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Abstract

The striatum plays a central role in guiding numerous complex behaviors, ranging from motor 

control to action selection and reward learning. The diverse responsibilities of the striatum are 

reflected by the complexity of its organization. In this review we will summarize what is currently 

known about the compartmental layout of the striatum, an organizational principle that is crucial 

for allowing the striatum to guide such a diverse array of behaviors. We will focus on the 

anatomical and functional properties of striosome (patch) and matrix compartments of the 

striatum, and how the engagement of these compartments is uniquely controlled by their afferents, 

intrinsic properties and neuromodulation. We will give examples of how advances in technology 

have opened the door to functionally dissecting the striatum’s compartmental design, and close by 

offering thoughts on the future and relevance for human disease.
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The execution of precise movements and action-based sequences requires the convergence 

of inputs from cortical and subcortical structures onto the striatum, the primary input 

nucleus to the basal ganglia (Gerfen & Surmeier, 2011; Jin & Costa, 2015). These inputs 

target GABAergic spiny projection neurons (SPNs), the predominant striatal neuronal class, 

as well as a menagerie of interneurons, in a topographically organized manner (Assous & 

Tepper, 2019; Ebrahimi, Pochet, & Roger, 1992; Gerfen & Surmeier, 2011); coordinated 

engagement and interaction of these striatal neurons shapes SPN activity and thus striatal 

output and behavior (Amemori, Gibb, & Graybiel, 2011; Graybiel, 2008). SPNs account for 

90–95% of all striatal neurons, and can be subdivided into at least two intermingled 

populations based on their axonal projection targets and expression of releasable peptides 

and dopamine receptors (Bolam, Hanley, Booth, & Bevan, 2000; Gerfen et al., 1990; Gerfen 
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& Wilson, 1996; Gerfen & Young, 1988; Kawaguchi, Wilson, & Emson, 1990; Le Moine, 

Normand, & Bloch, 1991; Onn, Berger, & Grace, 1994; Plotkin & Goldberg, 2018; Smith et 

al., 2016). In general, “direct pathway” SPNs (dSPNs) project directly to the output nuclei of 

the basal ganglia (though they also send axon “bridging” collaterals to the external globus 

pallidus (GPe) (Cazorla et al., 2014; Kawaguchi et al., 1990)) and express D1 dopamine 

receptors and substance P (SP); “indirect pathway” SPNs (iSPNs) project to the GPe (thus 

connecting to the basal ganglia output nuclei indirectly) and express D2 dopamine receptors 

and enkephalin (ENK) (Albin, Young, & Penney, 1989; Gerfen, 2006; Gong et al., 2003; 

Kravitz, Tye, & Kreitzer, 2012; Kreitzer, 2009; Wall, De La Parra, Callaway, & Kreitzer, 

2013). This organization has several consequences that are central to basal ganglia function 

and control of movement and action selection: 1) dSPN activity promotes disinhibition of 

the thalamus and action initiation, while iSPN activity promotes the opposite and 2) 

fluctuations in striatal dopamine will have opposing effects on dSPNs and iSPNs (Albin et 

al., 1989; Alexander & Crutcher, 1990; Gerfen & Surmeier, 2011; Kravitz et al., 2012).

In addition to direct and indirect pathways, the striatum is organized into histochemically 

defined compartments, known as striosomes (or patches) and matrix (Gerfen, 1984, 1992a; 

Gerfen, Baimbridge, & Miller, 1985; Graybiel & Ragsdale, 1978; Herkenham, Edley, & 

Stuart, 1984; Jimenez-Castellanos & Graybiel, 1989; Pert, Kuhar, & Snyder, 1976). Both 

compartments contain dSPNs and iSPNs, but the compartmental activities of these SPNs 

have been associated with distinct behaviors. For example, while striosomes only occupy 

about 10–15% of the total striatal volume (Davis & Puhl, 2011; Desban, Kemel, Glowinski, 

& Gauchy, 1993; Johnston, Gerfen, Haber, & van der Kooy, 1990; Miyamoto, Katayama, 

Shigematsu, Nishi, & Fukuda, 2018; Morigaki & Goto, 2016), engagement of neurons 

within these compartments has been linked to the generation of drug-induced motor 

stereotypies, the selection of high-cost/high-value reward options and encoding expected 

outcomes during learning (Amemori et al., 2011; Bloem, Huda, Sur, & Graybiel, 2017; 

Canales & Graybiel, 2000; Friedman et al., 2015; Yoshizawa, Ito, & Doya, 2018).

How is compartment-specific activity of SPNs achieved in a behaviorally-relevant way? This 

likely involves an interplay between 1) selective activation of afferents, 2) modulation of 

neuronal activity and synaptic transmission by neuromodulators such as dopamine (DA), 

acetylcholine (ACh) and opioid peptides, and 3) interneuron mediated intra- and inter-

compartmental signaling (Abudukeyoumu, Hernandez-Flores, Garcia-Munoz, & Arbuthnott, 

2018; Brimblecombe & Cragg, 2017; Brimblecombe et al., 2018; Crittenden & Graybiel, 

2011; Friedman et al., 2015). Despite evidence supporting the importance of compartment-

specific striatal output in shaping behavior (Amemori et al., 2011; Bloem et al., 2017; 

Canales, 2005; Friedman et al., 2015), progress towards understanding the underlying 

mechanisms had largely been impeded by technical limitations. This is due to the low 

percentage of striosomal neurons and inability to visualize compartmental organization in 

live tissue. New tools allowing the visualization and manipulation of compartment-specific 

neurons have now given unprecedented functional access to this circuitry. While not an 

exhaustive review of the literature, the goal of this review is twofold. First, we will provide 

an update on the histochemical organization of the striatum and compartment-specific 

connectivity. Second, we will present examples of how newly available genetic and imaging 
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tools have shed light on the functional and modulatory mechanisms that shape compartment-

specific activity.

Etiology of Striatal Compartmental Organization

Early studies examining acetylcholinesterase distribution in the striatum of adult humans, 

rhesus monkeys and cats revealed distinct compartments of low cholinesterase activity 

(Graybiel & Ragsdale, 1978). It soon became apparent that this histological pattern 

represented a coordinated organizational principle of the mature striatum, with neighboring 

neurons having more in common than just the local acetylcholinesterase activity level. For 

example, acetylcholinesterase-poor regions (striosomes/patches) also express high levels of 

the p-opioid receptor (MOR), while acetylcholinesterase-rich regions (matrix) express high 

levels of the Ca2+-binding protein calbindin (Herkenham & Pert, 1981; Pert et al., 1976). 

Numerous other striatal proteins and genes are preferentially expressed in striosomes vs 

matrix-exhaustive lists are available elsewhere (Brimblecombe & Cragg, 2017; Crittenden & 

Graybiel, 2011). In general, the relative expression of dSPN-specific proteins is higher in 

striosomes and iSPN-specific proteins higher in matrix (Fujiyama et al., 2011; Guttenberg, 

Klop, Minami, Satoh, & Voorn, 1996; Levesque & Parent, 2005; Miyamoto et al., 2018). 

Supporting this observation, single cell tracing studies of striosome SPNs have reported 

higher percentages of neurons with axonal projections to basal ganglia output structures than 

to intermediate nuclei (Fujiyama et al., 2011; Levesque & Parent, 2005). This has led to an 

oft-cited dogma that striosomes are predominantly composed of dSPNs. This dogma, 

however, should be qualified. First, the matrix contains approximately equal numbers of 

dSPNs and iSPNs, so the contribution of the matrix to the direct pathway should not be sold 

short. Second, Miyamoto and colleagues recently demonstrated that striosomes can be 

classified into 5 types based on MOR, SP and ENK expression, suggesting that there may be 

heterogeneity in both striosome function and their primary pathway-associated targets 

(Miyamoto et al., 2018). Indeed, SP-rich striosomes (which are primarily found in the 

medial striatum in rodents) may contain up to 70% dSPNs, but the percentage of dSPNs is 

far lower (as low as 40%) in other striosome regions (Miyamoto et al., 2018).

The groundwork for the striatum’s compartmental organization is laid embryonically. In 

fact, striosomes represent some of the oldest and earliest assembled circuit components in 

the striatum. Striatal cells migrate from the lateral ganglionic eminence in two distinct 

waves, beginning around embryonic days 9.5 to 13.5 in rodents (Kelly et al., 2018; Tinterri 

et al., 2018). The cells in the first wave ultimately correspond to striosomal SPNs and 

migrate to their destinations around the same time as the earliest cortical (layer 6) neurons 

do, putting them in position to receive early corticostriatal as well as early thalamostriatal 

inputs (Fishell & van der Kooy, 1987; Graybiel, 1984; Graybiel & Hickey, 1982; Hagimoto, 

Takami, Murakami, & Tanabe, 2017; Moon Edley & Herkenham, 1984; Nakamura, Hioki, 

Fujiyama, & Kaneko, 2005; Song & Harlan, 1994). Immature striosomes are also the 

recipients of the earliest dopaminergic inputs. Dopaminergic nigrostriatal fibers initially 

form “dopamine islands” within the striatum, before spreading to the more homogenous 

distribution seen in the adult (Olson, Seiger, & Fuxe, 1972; Tennyson et al., 1972). These 

dopamine islands overlap with immature striosome compartments (Davis & Puhl, 2011; 

Graybiel, Pickel, Joh, Reis, & Ragsdale, 1981; Hagimoto et al., 2017; Miura, Saino-Saito, 
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Masuda, Kobayashi, & Aosaki, 2007). Once positioned, striosome cells become mostly 

stationary and cluster together, whereas matrix cells continue to actively migrate in a 

multidirectional manner during late embryonic development (Hagimoto et al., 2017). The 

homogenous mix of dSPNs and iSPNs observed in adults is this result of a parallel, active 

intermixing of iSPNs (Tinterri et al., 2018). While striosomes form a continuous 

labyrinthine network that extends through the striatum (Graybiel & Ragsdale, 1978), it 

should be noted that recent work has discovered the presence of scattered SPNs within the 

matrix (termed “exo-patches”) that are more similar to striosome than matrix SPNs in terms 

of genetic profiles, birth date, synaptic connectivity and modulation by neuropeptides 

(Crittenden & Graybiel, 2011; Newman, Liu, & Graybiel, 2015; Smith et al., 2016). It 

should also be noted that the mature morphological appearance of compartmentalization 

varies by region, with striosomes in dorsal and central striatal regions having canonical 

“patchy” appearances, and those ventrally often appearing more like “swirls” 

(Brimblecombe & Cragg, 2017). The precise function and etiology of exo-patches and 

morphological differences in compartmentalization remain to be determined.

Compartment Specific Afferent and Efferent Pathways

A feature of striatal compartmental organization is the segregation of striatal inputs and 

outputs. Decades of research exploring the compartmental targets of striatal afferents 

uncovered several themes. First, though some overlap certainly exists, afferents are often 

categorically segregated: in the dorsal striatum limbic-associated cortical and subcortical 

regions (including portions of the prelimbic, orbitofrontal and anterior insular cortices and 

basolateral nuclei of the amygdala) preferentially innervate striosomes, whereas projections 

from somatosensory and motor cortices preferentially innervate the matrix. Second, just as 

not all striosomes are histochemically homogenous, compartment-specific innervation 

patterns vary across striatal regions (Canales, 2005; Donoghue & Herkenham, 1986; Eblen 

& Graybiel, 1995; Flaherty & Graybiel, 1994; Friedman et al., 2015; Gerfen, 1984, 1985, 

1989; Graybiel & Ragsdale, 1978; Kincaid & Wilson, 1996; Levesque, Charara, Gagnon, 

Parent, & Deschenes, 1996; Ragsdale & Graybiel, 1988, 1990). Despite the wealth of 

evidence for compartmental segregation of striatal afferents, recent work employing new 

methodologies has called much of this into question (we refer the reader to Brimblecombe 

and Cragg (2017) and Gerfen et al. (2013) for further information about new mouse lines 

used to isolate and interrogate compartments and their afferents/efferents). Using bacterial 

artificial chromosome (BAC) mice that preferentially express cre recombinase in striosomes 

vs matrix neurons and cutting-edge viral tracing techniques, Smith and colleagues reported 

that afferents from most cortical regions showed minimal compartmental preference (Smith 

et al., 2016). They did find, however, that subcortical regions such as the septum, 

hypothalamus and bed nucleus of the stria terminalis preferentially project to the striosomes. 

The reason for these discrepancies is not clear, but likely relates to methodological 

differences. For example, the retroviral tracing techniques employed in the latter study are 

well suited to detect differences in the number of presynaptically connected neurons, but 

lack sensitivity in detecting differences in synapse number between connected neurons. 

Consistent with this, recent studies utilizing viral tracing techniques that functionally and 

visually label corticostriatal axonal fields detect preferential connectivity between the 
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prelimbic cortex and striosomes and anterior cingulate cortex and matrix (Friedman et al., 

2017; Friedman et al., 2015).

Both compartments contain dSPNs and iSPNs that project to the substantia nigra pars 

reticulata (SNr) / internal globus pallidus (GPi; entopeduncular nucleus in mice) and GPe, 

respectively, and hence contribute to canonical direct and indirect pathways (Fujiyama et al., 

2011). Due to the sheer numbers of matrix vs striosome SPNs, however, the source of 

GPe/SNr/GPi synaptic inhibition is likely biased towards SPNs residing in the matrix 

(Fujiyama et al., 2011; Gerfen & Young, 1988; Jimenez-Castellanos & Graybiel, 1989; 

Levesque & Parent, 2005; Rajakumar, Elisevich, & Flumerfelt, 1993; Tokuno, Chiken, 

Kametani, & Moriizumi, 2002). But striosomal dSPNs may also innervate other targets, 

endowing them with the capacity to influence unique aspects of behavior. Work in non-

human primates has shown that striosome SPNs innervate ventral pallidum neurons and 

“border neurons” situated at the edge of the GPi, which then inhibit or excite neurons within 

the lateral habenula, respectively. This disynaptic circuit offers a mechanism by which 

striosomal output can feasibly guide negative reward prediction and motivational decision-

making (Hong et al., 2019; Hong & Hikosaka, 2013). It was also discovered early on that in 

addition to targeting the output nuclei of the basal ganglia, many striosome dSPNs directly 

target dopaminergic neurons of the substantia nigra pars compacta (SNc) (Gerfen, 1985; 

Jimenez- Castellanos & Graybiel, 1987). While a recent study using cre-dependent viral 

tracing techniques to target SNc neurons suggests that a population of matrix and exo-patch 

SPNs may do the same (Smith et al., 2016), 1) the density of retrogradely labeled SPNs 

projecting to the SNc is higher in striosomes, and 2) viral labeling of BAC transgenic mice 

preferentially expressing cre recombinase in striosome vs matrix neurons has demonstrated 

differential outputs to the SNc (Gerfen, Paletzki, & Heintz, 2013; Smith et al., 2016). 

Furthermore, it is clear that axon terminals originating from striosome SPNs form tightly 

wound associations with the ventrally extending dopaminergic dendrites of SNc neurons. 

Termed “striosome-dendron bouquets”, these associations have been proposed to represent 

computational units allowing striosomal regulation of dopaminergic neurons (Crittenden et 

al., 2016). Though the precise function of striosome-dendron bouquets is unknown, one 

possibility is that striosomal axons within the bouquets regulate local dopamine release from 

dendrites within the SNr. An alternate (and not mutually exclusive) possibility is that the 

bouquets serve as a homeostat, whereby elevations in striatal dopamine will alter the activity 

of striosomal neurons projecting to the SNc, leading to direct inhibition of dopaminergic 

neurons and thus reducing dopamine release in the striatum.

Inter-compartmental Communication

SPN dendrites and axon collaterals generally respect compartmental borders, resulting in 

minimal inter- compartmental synaptic communication (Bolam, Izzo, & Graybiel, 1988; 

Fujiyama et al., 2011; Kawaguchi, Wilson, & Emson, 1989; Lopez-Huerta et al., 2016; 

Penny, Wilson, & Kitai, 1988). Many local striatal interneurons, however, have dendrites and 

axons that freely traverse compartmental borders, positioning them to serve as a functional 

bridge between compartments. Indeed, though widely distributed (and often at higher 

densities in the matrix), cholinergic interneurons (CINs), parvalbumin-expressing fast-

spiking interneurons, neuropeptide Y- expressing interneurons and calretinin- expressing 
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interneurons are frequently located along striosomal borders in what have been termed 

“peristriosomal boundaries”, anatomically and functionally defined micro-regions that may 

potentially shepherd information flow between compartments (Bernacer, Prensa, & 

Gimenez-Amaya, 2012; Brimblecombe & Cragg, 2015, 2017; Cowan, Wilson, Emson, & 

Heizmann, 1990; Kubota & Kawaguchi, 1993; Matamales, Gotz, & Bertran-Gonzalez, 2016; 

Rushlow, Naus, & Flumerfelt, 1996). A great deal is known about how interneurons guide 

circuit function within compartments, or at least in the presumptive matrix (Assous & 

Tepper, 2019; Banghart, Neufeld, Wong, & Sabatini, 2015; Crittenden et al., 2017), and 

clues suggesting how local microcircuitry preferentially impacts striosome vs matrix SPN 

activity are emerging (Banghart et al., 2015; Friedman et al., 2015). But the precise role that 

interneurons play in functionally linking striosome and matrix circuits is a crucial area for 

future study (see (Amemori et al., 2011).

Functional Differences between Striosome and Matrix SPNs

Compartmental Differences in Intrinsic Excitability

Because 1) technical limitations typically impede the targeted interrogation of compartments 

in live striatal tissue and 2) there is a substantial volume disparity between striosomes and 

matrix, most published studies of striatal function likely reflect phenomena occurring in the 

matrix. The first study to systematically compare the electrophysiological properties of 

SPNs in striosomes vs matrix employed intracellular recordings followed by post-hoc 

histological identification in rat brain slices (Kawaguchi et al., 1989). While this heroic 

study reported overall similarities in membrane properties and firing characteristics, more 

recent studies employing patch clamp techniques in genetically-labeled mice have begun to 

uncover differences. One theme that has arisen is that SPNs in striosomes are intrinsically 

more excitable than their counterparts in the matrix. Using patch clamp recordings in 

immature (postnatal days 12–32) tyrosine hydroxylase (TH)-GFP transgenic mice (to 

visualize presumptive striosomes), Miura and colleagues found that striosome SPNs have a 

higher input resistance and are more depolarized than those in the matrix (Miura et al., 

2007). Similarly, using patch clamp recordings and CaIDAG-GEFI-GFP transgenic mice to 

visualize matrix neurons, Crittenden and colleagues found that not only are striosome SPNs 

more depolarized than those in the matrix, but they require less current injection to fire 

action potentials and fire at a higher frequency in response to similar current injections 

compared to matrix SPNs (Crittenden et al., 2017).

What is less clear is how such differences relate to dSPNs and iSPNs within and between 

compartments. Within the presumptive matrix, numerous lines of evidence suggest that 

iSPNs are more excitable than dSPNs. This includes measures of intrinsic somatic and 

dendritic excitability, action potential threshold and frequency of spontaneous excitatory 

synaptic inputs (Cepeda et al., 2008; Day et al., 2006; Gertler, Chan, & Surmeier, 2008; 

Kreitzer & Malenka, 2007). Using adult double transgenic mice to identify striosomes 

(Sepw1NP67-Cre mice, virally infected with cre-dependent tdTomato) and dSPNs (D1-

eGFP mice), Smith and colleagues showed that striosome dSPNs fire more spikes in 

response to suprathreshold current injection than matrix dSPNs (Smith et al., 2016). This is 

consistent with preliminary data collected in our lab from Nr4a1-eGFP x drd1-tdTomato 
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double transgenic mice (see our preprint: http://dx.doi.org/10.2139/ssrn.3263630). 

Interestingly, Smith and colleagues went on to show that this excitable phenotype extends to 

D1-receptor expressing exo-patch neurons as well (Smith et al., 2016). Whether or not 

iSPNs in striosomes are more excitable than iSPNs in the matrix, and if the same dSPN vs 

iSPN dichotomy observed in presumptively matrix recordings holds up within striosomes, 

remains to be determined.

Modulation of Synaptic Activity and Function in Striosome and Matrix Compartments

While differences in presynaptic inputs and postsynaptic excitability will shape 

compartment-specific activity and striatal output, it has become clear that neuromodulation 

also plays a major role. A growing number of studies (referenced below) have discovered 

that neuromodulation is not homogenous throughout the striatum, and can often be 

compartment-specific (Table 1). Such compartmental differences can be due to a variety of 

factors, some identified and some still mysterious, including differences in neuromodulator 

source, release and receptor expression. Below we will present key examples highlighting 

how differential neuromodulation may affect compartment-specific striatal circuit function 

and output.

Opioid Receptors—The striatum expresses three classes of opioid receptors: p (MORs), d 
(DORs) and K (KORs). Unlike KORs (the endogenous ligand of which is dynorphin), which 

are expressed homogenously throughout the striatum, MORs and DORs are enriched in 

striosomes and exo-patch neurons (Graybiel, 1990; Koizumi et al., 2013; Miura et al., 2007; 

Smith et al., 2016). Despite the striosomal-expression pattern of MORs and DORs, their 

endogenous ligand, enkephalin, is positioned to modulate synaptic transmission throughout 

the striatum. Presynaptically expressed MORs inhibit glutamatergic excitatory synaptic 

transmission to SPNs similarly in both striosome and matrix compartments (Miura et al., 

2007). While it was initially presumed that this MOR-mediated inhibition occurred at 

corticostriatal synapses (Blomeley & Bracci, 2011; Miura et al., 2007), more recent studies 

have shown that thalamostriatal inputs are the targets of MORs, while corticostriatal inputs 

are attenuated by DORs (Atwood, Kupferschmidt, & Lovinger, 2014; Birdsong et al., 2019). 

Though opioid receptor-mediated attenuation of excitatory inputs to SPNs may be similar 

across compartments, attenuation of inhibitory inputs is not. A pioneering study by Miura 

and colleagues demonstrated that pharmacological activation of presynaptic MORs 

selectively attenuates GABA release and resulting postsynaptic inhibitory currents within 

striosomes, but not matrix (Miura et al., 2007). This preferential action of opioid receptor 

activation on inhibitory inputs has since been extended to include exo-patches (Smith et al., 

2016). What was not clear from these studies was the local microcircuitry that was engaged. 

This issue was tackled in an elegant study by Banghart and colleagues, who used genetic and 

optical techniques (prodynorphin-EGFP mice to visualize striosomes, crossed with pathway-

specific cre lines to target channelrhodopsin to dSPNs or iSPNs) to dissect the circuits 

involved (Banghart et al., 2015). While both dSPNs and iSPNs within striosomes express 

MORs, striosomal iSPNs contain functional DORs. Activation of DORs within striosomes 

attenuates iSPN-mediated collateral inhibition of dSPNs, promoting the disinhibition of 

striosome-associated targets such as the SNc (Banghart et al., 2015). The involvement of 

DORs (rather than MORs) in this phenomenon is at odds with earlier reports, but may reflect 

Prager and Plotkin Page 7

J Neurosci Res. Author manuscript; available in PMC 2020 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dx.doi.org/10.2139/ssrn.3263630


limitations in pharmacological tools (Banghart et al., 2015) or a developmental shift in 

receptor expression or function. It should be noted that disinhibition of striosomal output 

may also be achieved in opioid receptor-independent ways. For example, cannabinoid-1 

receptors (CB1Rs), which attenuate presynaptic glutamate and GABA release in much the 

same way as opioid receptors do (Adermark, Talani, & Lovinger, 2009; Atwood et al., 

2014), are preferentially expressed in SPN axon collaterals within striosomes in the 

dorsolateral striatum (Davis et al., 2018). As presynaptic CB1Rs are key determinants of 

endocannabinoid-mediated long term depression (LTD) within the striatum (Lovinger, 

2010), it is tempting to speculate that the propensity for LTD at inhibitory SPN-SPN 

collateral connections or extrastriatal SPN axonal targets is augmented in striosomes.

Substance P—SP, which is released by dSPNs (Gerfen, 1992b), can also be used to 

distinguish striosomes and matrix as it is more highly expressed in the striosomes of adult 

rodents (Crittenden & Graybiel, 2011). SP is an endogenous ligand for neurokinin-1 (NK1) 

receptors, which are present on glutamatergic terminals within the striatum (Jakab & 

Goldman-Rakic, 1996) as well as several striatal interneuron populations (Chen, Cao, Liu, 

Ju, & Chan, 2003; Govindaiah, Wang, & Cox, 2010). Activity-dependent release of SP by 

SPN axon collaterals can potentiate responses to cortical inputs in neighboring SPNs, in a 

NK1 receptor-dependent manner (Blomeley, Kehoe, & Bracci, 2009). It remains to be 

determined if such facilitation is dominant in striosomes, as may be predicted by the 

expression profile of SP. NK1 receptor activation can also modulate dopamine release, 

though early descriptions in the striatum were inconsistent (Boix, Huston, & Schwarting, 

1992; Starr, 1982; Tremblay, Kemel, Desban, Gauchy, & Glowinski, 1992). An elegant study 

by Brimblecombe and Cragg (2015) has recently shed light on this process, demonstrating 

that SP modulation of dopamine release in the striatum is not only compartment-specific but 

bidirectional (Brimblecombe & Cragg, 2015), a finding that likely explains the source of 

earlier confusion. Specifically, SP enhances striatal dopamine release in striosomes but not 

matrix. Moreover, the authors uncovered a border region between compartments 

(“peristriosomal boundaries”) where SP decreases dopamine release (Brimblecombe & 

Cragg, 2015). This finding not only clarified the role of SP in striatal circuit function, but 

described an additional functional region of striatal circuitry within the striosome/matrix 

organization, the significance of which is only beginning to be understood (Brimblecombe & 

Cragg, 2017).

Acetylcholine—CINs are the main source of ACh in the striatum. While CIN cell bodies 

tend to reside in the matrix and peristriosomal boundaries, and their neuropil is more 

extensive in the matrix, CINs are indeed present in both compartments and their processes 

do cross striosome-matrix boundaries (Abudukeyoumu et al., 2018; Bernacer, Prensa, & 

Gimenez-Amaya, 2007; Brimblecombe & Cragg, 2017; Crittenden, Lacey, Lee, Bowden, & 

Graybiel, 2014; Crittenden et al., 2017; Goldberg & Reynolds, 2011; Graybiel, Baughman, 

& Eckenstein, 1986; Inoue, Suzuki, Nishimura, & Miura, 2016; Jakab & Goldman-Rakic, 

1996). Cholinergic signaling modulates myriad aspects of striatal circuit function (including 

cellular excitability, synaptic transmission and plasticity, dopamine release and circuit 

responses to salient cues), which are reviewed elsewhere (Abudukeyoumu et al., 2018; 

Gerfen & Surmeier, 2011; Goldberg & Reynolds, 2011; Plotkin & Goldberg, 2018), but we 
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are only beginning to understand how this modulation occurs within the context of the 

striatum’s compartmental organization.

Fundamental to understanding compartmental differences in cholinergic signaling is the 

recent observation that CIN activity itself may be differentially modulated in striosomes vs 

matrix. CINs excite several classes of striatal GABAergic interneurons, via postsynaptic 

nicotinic acetylcholine receptors (nAChRs), which in turn send GABAergic projections back 

to CINs, forming an inhibitory feedback loop (Abudukeyoumu et al., 2018; Assous & 

Tepper, 2019). This feedback loop is considerably stronger in the matrix (Inoue et al., 2016). 

What is responsible for this compartmental difference? It is likely that the mechanism is 

rooted in the archetypal expression pattern of acetylcholinesterase, which is high in the 

matrix and low in striosomes (Graybiel & Ragsdale, 1978). Given that CINs release ACh in 

both striosomes and matrix (Crittenden et al., 2017; Inoue et al., 2016), it is reasonable to 

speculate that the dearth of acetylcholinesterase may amplify the lifespan of synaptically 

released ACh. Indeed, the frequency of nAChR-mediated GABAergic inputs to CINs is 

attenuated by both pharmacological application of ACh or inhibition of acetylcholinesterase 

(Inoue et al., 2016), perhaps reflecting higher basal ACh tone and desensitization of nAChRs 

in striosomes.

In addition to sending axon collaterals back to CINs, several populations of striatal 

interneurons also send GABAergic projections to SPNs, allowing CINs to modulate SPN 

activity in a multisynaptic nAChR- and GABA receptor- dependent manner (Assous & 

Tepper, 2019; English et al., 2011; Faust, Assous, Tepper, & Koos, 2016; Luo, Janssen, 

Partridge, & Vicini, 2013; Nelson et al., 2014). Recent work suggests that a functional 

multisynaptic connection from CINs to SPNs is present in both compartments, and it may be 

stronger in striosomes (Crittenden et al., 2017). Specifically, using CalDAG-GEFI-EGFP 

mice to visualize matrix neurons Crittenden and colleagues demonstrated that optogenetic 

stimulation of CINs disrupt the firing patterns of SPNs in ex vivo striatal slices in a nAChR-

dependent way, though the dependence upon GABA remains unclear. Furthermore, repeated 

in vivo administration of D-amphetamine, which induces behavioral stereotypies and 

preferential cFos induction in striosomes relative to reduced activation in matrix, abolishes 

the ability of CINs to disrupt SPN firing (Canales & Graybiel, 2000; Crittenden et al., 2017). 

This, along with observations that 1) destruction of striatal CINs (and somatostatinergic 

interneurons) prevents the above drug-induced striosome/matrix pattern of cFos induction, 

2) pharmacological blockade of striatal cholinergic signaling increases drug-induced 

stereotypies and 3) globally elevating acetylcholine release also exacerbates drug-induced 

stereotypies (Aliane, Perez, Bohren, Deniau, & Kemel, 2011; Crittenden et al., 2014; 

Janickova, Prado, Prado, El Mestikawy, & Bernard, 2017; Saka, Iadarola, Fitzgerald, & 

Graybiel, 2002; see also the preprint by Crittenden et al., deposited in bioRxiv on July 22, 

2019 https://www.biorxiv.org/content/10.1101/709246v1), suggests that a precise balance of 

striatal cholinergic signaling may be required to shape striosome-linked behaviors and 

prevent pathological stereotypy.

Dopamine—DA modulation of striatal circuit function plays an integral role in shaping 

behavioral output (Cox & Witten, 2019; Gerfen & Surmeier, 2011; Plotkin & Goldberg, 

2018). Canonically, elevations in dopamine will promote activity of dSPNs and suppress 
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activity of iSPNs, ultimately favoring disinhibition of the thalamus (Albin et al., 1989; 

Alexander & Crutcher, 1990; Gerfen & Surmeier, 2011). Although all areas of the striatum 

receive dense dopaminergic innervation, the source of dopaminergic fibers varies by region 

and compartment. The dorsal tier of the SNc and the ventral tegmental area preferentially 

supply DA to dorsal and ventral striatal regions, respectively, with the primary targets being 

in the matrix. The primary source of DA inputs to striosomes, however, is the ventral tier of 

the SNc (Gerfen, Herkenham, & Thibault, 1987; Haber, 2014; Matsuda et al., 2009; Prensa 

& Parent, 2001). This heterogeneous innervation pattern, along with compartmental 

gradients of other neuromodulators that locally regulate DA release (Brimblecombe & 

Cragg, 2017), set a plausible framework for compartmentally-dissociated DA signaling. 

Indeed, the pioneering study by Canales and Graybiel (2000) mentioned above demonstrated 

that repeated activation of the dopaminergic system induces preferential immediate early 

gene expression in striosomes relative to decreased induction in the matrix (Canales & 

Graybiel, 2000).

As described above, SP modulation of striatal DA release is spatially heterogeneous and 

compartment-specific (Brimblecombe & Cragg, 2015). Recent work by Salinas and 

colleagues (2016) has demonstrated that evoked DA release, and its modulation by cocaine, 

is also compartment and region specific. Using acute striatal slices from Nr4a1-GFP mice to 

visualize striosomes (Davis & Puhl, 2011), the authors demonstrated that electrically evoked 

DA release is lower in striosomes than the surrounding matrix in the dorsal striatum, and this 

relationship is reversed in the ventral striatum (Salinas, Davis, Lovinger, & Mateo, 2016). 

Furthermore, cocaine augmentation of DA release is greater in striosomes than matrix in the 

dorsal striatum, an observation that can only be partially explained by differences in 

dopamine transporter inhibition. Importantly, although activation of presynaptic nAChRs 

promotes local DA release (Threlfell et al., 2012), this mechanism appears to be similar in 

striosomes and matrix and does not account for the observed differences in evoked release 

(Salinas et al., 2016). Why compartmental differences in acetylcholinesterase activity 

correlate with nAChR-mediated modulation of GABAergic signaling (Inoue et al., 2016) but 

not DA release (Salinas et al., 2016) is unclear, but may reflect differences in basal CIN 

activity and ACh levels achieved by the unique experimental slice conditions.

While the regulation of DA release is clearly different in striosomes and matrix, it remains to 

be determined if postsynaptic DA signaling is similar in SPNs of each compartment. 

Specifically, although dSPNs and iSPNs in striosomes and matrix express comparable DA 

receptors, the consequences of DA receptor activation are ultimately determined by 

additional factors, including the functional state of the neuron and the ion channels it 

possesses (Cepeda, Colwell, Itri, Chandler, & Levine, 1998; Gerfen & Surmeier, 2011; Liu 

et al., 2004). As described above, SPNs do exhibit compartment-specific physiological 

properties, raising the caveat that functional modulation by DA may differ as well. Indeed, 

preliminary data from our laboratory suggest that that this may be the case (https://

dx.doi.org/10.2139/ssrn.3263630).
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Summary and going forward

The complexity of striatal compartmentalization and its role in shaping behavior are only 

starting to become clear. While decades of research have led to an overall model of basal 

ganglia function where limbic and sensorimotor loops are compartmentalized to guide 

unique aspects of behavior, newly developed tools are opening the door to test fundamental 

hypotheses in functioning circuits and living animals. Of keen interest to public health will 

be using these tools to follow old clues about the pathologies underlying disease states. For 

example, the correlation between striosome activation and repetitive behaviors has overt 

implications for conditions such as obsessive-compulsive disorder (Canales & Graybiel, 

2000) - can dissection of the mechanism underlying drug-induced engagement of striosomes 

shed light on the underlying cause of this disorder? Pathological reports and animal models 

suggest that SNc neurons projecting to striosomes vs matrix may be differentially vulnerable 

in Parkinson’s disease (Gibb & Lees, 1991; Moratalla et al., 1992) - does this play a role in 

disease progression, and are there compartment-specific responses to DA replacement 

strategies that need to be identified and considered? One of the earliest pathologies in 

Huntington’s disease is the loss or alteration of neurons within striosomes (Hedreen & 

Folstein, 1995; Menalled et al., 2002). Interestingly, choreic symptoms of Huntington’s 

disease are associated with elevated dopamine, and dopamine blockers such as tetrabenazine 

are used to treat motor symptoms (Zuccato, Valenza, & Cattaneo, 2010). Might the 

pathological dopamine fluctuations seen in early stages of Huntington’s disease be the result 

of dysfunctional striosomal inhibition of SNc neurons? As technology continues to advance, 

so too will our ability to address such questions.
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SIGNIFICANCE STATEMENT

The way in which striatal compartmental organization influences complex behavioral 

patterns remains elusive. With modern technologies, the functional differences between 

striosome and matrix compartments are becoming clear. In this review, we summarize the 

anatomical and functional similarities and differences between the compartments and 

discuss how compartment-specific circuit function is shaped by neuromodulation. We 

also point out how technological advances have led to changes in our understanding of 

striatal compartmental organization and its influence on behavior.
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