a model of adult-onset HD (Slow et al., 2003), synaptic 

transmission was impaired as early as three weeks in vitro (Buren et al., 2016). In addition, 

in an in vitro model of HD based on the generation of induced pluripotent stem cells from 

HD patients and controls, it was observed that HD-derived cells displayed a greater number 

of neuronal progenitors compared with controls. This cell population showed enhanced 

vulnerability to brain-derived neurotropic factor (BDNF) withdrawal in the JHD lines 

(Mattis et al., 2015). Interestingly, increased vulnerability was due to N-methyl-D-aspartate 

(NMDA) glutamate receptor-mediated toxicity, suggesting that aberrant Ca2+ signaling 

could be involved.

The observation of aberrant migration and polarization of cortical progenitors is reminiscent 

of the cortical maldevelopment observed in humans with FCD, a disorder characterized by 

dyslamination, CPN misorientation, and the presence of dysmorphic pyramidal neurons, all 

of which contribute to epileptogenesis (Taylor et al., 1971; Cepeda et al., 2003a; Dautan et 

al., 2016). Thus, we could hypothesize that the presence of mHTT in neuronal progenitors 

affects cortical organization and induces diffuse architectural and cellular abnormalities, 

similar to those observed in FCD, which results in cortical hyperexcitability (Cummings et 

al., 2009; Blumcke et al., 2011; Estrada-Sánchez et al., 2016).

The cerebral cortex is hyperexcitable in HD brains

The central role of the cerebral cortex in the genesis of the HD phenotype has long been 

recognized in clinical and experimental studies (Laforet et al., 2001; Paulsen et al., 2006; 

Estrada-Sanchez and Rebec, 2013; Virlogeux et al., 2018). In this section we review clinical 

and experimental evidence.

Evidence from human studies—The fact that cognitive and psychiatric disturbances 

appear long before overt motor symptoms (Lawrence et al., 1996; Lawrence et al., 1998) is 

an indication that the cortex is heavily involved in striatal neuron dysfunction. Functional 

abnormalities are evident as revealed by changes in cortical excitability and plasticity in 

preclinical and early HD (Schippling et al., 2009; Orth et al., 2010). Overall, studies indicate 

that at least certain cortical areas become hyperexcitable with disease progression (Agarwal 

et al., 2019). For example, transmagnetic stimulation (TMS) studies have demonstrated 

increased intracortical facilitation and reduced short interval intracortical inhibition in 

premanifest and early manifest HD patients (Abbruzzese et al., 1997; Nardone et al., 2007; 

Schippling et al., 2009; Berardelli and Suppa, 2013) indicating altered excitatory/inhibitory 

balance. As a consequence, motor cortex plasticity has been shown to be abnormal in HD 

gene carriers (Orth et al., 2010). Indeed, using paired-pulse TMS paradigms, it was 

suggested that GABA-mediated cortical inhibition is deficient in both presymptomatic and 

symptomatic patients (Philpott et al., 2016). Consistent with this idea, a study conducted on 

a small cohort of HD patients demonstrated that inhibitory TMS (1 Hz) of the 
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supplementary motor area (SMA) significantly reduced choreic movements, leading the 

authors to conclude that overactivity of the SMA plays an essential role in the generation of 

abnormal movements (Brusa et al., 2005).

Evidence from animal studies—The excitotoxicity hypothesis of cell death in HD 

postulates that neurodegeneration is caused by excess glutamate release at striatal synapses 

and/or increased sensitivity of postsynaptic glutamate NMDA receptors (DiFiglia, 1990), in 

particular those located extrasynaptically (Okamoto et al., 2009; Milnerwood et al., 2010; 

Raymond et al., 2011). Thus, it is believed that sustained activation of extrasynaptic NMDA 

receptors triggers an apoptotic cascade that culminates in cell death of medium-sized spiny 

projection neurons (MSNs). While the traditional view considered the cerebral cortex as the 

main contributor of glutamate release, recent work has revealed a major contribution from 

the thalamo-striatal pathway (Huerta-Ocampo et al., 2014; Smith et al., 2014). This pathway 

is affected early and persistently in several HD mouse models (Deng et al., 2013; 

Kolodziejczyk and Raymond, 2016; Parievsky et al., 2017).

If glutamate release becomes excitotoxic to medium-sized spiny neurons (MSNs), it might 

be expected that reducing glutamate inputs could prevent cell loss in HD. Indeed, in animal 

models evidence indicates that removal of the cerebral cortex delays HD symptoms and 

extends life span (Stack et al., 2007). Furthermore, preventing the expression of mHTT in 

CPNs has been shown to ameliorate the HD phenotype (Wang et al., 2014; Estrada-Sanchez 

et al., 2015). There also is evidence of glutamate release dysregulation when overt 

symptoms emerge (Cepeda et al., 2003a), as well as biphasic changes in glutamate release, 

initially elevated and then progressively reduced (Joshi et al., 2009). The occurrence of large 

synaptic events in MSNs coinciding with the onset of overt symptoms in R6/2 mice 

suggested cortical hyperexcitability (Cepeda et al., 2003a). Consistent with this idea, 

electrophysiological studies in the BACHD mouse model (Gray et al., 2008) found 

decreased layer II/III PV-interneuron excitation and decreased CPN inhibition at 6 months, 

when behavioral symptoms become evident (Gu et al., 2005; Spampanato et al., 2008). 

Interestingly, it was recently shown that R6/2 mice have fewer perisomatic PV-positive 

terminals on CPNs than their wildtype (WT) counterparts, an observation that was also 

consistent in HD autopsy brains (Burgold et al., 2019). Importantly, this reduced inhibition 

was reflected by increased cortical activity measured with in vivo calcium imaging. 

Increased cortical excitability also was demonstrated electrophysiologically in vivo. For 

example, membrane fluctuations (Down to Up state) could be evoked with smaller currents 

in cortical neurons from symptomatic R6/2 compared with control mice (Stern, 2011). 

Furthermore, the amount of coherence in the state transitions of single neurons was less 

correlated with global activity compared with controls. This effect was proposed to affect the 

ability of CPNs to participate in coordinated activity within neuronal assemblies, which 

could explain the diminished synchrony of spikes found in behaving R6/2 mice (Walker et 

al., 2008).

As in humans, studies in HD animal models have shown impaired cortical synaptic 

plasticity, likely as a result of altered excitatory/inhibitory balance. For example, 

presymptomatic R6/1 mice show deficits in barrel cortex plasticity in a somatosensory 

whisker-deprivation paradigm (Cybulska-Klosowicz et al., 2004; Mazarakis et al., 2005). In 
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the same mouse model, electrophysiological studies demonstrated progressive derailment of 

long-term depression (LTD) and long-term potentiation (LTP) at perirhinal and prefrontal 

synapses (Cummings et al., 2006; Cummings et al., 2007; Dallerac et al., 2011). 

Remarkably, alterations in LTD and LTP could be reversed by dopamine D2 and D1 receptor 

agonists respectively.

Definitive corroboration of cortical hyperexcitability and loss of the excitatory/inhibitory 

balance was provided by our group (Cummings et al., 2009). In three different genetic 

mouse models of HD, the frequency of spontaneous excitatory postsynaptic currents 

(EPSCs) was increased whereas that of spontaneous inhibitory postsynaptic currents (IPSCs) 

was decreased. In support of perturbations of the excitatory/inhibitory balance in the 

cerebral cortex of R6/2 mice, immunohistochemistry demonstrated increased VGLUT1 

expression and reduced GAT1 expression. In addition, compared with WT mice, blockade of 

GABAA receptors in slices from R6/2 mice induced more frequent complex, ictal-like 

epileptiform discharges in CPNs. This phenomenon was observed in mice as young as P21. 

What is not known is why and how early the cerebral cortex becomes hyperexcitable.

New observations in developing R6/2 mice point to aberrant cortical neuron development 
and early hyperexcitability

Morphological and Electrophysiological findings—Recently we extended our 

studies on CPN excitability to developing R6/2 and control littermates (P7 and P14). Mice 

(n=13) of either sex were used at P7 (6 WT and 7 R6/2). Experimenters were blind to the 

genotype, which was only identified a posteriori from DNA tail samples, thus ensuring 

unbiased results. CPNs in layers II/III and V from the motor cortex were visualized with 

infrared differential interference contrast (IR-DIC) optics (see detailed methods in 

Supplementary Material). In order to increase cortical excitability, the GABAA receptor 

antagonist bicuculline (BIC, 10 μM), alone or in conjunction with the type “A” K+ channel 

blocker 4-aminopyridine (4-AP, 100 μM), were used. Both compounds are proconvulsant 

and we have used them in the past to examine cortical excitability and seizure susceptibility 

in HD mice (Cummings et al., 2009). The patch pipette also contained biocytin (0.2%) to 

label the recorded cells and, following histological processing, the fine morphology of CPNs 

was examined.

Preliminary observations indicate that CPN membrane excitability is increased in R6/2 mice 

as early as P7, the earliest age we examined. Indeed, blockade of GABAA receptors with 

BIC induced paroxysmal discharges more often in CPNs (4 out of 8) from HD mice but not 

in CPNs (1 out of 7) from age-matched WT littermates. Furthermore, concurrent application 

of BIC and 4-AP generated ictal-like activity in R6/2 CPNs, but not in WT CPNs (Fig. 1B). 

These observations are consistent with our previous study demonstrating the higher 

occurrence of complex paroxysmal discharges in R6/2 compared with WT mice at P21 

(Cummings et al., 2009), and highlight the fact that changes in cortical excitability are 

present even earlier during postnatal life.

Morphological evidence of CPN maldevelopment also was observed during early 

development. Under IR-DIC microscopy we observed that some CPNs displayed 

misorientation, e.g., apical dendrites pointing in the wrong direction, as well as the presence 
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of dysmorphic dendritic and axonal processes (Fig. 1A, C). While these processes extend 

with smooth transitions in CPNs from WT mice, in R6/2 mice some CPNs exhibit curvy, 

meandering dendrites and axons, suggesting that pathfinding mechanisms during fetal 

development had been disturbed by the presence of mHTT. At P14, signs of 

hyperexcitability in CPNs from R6/2 mice also were found (Fig. 1D). In R6/2 CPNs, bath 

application of BIC induced more frequent epileptiform discharges compared with age-

matched controls.

FCD-like abnormalities occur in the cerebral cortex of R6/2 mice

The cellular morphological abnormalities observed in young R6/2 mice are reminiscent of 

those we found in our studies of cortical tissue samples from pediatric epilepsy surgery 

patients with FCD histopathology (Cepeda et al., 2003b; Abdijadid et al., 2015), suggesting 

that cortical maldevelopment in HD could underlie cortical hyperexcitability and seizure 

proclivity. According to the International League Against Epilepsy (ILAE) classification of 

FCD, there are at least 3 different categories (Blumcke et al., 2011; Barkovich et al., 2015). 

FCD type 1 is characterized by cortical dyslamination with aberrant columnar and/or radial 

architecture. In addition, CPN misorientation and abnormal processes can be found. FCD 

type 2 is defined by additional features including the presence of dysmorphic, cytomegalic 

neurons and in some cases also balloon cells. FCD type 3 occurs only in association with 

other pathologies such as tumors or hippocampal sclerosis.

In a previous report, we speculated that one of the underlying mechanisms of cortical 

hyperexcitability and seizures in R6/2 mice could be a mild form of FCD, i.e., type 1 

(Estrada-Sánchez et al., 2016). To test this hypothesis, we recently examined potential 

histopathological evidence of FCD in symptomatic R6/2 mice (age P60). We chose this age 

group in a first approximation because spontaneous or evoked convulsive seizures are only 

observed in fully symptomatic mice. Six pairs of R6/2 and control mice of either sex were 

perfused, sliced and stained for the specific neuronal marker, NeuN to examine cortical 

cytoarchitecture and CPN morphology (see Supplementary Material). Initial observations 

indicate that FCD-like abnormalities occur in the motor and somatosensory cortices of at 

least 50% of R6/2 mouse brains examined (Fig. 2A). Abnormalities include cortical 

dyslamination, neuronal crowding in some areas but others devoid of NeuN label, all 

suggesting cortical maldevelopment. In addition, biocytin staining of CPNs demonstrated 

the presence of abnormal processes similar to those observed in R6/2 mice at P7, including 

misoriented neurons, recurving dendrites and extreme meandering of axonal processes (Fig. 

2B). Interestingly, in another model of HD with 100 CAG repeats we also documented the 

presence of misoriented CPNs as well as the common occurrence of dysmorphic dendrites 

(Laforet et al., 2001). These observations beg the question as to whether dysmorphic 

dendrites are the result of degenerative or abnormal neurodevelopmental processes.

Is HD a special case of malformations of cortical development (MCD)?

Cortical development is a delicate process that follows precise spatial and temporal rules. If, 

for any reason, these creodes (Waddington, 1962) are violated, the cytoarchitecture of the 

cortex crumbles. In particular, when CPNs terminate in ectopic positions FCD and other 

structural malformations ensue, leading to a growing number of neurological and psychiatric 
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diseases (Rakic, 2006; Wu et al., 2014; Ayoub and Rakic, 2015). MCD represent a group of 

pathologies associated with aberrant development of the cerebral cortex and are a common 

etiology of epilepsy (Barkovich et al., 2015). The causes of MCD are multiple and diverse. 

Genetic as well as extrinsic factors play a role. As HD is a genetic disorder, we can surmise 

that mHTT is able to alter the rules that underlie cortical development. This is supported by 

experimental evidence that the presence of mHTT during embryonic development affects 

neuronal migration and final positioning and orientation (Osmand et al., 2016; Barnat et al., 

2017).

Using Golgi impregnation of striatal neurons from HD patients, Graveland et al. described 

the abnormal presence of recurving terminal dendrites in MSNs (Graveland et al., 1985). 

Notably, the authors suggested that the high frequency of recurved dendrites may be a clue 

to the pathophysiology of HD. Degeneration and regeneration of CPNs from HD patients 

was also evinced by increases in the length of terminal branches and an overall greater 

branching complexity of the dendritic trees, somehow recapitulating normal brain 

development (Sotrel et al., 1993). Furthermore, an antibody used to detect the N-terminal 

region of mHTT was found in neuronal intranuclear inclusions and dystrophic neurites in the 

HD cortex and striatum (DiFiglia et al., 1997; Sapp et al., 1999). Dystrophic neurites, likely 

corresponding to distended axon terminals, were more prevalent in deep cortical layers and 

because they could be seen in a presymptomatic adult patient it was suggested that they 

precede clinical onset (DiFiglia et al., 1997). Morphological changes in the cerebral cortex 

include enlargement of gyral crowns and abnormally thin sulci (Paulsen et al., 2006; 

Nopoulos et al., 2007). Interestingly, enlargement of cortical gyri also is observed in some 

FCD types (Blumcke et al., 2011). Cortical thinning and white matter loss are common in 

pre-manifest HD subjects (Reading et al., 2005; Rosas et al., 2005; Rosas et al., 2006; 

Aylward, 2007; Waldvogel et al., 2015). Notably, smaller intracranial volumes in prodromal 

HD patients indicate that mHTT can cause abnormal brain development (Nopoulos et al., 

2011). Interestingly, smaller intracranial volumes can be associated with cerebellar 

enlargement, which could explain hypokinesia in JHD (Tereshchenko et al., 2019). Thus, 

HD therapies have to take into account that the goal is not only to prevent neurodegeneration 

in a susceptible brain but also to correct aberrant development.

Targeting cortical maldevelopment as a new strategy for the treatment of HD

There is an almost universal consensus that, in order to treat HD symptoms, interventions 

should start early. The question is how early? Based on the previous review of the literature 

and recent morphological and electrophysiological data in very young R6/2 mice, it appears 

that only by targeting early brain development can any treatment be successful. So the 

question becomes, can cortical maldevelopment be rescued? Using human HD induced 

pluripotent stem cell cultures it was demonstrated that the presence of mHTT negatively 

affects striatal and cortical neuronal progenitor specification and commitment leading to 

abnormal cell organization and acquisition of mature neuronal identities in cerebral 

organoids (Conforti et al., 2018). Notably, these defects could be rescued by down-

regulating mHTT with synthetic Zinc Finger Proteins or pharmacologically by inhibiting the 

metalloproteinase ADAM10, which is a mHTT effector. Another study showed that very 

early behavioral, cellular and molecular changes associated with the presence of mHTT can 
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be reverted through administration of HDAC inhibitors (Siebzehnrubl et al., 2018). Finally, a 

recent study using a disease-on-a-chip microfluidic platform to examine the corticostriatal 

network in vitro, provided further evidence that cortical alterations are critical to the 

progression of the disease (Virlogeux et al., 2018). Further, substitution of HD cortical 

neurons with wildtype neurons was sufficient to rescue cellular alterations in mutant striatal 

neurons. Although we are still far from using these experimental approaches in human 

patients, these results offer a glimmer of hope.

Conclusions, future studies and some unanswered questions

Based on this review of the literature, as well as some preliminary data, we can conclude 

that brain development is altered in the most severe form of HD, i.e., JHD, where there is 

strong evidence of cortical maldevelopment, similar to FCD. However, more anatomical 

studies using neuron-specific markers in younger animals are warranted so as to determine 

when the first manifestations of cortical malformation occur. In that sense, studies using 

cortical layer-specific markers will help a better understanding of CPN malpositioning. 

Future studies should also consider potential sex differences of cortical development in 

genetic models of HD. For example, it has been shown that the pattern of structural brain 

changes associated with normal HTT is remarkably different between normal male and 

female school-age children. Thus, within the normal range of CAG repeats (<36), cortical 

thickness and cognitive function were directly correlated with higher number of repeats in 

females but not in males (Lee et al., 2017).

Another important question for future studies is how cortical maldevelopment and 

hyperexcitability in HD mice affect corticostriatal synapses and MSN function. Recent 

studies have shown that during a critical period of mouse brain development (P10–18) 

corticostriatal connectivity is extremely sensitive to changes in cortical activity, suggesting 

that early imbalances in cortical function can impair basal ganglia circuit development 

(Peixoto et al., 2016). Thus, we predict that altered excitatory/inhibitory balance in the 

cerebral cortex of HD mice will induce early changes in striatal neurons due to abnormal 

activity along the corticostriatal pathway. Initial support for this assumption was provided 

using a striatal and cortical co-culture system. As early as three weeks in vitro differences in 

striatal MSNs were observed, including reduced frequency of spontaneous EPSCs as well as 

reduced dendritic complexity (Buren et al., 2016).

Another still unresolved question is whether GABAergic interneuron fate and positioning in 

the cerebral cortex are affected by the HD mutation. In addition, as mHTT is also abundant 

in striatum, it would be important to know if striatal compartmental organization, i.e., 

striosome and matrix, is affected. For example, studies have shown that reduced expression 

of wildtype HTT during development can induce profound changes in striatal organization, 

including heterotopias that share striosome and matrix identities (Arteaga-Bracho et al., 

2016). Finally, circuit organization in brain stem and thalamic regions, such as the inferior 

colliculus, should be examined to determine if abnormal development could explain the 

exquisite susceptibility of R6/2 mice to manifest audiogenic seizures.

A last point to consider is whether cortical maldeveloment is a general feature of HD or is 

only applicable to the more severe forms. At the present time it would be premature to 
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generalize findings from JHD to adult-onset HD. However, recent morphological evidence 

obtained from a group of pre-manifest adult-onset HD patients, showed that the HTT 
mutation may indeed influence cortical neurodevelopment, although this seemed to be 

independent from processes leading to neurodegeneration (Kubera et al., 2019). In addition, 

based on the fact that in adult-onset HD the cortex also shows hyperexcitablity, we could 

speculate that cortical development could be altered and that its manifestations are delayed 

or mitigated by compensatory mechanisms. For example, in presymptomatic (P21) and early 

symptomatic (P40) R6/2 mice the frequency of spontaneous IPSCs is increased in CPNs 

compared with WTs (Cummings et al., 2009). In addition, at P21, some cells displayed a 

bursting pattern of large-amplitude IPSCs. This could suggest that the intrinsic firing 

properties of cortical GABAergic interneurons are altered in mouse models of HD, resulting 

in an increased inhibitory drive onto CPNs. This upregulation of GABA activity could 

prevent early manifestation of HD symptoms. However, with disease progression this 

compensatory mechanism is no longer sufficient to prevent cortical hyperexcitability and 

eventual cell loss. Thus, in addition to targeting cortical maldevelopment, reinforcing 

cortical inhibition represents another valid strategy for therapeutic intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A. Infrared video image of CPNs in a slice from a R6/2 mouse at P7. A normally oriented 

CPN was patched and recorded. The shadow of the glass electrode can be seen in the center 

of the image. On the left and adjacent to this cell, a misoriented CPN can be seen. This cell 

had the apical dendrite completely inverted (yellow arrowheads) with respect to the pial 

surface (arrow). B. In two different slices, CPNs from WT and R6/2 mice (P7) were 

recorded in current clamp mode. Bath application of BIC and 4-AP induced paroxysmal 

activity in both. However, while only interictal activity was seen in the WT cell, in the R6/2 

cell prolonged, complex discharges resembling ictal activity were observed. C. CPNs from 

WT and R6/2 mice (P14) were recorded and filled with biocytin. While the WT CPN 

showed normal morphology, albeit still immature, the CPN from the R6/2 mouse displayed 

overly tortuous apical dendrite and axon (yellow arrow heads). D. In the presence of BIC, 
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WT and R6/2 CPNs recorded in voltage clamp mode displayed large-amplitude inward 

currents reflecting paroxysmal discharges. The R6/2 CPN showed more frequent paroxysmal 

discharges compared with the WT CPN.
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Fig. 2. 
A. WT and R6/2 mice (P60) were perfused and corticostriatal slices (30 μm thick) were 

processed for NeuN immunohistochemistry. The cortex of the WT mouse showed normal 

architecture and well delineated layers. In contrast, the cortex of the R6/2 mouse appeared 

dyslaminated and some areas were devoid of NeuN immunoreactivity while superficial areas 

showed neuronal crowding, suggestive of cortical dysplasia. B. Biocytin-filled CPNs from 

WT and symptomatic R6/2 mice (P80). Similar to observations in P14 R6/2 mice, some 

CPNs displayed overly tortuous processes. In particular, note the sharp bend of the initial 

segment of the apical dendrite in the R6/2 compared to the smooth, straight direction of the 

apical dendrite in the WT neuron. Also, fewer spines are seen in neurons from R6/2 mice 

compared to those from WTs.
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