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Abstract

Regularization by Denoising (RED), as recently proposed by Romano, Elad, and Milanfar, is 

powerful image-recovery framework that aims to minimize an explicit regularization objective 

constructed from a plug-in image-denoising function. Experimental evidence suggests that the 

RED algorithms are state-of-the-art. We claim, however, that explicit regularization does not 

explain the RED algorithms. In particular, we show that many of the expressions in the paper by 

Romano et al. hold only when the denoiser has a symmetric Jacobian, and we demonstrate that 

such symmetry does not occur with practical denoisers such as non-local means, BM3D, TNRD, 

and DnCNN. To explain the RED algorithms, we propose a new framework called Score-Matching 

by Denoising (SMD), which aims to match a “score” (i.e., the gradient of a log-prior). We then 

show tight connections between SMD, kernel density estimation, and constrained minimum mean-

squared error denoising. Furthermore, we interpret the RED algorithms from Romano et al. and 

propose new algorithms with acceleration and convergence guarantees. Finally, we show that the 

RED algorithms seek a consensus equilibrium solution, which facilitates a comparison to plug-

and-play ADMM.

I. Introduction

Consider the problem of recovering a (vectorized) image x0 ∈ ℝN from noisy linear 

measurements y ∈ ℝM of the form

y = Ax0 + e,

(1)

where A ∈ ℝM × N is a known linear transformation and e is noise. This problem is of great 

importance in many applications and has been studied for several decades.
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One of the most popular approaches to image recovery is the “variational” approach, where 

one poses and solves an optimization problem of the form

x = arg min
x

{ℓ(x; y) + λρ(x)} .

(2)

In (2), ℓ(x; y) is a loss function that penalizes mismatch to the measurements, ρ(x) is a 

regularization term that penalizes mismatch to the image class of interest, and λ > 0 is a 

design parameter that trades between loss and regularization. A prime advantage of the 

variational approach is that, in many cases, efficient optimization methods can be readily 

applied to (2).

A key question is: How should one choose the loss ℓ(·; y) and regularization ρ(·) in (2)? As 

discussed in the sequel, the MAP-Bayesian interpretation suggests that they should be 

chosen in proportion to the negative log-likelihood and negative log-prior, respectively. The 

trouble is that accurate prior models for images are lacking.

Recently, a breakthrough was made by Romano, Elad, and Milanfar in [1]. Leveraging the 

long history (e.g., [2], [3]) and recent advances (e.g., [4], [5]) in image denoising algorithms, 

they proposed the regularization by denoising (RED) framework, where an explicit 

regularizer ρ(x) is constructed from an image denoiser f :ℝN ℝN using the simple and 

elegant rule

ρred(x) = 1
2 x⊤ x − f (x) .

(3)

Based on this framework, they proposed several recovery algorithms (based on steepest 

descent, ADMM, and fixed-point methods, respectively) that yield state-of-the-art 

performance in deblurring and super-resolution tasks.

In this paper, we provide some clarifications and new interpretations of the excellent RED 

algorithms from [1]. Our work was motivated by an interesting empirical observation: With 

many practical denoisers f(·), the RED algorithms do not minimize the RED variational 

objective ℓ(x; y) + λρred(x).” As we establish in the sequel, the RED regularization (3) is 

justified only for denoisers with symmetric Jacobians, which unfortunately does not cover 

many state-of-the-art methods such as non-local means (NLM) [6], BM3D [7], TNRD [4], 

and DnCNN [5]. In fact, we are able to establish a stronger result: For non-symmetric 

denoisers, there exists no regularization ρ(·) that explains the RED algorithms from [1].
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In light of these (negative) results, there remains the question of how to explain/understand 

the RED algorithms from [1] when used with non-symmetric denoisers. In response, we 

propose a framework called score-matching by denoising (SMD), which aims to match the 

“score” (i.e., the gradient of the log-prior) rather than to design any explicit regularizer. We 

then show tight connections between SMD, kernel density estimation [8], and constrained 

minimum mean-squared error (MMSE) denoising. In addition, we provide new 

interpretations of the RED-ADMM and RED-FP algorithms proposed in [1], and we propose 

novel RED algorithms with faster convergence. Inspired by [9], we show that the RED 

algorithms seek to satisfy a consensus equilibrium condition that allows a direct comparison 

to the plug-and-play ADMM algorithms from [10]

The remainder of the paper is organized as follows. In Section II we provide more 

background on RED and related algorithms such as plug-and-play ADMM [10]. In Section 

III, we discuss the impact of Jacobian symmetry on RED and test whether this property 

holds in practice. In Section IV, we propose the SMD framework. In Section V, we present 

new interpretations of the RED algorithms from [1] and new algorithms based on 

accelerated proximal gradient methods. In Section VI, we perform an equilibrium analysis 

of the RED algorithms, and, in Section VII, we conclude.

II. Background

A. The MAP-Bayesian Interpretation

For use in the sequel, we briefly discuss the Bayesian maximum a posteriori (MAP) 

estimation framework [11]. The MAP estimate of x from y is defined as

xmap = arg max
x

p(x ∣ y),

(4)

where p(x∣y) denotes the probability density of x given y. Notice that, from Bayes rule p(x∣y) 

= p(y∣x)p(x)/p(y) and the monotonically increasing nature of ln(·), we can write

xmap = arg min
x

{ − ln p(y ∣ x) − ln p(x)} .

(5)

MAP estimation (5) has a direct connection to variational optimization (2): the log-

likelihood term – ln p(y∣x) corresponds to the loss ℓ(x; y) and the log-prior term – ln p(x) 

corresponds to the regularization λρ(x). For example, with additive white Gaussian noise 

(AWGN) e ∼ 𝒩(0, σe
2I), the log-likelihood implies a quadratic loss:
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ℓ(x; y) = 1
2σe

2 Ax − y
2

.

(6)

Equivalently, the normalized loss ℓ(x; y) = 1
2 Ax − y

2
 could be used if σe

2 was absorbed into 

λ.

B. ADMM

A popular approach to solving (2) is through ADMM [12], which we now review. Using 

variable splitting, (2) becomes

x = arg min
x

{ℓ(x; y) + λρ(v)} s.t. x = v .

(7)

Using the augmented Lagrangian, problem (7) can be reformulated as

min
x, v

max
p

ℓ(x; y) + λρ(v) + p⊤(x − v) + β
2 x − v

2

(8)

using Lagrange multipliers (or “dual” variables) p and a design parameter β > 0. Using 

u ≜ p ∕ β, (8) can be simplified to

min
x, v

max
u

ℓ(x; y) + λρ(v) + β
2 x − v + u

2
− β

2 u
2

.

(9)

The ADMM algorithm solves (9) by alternating the minimization of x and v with gradient 

ascent of u, as specified in Algorithm 1. ADMM is known to converge under convex ℓ(·; y) 

and ρ(·), and other mild conditions (see [12]).
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Algorithm 1 ADMM [12]

Require:ℓ ⋅ ; y , ρ ⋅ , β, λ, v0, u0, and K

1: for k = 1, 2, …, K do

2: xk = arg minx ℓ x; y + β
2 x − vk − 1 + uk − 1

2

3: vk = arg minv λρ v + β
2 v − xk − uk − 1

2

4: uk = uk − 1 + xk − vk
5: end for
6: Return xK

C. Plug-and-Play ADMM

Importantly, line 3 of Algorithm 1 can be recognized as variational denoising of xk + uk–1 

using regularization λρ(x) and quadratic loss ℓ(x; r) = 1
2ν x − r

2
, where r = xk + uk–1 at 

iteration k. By “denoising,” we mean recovering x0 from noisy measurements r of the form

r = x0 + e, e ∼ 𝒩(0, νI),

(10)

for some variance ν > 0.

Image denoising has been studied for decades (see, e.g., the overviews [2], [3]), with the 

result that high performance methods are now readily available. Today’s state-of-the-art 

denoisers include those based on image-dependent filtering algorithms (e.g., BM3D [7]) or 

deep neural networks (e.g., TNRD [4], DnCNN [5]). Most of these denoisers are not 

variational in nature, i.e., they are not based on any explicit regularizer λρ(x).

Leveraging the denoising interpretation of ADMM, Venkatakrishnan, Bouman, and 

Wolhberg [10] proposed to replace line 3 of Algorithm 1 with a call to a sophisticated image 

denoiser, such as BM3D, and dubbed their approach Plug-and-Play (PnP) ADMM. 

Numerical experiments show that PnP-ADMM works very well in most cases. However, 

when the denoiser used in PnP-ADMM comes with no explicit regularization ρ(x), it is not 

clear what objective PnP-ADMM is minimizing, making PnP-ADMM convergence more 

difficult to characterize. Similar PnP algorithms have been proposed using primal-dual 

methods [13] and FISTA [14] in place of ADMM.

Approximate message passing (AMP) algorithms [15] also perform denoising at each 

iteration. In fact, when A is large and i.i.d. Gaussian, AMP constructs an internal variable 
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statistically equivalent to r in (10) [16]. While the earliest instances of AMP assumed 

separable denoising (i.e., [f(x)]n = f(xn) ∀n for some f) later instances, like [17], [18], 

considered non-separable denoising. The paper [19] by Metzler, Maleki, and Baraniuk 

proposed to plug an image-specific denoising algorithm, like BM3D, into AMP. Vector 

AMP, which extends AMP to the broader class of “right rotationally invariant” random 

matrices, was proposed in [20], and VAMP with image-specific denoising was proposed in 

[21]. Rigorous analyses of AMP and VAMP under non-separable denoisers were performed 

in [22] and [23], respectively.

D. Regularization by Denoising (RED)

As discussed in the Introduction, Romano, Elad, and Milanfar [1] proposed a radically new 

way to exploit an image denoiser, which they call regularization by denoising (RED). Given 

an arbitrary image denoiser f :ℝN ℝN, they proposed to construct an explicit regularizer 

of the form

ρred(x) ≜ 1
2 x⊤(x − f (x))

(11)

to use within the variational framework (2). The advantage of using an explicit regularizer is 

that a wide variety of optimization algorithms can be used to solve (2) and their convergence 

can be tractably analyzed.

In [1], numerical evidence is presented to show that image denoisers f(·) are locally 
homogeneous (LH), i.e.,

(1 + ϵ) f (x) = f (1 + ϵ)x ∀x

(12)

for sufficiently small ϵ ∈ ℝ ∖ 0. For such denoisers, Romano et al. claim [1, Eq.(28)] that 

ρred(·) obeys the gradient rule

∇ρred(x) = x − f (x) .

(13)

If ∇ρred(x) = x – f(x), then any minimizer x of the variational objective under quadratic loss,
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1
2σ2 Ax − y

2
+ λρred(x) ≜ Cred(x),

(14)

must yield ∇C𝗋𝖾𝖽(x) = 0, i.e., must obey

0 = 1
σ2 A⊤ (Ax − y) + λ(x − f (x)) .

(15)

Based on this line of reasoning, Romano et al. proposed several iterative algorithms that find 

an x satisfying the fixed-point condition (15), which we will refer to henceforth as “RED 

algorithms.”

III. Clarifications on RED

In this section, we first show that the gradient expression (13) holds if and only if the 

denoiser f(·) is LH and has Jacobian symmetry (JS). We then establish that many popular 

denoisers lack JS, such as the median filter (MF) [24], non-local means (NLM) [6], BM3D 

[7], TNRD [4], and DnCNN [5]. For such denoisers, the RED algorithms cannot be 

explained by ρred(·) in (11). We also show a more general result: When a denoiser lacks JS, 

there exists no regularizer ρ(·) whose gradient expression matches (13). Thus, the problem is 

not the specific form of ρred(·) in (11) but rather the broader pursuit of explicit 

regularization.

A. Preliminaries

We first state some definitions and assumptions. In the sequel, we denote the ith component 

of f(x) by fi(x), the gradient of fi(·) at x by

∇ f i(x) ≜
∂ f i(x)

∂x1
⋯

∂ f i(x)
∂xN

⊤
,

(16)

and the Jacobian of f(·) at x by
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J f (x) ≜

∂ f 1(x)
∂x1

∂ f 1(x)
∂x2

…
∂ f 1(x)

∂xN

∂ f 2(x)
∂x1

∂ f 2(x)
∂x2

…
∂ f 2(x)

∂xN

⋮ ⋮ ⋱ ⋮
∂ f N(x)

∂x1

∂ f N(x)
∂x2

…
∂ f N(x)

∂xN

.

(17)

Without loss of generality, we take [0, 255]N ⊂ ℝN to be the set of possible images. A given 

denoiser f(·) may involve decision boundaries 𝒟 ⊂ [0, 255]N at which its behavior changes 

suddenly. We assume that these boundaries are a closed set of measure zero and work 

instead with the open set 𝒳 ≜ (0, 255)N ∖ 𝒟, which contains almost all images.

We furthermore assume that f :ℝN ℝN is differentiable on 𝒳, which means [25, p.212] 

that, for any x ∈ 𝒳, there exists a matrix J ∈ ℝN × N for which

lim
w 0

f (x + w) − f (x) − Jw

w
= 0 .

(18)

When J exists, it can be shown [25, p.216] that J = Jf(x).

B. The RED Gradient

We first recall a result that was established in [1].

Lemma 1 (Local homogeneity [1]). Suppose that denoiser f(·) is locally homogeneous. Then 
[J f(x)]x = f(x).

Proof. Our proof is based on differentiability and avoids the need to define a directional 

derivative. From (18), we have
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0 = lim
ϵ 0

f (x + ϵx) − f (x) − [J f (x)]xϵ

ϵx
∀x ∈ 𝒳

(19)

= lim
ϵ 0

(1 + ϵ) f (x) − f (x) − [J f (x)]xϵ

ϵx
∀x ∈ 𝒳

(20)

= lim
ϵ 0

f (x) − [J f (x)]x

x
∀x ∈ 𝒳,

(21)

where (20) follows from local homogeneity (12). Equation (21) implies that 

[J f (x)]x = f (x) ∀x ∈ 𝒳. □

We now state one of the main results of this section.

Lemma 2 (RED gradient). For ρred(·) defined in (11),

∇ρred(x) = x − 1
2 f (x) − 1

2[J f (x)]⊤x .

(22)

Proof. For any x ∈ 𝒳 and n = 1, …, N,

∂ρred(x)
∂xn

= ∂
∂xn

1
2 ∑

i = 1

N
xi

2 − xi f i(x)

(23)
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= 1
2

∂
∂xn

xn
2 − xn f n(x) + ∑

i ≠ n
xi

2 − ∑
i ≠ n

xi f i(x)

(24)

= 1
2 2xn − f n(x) − xn

∂ f n(x)
∂xn

− ∑
i ≠ n

xi
∂ f i(x)

∂xn

(25)

= xn − 1
2 f n(x) − 1

2 ∑
i = 1

N
xi

∂ f i(x)
∂xn

(26)

= xn − 1
2 f n(x) − 1

2 [J f (x)]⊤x n,

(27)

using the definition of Jf(x) from (17). Collecting {
∂ρred(x)

∂xn
}n = 1

N  into the gradient vector (13) 

yields (22). □

Note that the gradient expression (22) differs from (13).

Lemma 3 (Clarification on (13)). Suppose that the denoiser f(·) is locally homogeneous. 
Then the RED gradient expression (13) holds if and only if J f (x) = [J f (x)]⊤.

Proof. If J f(x) = [J f(x)]⊤, then the last term in (22) becomes − 1
2[J f (x)]x, which equals 

− 1
2 f (x) by Lemma 1, in which case (22) agrees with (13). But if J f (x) ≠ [J f(x)]⊤, then (22) 

differs from (13). □
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C. Impossibility of Explicit Regularization

For denoisers f(·) that lack Jacobian symmetry (JS), Lemma 3 establishes that the gradient 

expression (13) does not hold. Yet (13) leads to the fixed-point condition (15) on which all 

RED algorithms in [1] are based. The fact that these algorithms work well in practice 

suggests that “∇ρ(x) = x – f(x)” is a desirable property for a regularizer ρ(x) to have. But the 

regularization ρred(x) in (11) does not lead to this property when f(·) lacks JS. Thus an 

important question is:

Does there exist some other regularization ρ(·) for which ∇ρ(x) = x – f(x) when f (·) 
is non-JS?

The following theorem provides the answer.

Theorem 1 (Impossibility). Suppose that denoiser f (·) has a non-symmetric Jacobian. Then 
there exists no regularization ρ(·) for which ∇ρ(x) = x – f(x).

Proof. To prove the theorem, we view f :𝒳 ℝN as a vector field. Theorem 4.3.8 in [26] 

says that a vector field f is conservative if and only if there exists a continuously 

differentiable potential ρ:𝒳 ℝ for which ∇ρ = f . Furthermore, Theorem 4.3.10 in [26] 

says that if f is conservative, then the Jacobian J f is symmetric. Thus, by the contrapositive, 

if the Jacobian J f is not symmetric, then no such potential ρ exists.

To apply this result to our problem, we define

ρ(x) ≜ 1
2 x

2
− ρ(x)

(28)

and notice that

∇ρ(x) = x − ∇ρ(x) = x − f (x) .

(29)

Thus, if J f(x) is non-symmetric, then J[x – f(x)] = I – J f(x) is non-symmetric, which means 

that there exists no ρ for which (29) holds. □

Thus, the problem is not the specific form of ρred(·) in (11) but rather the broader pursuit of 

explicit regularization. We note that the notion of conservative vector fields was discussed in 

[27, App. A] in the context of PnP algorithms, whereas here we discuss it in the context of 

RED.
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D. Analysis of Jacobian Symmetry

The previous sections motivate an important question: Do commonly-used image denoisers 

have sufficient JS?

For some denoisers, JS can be studied analytically. For example, consider the “transform 

domain thresholding” (TDT) denoisers of the form

f (x) ≜ W⊤g(Wx),

(30)

where g(·) performs componentwise (e.g., soft or hard) thresholding and W is some 

transform, as occurs in the context of wavelet shrinkage [28], with or without cycle-spinning 

[29]. Using gn′ ( ⋅ ) to denote the derivative of gn(·), we have

∂ f n(x)
∂xq

= ∑
i = 1

N
wingi′ ∑

j = 1

N
wi jx j wiq =

∂ f q(x)
∂xn

,

(31)

and so the Jacobian of f(·) is perfectly symmetric.

Another class of denoisers with perfectly symmetric Jacobians are those that produce MAP 

or MMSE optimal x under some assumed prior px. In the MAP case, x minimizes (over x) 

the cost c(x; r) = 1
2ν x − r

2 − ln px(x) for noisy input r. If we define ϕ(r) ≜ minx c(x; r), 

known as the Moreau-Yosida envelope of − ln px, then x = f (r) = r − ν∇ϕ(r), as discussed in 

[30] (See also [31] for insightful discussions in the context of image denoising.) The 

elements in the Jacobian are therefore [J f (r)]n, q =
∂ f n(r)

∂rq
= δn − q − ν ∂2ϕ(r)

∂rq∂rn
, and so the 

Jacobian matrix is symmetric. In the MMSE case, we have that f(r) = r – ∇ρTR(r) for ρTR(·) 

defined in (52) (see Lemma 4), and so [J f (r)]n, q = δn − q −
∂2ρ𝖳𝖱(r)
∂rq∂rn

, again implying that the 

Jacobian is symmetric. But it is difficult to say anything about the Jacobian symmetry of 

approximate MAP or MMSE denoisers.

Now let us consider the more general class of denoisers
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f (x) = W(x)x,

(32)

sometimes called “pseudo-linear” [3]. For simplicity, we assume that W(·) is differentiable 

on 𝒳. In this case, using the chain rule, we have

∂ f n(x)
∂xq

= wnq(x) + ∑
i = 1

N ∂wni(x)
∂xq

xi,

(33)

and so the following are sufficient conditions for Jacobian symmetry.

1) W(x) is symmetric ∀x ∈ 𝒳,

2) ∑i = 1
N ∂wni(x)

∂xq
xi = ∑i = 1

N ∂wqi(x)
∂xn

xi ∀x ∈ 𝒳.

When W is x-invariant (i.e., f(·) is linear) and symmetric, both of these conditions are 

satisfied. This latter case was exploited for RED in [32]. The case of non-linear W(·) is more 

complicated. Although W(·) can be symmetrized (see [33], [34]), it is not clear whether the 

second condition above will be satisfied.

E. Jacobian Symmetry Experiments

For denoisers that do not admit a tractable analysis, we can still evaluate the Jacobian of f(·) 
at x numerically via

f i(x + ϵen) − f i(x − ϵen)
2ϵ ≜ [J f (x)]i, n,

(34)

where en denotes the nth column of IN and ϵ > 0 is small (ϵ =1 × 10−3 in our experiments). 

For the purpose of quantifying JS, we define the normalized error metric
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e f
J (x) ≜

J f (x) − [J f (x)]⊤
F
2

J f (x) F
2 ,

(35)

which should be nearly zero for a symmetric Jacobian.

Table I shows1 the average value of e f
J (x) for 17 different image patches2 of size 16 × 16, 

using denoisers that assumed a noise variance of 252. The denoisers tested were the TDT 

from (30) with the 2D Haar wavelet transform and soft-thresholding, the median filter (MF) 

[24] with a 3 × 3 window, non-local means (NLM) [6], BM3D [7], TNRD [4], and DnCNN 

[5]. Table I shows that the Jacobians of all but the TDT denoiser are far from symmetric.

Jacobian symmetry is of secondary interest; what we really care about is the accuracy of the 

RED gradient expressions (13) and (22). To assess gradient accuracy, we numerically 

evaluated the gradient of ρred(·) at x using

ρred(x + ϵen) − ρred(x − ϵen)
2ϵ ≜ [∇ρred(x)]n

(36)

and compared the result to the analytical expressions (13) and (22). Table II reports the 

normalized gradient error

e f
∇(x) ≜

∇ρred(x) − ∇ρred(x) 2

∇ρred(x) 2

(37)

for the same ϵ, images, and denoisers used in Table I. The results in Table II show that, for 

all tested denoisers, the numerical gradient ∇ρred( ⋅ ) closely matches the analytical 

expression for ∇ρred(·) from (22), but not that from (13). The mismatch between ∇ρred( ⋅ )

1Matlab code for the experiments is available at http://www2.ece.ohio-state.edu/~schniter/RED/index.html.
2We used the center 16 × 16 patches of the standard Barbara, Bike, Boats, Butterfly, Cameraman, Flower, Girl, Hat, House, Leaves, 
Lena, Parrots, Parthenon, Peppers, Plants, Raccoon, and Starfish test images.
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and ∇ρred(·) from (13) is partly due to insufficient JS and partly due to insufficient LH, as we 

establish below.

F. Local Homogeneity Experiments

Recall that the TDT denoiser has a symmetric Jacobian, both theoretically and empirically. 

Yet Table II reports a disagreement between the ∇ρred(·) expressions (13) and (22) for TDT. 

We now show that this disagreement is due to insufficient local homogeneity (LH).

To do this, we introduce yet another RED gradient expression,

∇ρred(x) =𝖫𝖧 x − 1
2[J f (x)]x − 1

2[J f (x)]⊤x,

(38)

which results from combining (22) with Lemma 1. Here, =𝖫𝖧 indicates that (38) holds under 

LH. In contrast, the gradient expression (13) holds under both LH and Jacobian symmetry, 

while the gradient expression (22) holds in general (i.e., even in the absence of LH and/or 

Jacobian symmetry). We also introduce two normalized error metrics for LH,

e f
𝖫𝖧, 1(x) ≜ f ((1 + ϵ)x) − (1 + ϵ) f (x) 2

(1 + ϵ) f (x) 2

(39)

e f
𝖫𝖧, 2(x) ≜ [J f (x)]x − f (x) 2

f (x) 2 .

(40)

which should both be nearly zero for LH f(·). Note that e f
𝖫𝖧, 1 quantifies LH according to 

definition (12) and closely matches the numerical analysis of LH in [1]. Meanwhile, e f
𝖫𝖧, 2

quantifies LH according to Lemma 1 and to how LH is actually used in the gradient 

expressions (13) and (38).

The middle row of Table II reports the average gradient error of the gradient expression (38), 

and Table III reports average LH error for the metrics e f
𝖫𝖧, 1 and e f

𝖫𝖧, 2. There we see that the 

average e f
𝖫𝖧, 1 error is small for all denoisers, consistent with the experiments in [1]. But the 
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average e f
𝖫𝖧, 2 error is several orders of magnitude larger (for all but the MF denoiser). We 

also note that the value of e f
𝖫𝖧, 2 for BM3D is several orders of magnitude higher than for the 

other denoisers. This result is consistent with Fig. 2, which shows that the cost function 

associated with BM3D is much less smooth than that of the other denoisers. As discussed 

below, these seemingly small imperfections in LH have a significant effect on the RED 

gradient expressions (13) and (38).

Starting with the TDT denoiser, Table II shows that the gradient error on (38) is large, which 

can only be caused by insufficient LH. The insufficient LH is confirmed in Table III, which 

shows that the value of e f
𝖫𝖧, 2(x) for TDT is non-negligible, especially in comparison to the 

value for MF.

Continuing with the MF denoiser, Table I indicates that its Jacobian is far from symmetric, 

while Table III indicates that it is LH. The gradient results in Table II are consistent with 

these behaviors: the ∇ρred(x) expression (38) is accurate on account of LH being satisfied, 

but the ∇ρred(x) expression (13) is inaccurate on account of a lack of JS.

The results for the remaining denoisers NLM, BM3D, TNRD, and BM3D show a common 

trend: they have nontrivial levels of both JS error (see Table I) and LH error (see Table III). 

As a result, the gradient expressions (13) and (38) are both inaccurate (see Table II).

In conclusion, the experiments in this section show that the RED gradient expressions (13) 

and (38) are very sensitive to small imperfections in LH. Although the experiments in [1] 

suggested that many popular image denoisers are approximately LH, our experiments 

suggest that their levels of LH are insufficient to maintain the accuracy of the RED gradient 

expressions (13) and (38).

G. Hessian and Convexity

From (26), the (n, j)th element of the Hessian of ρred(x) equals

∂2ρred(x)
∂xn∂x j

= ∂
∂x j

xn − 1
2 f n(x) − 1

2 ∑
i = 1

N
xi

∂ f i(x)
∂xn

(41)
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= δn − j − 1
2

∂ f n(x)
∂x j

− 1
2

∂ f j(x)
∂xn

− 1
2 x j

∂2 f j(x)
∂xn∂x j

− 1
2 ∑

i ≠ j
xi

∂2 f i(x)
∂xn∂x j

(42)

= δn − j − 1
2

∂ f n(x)
∂x j

− 1
2

∂ f j(x)
∂xn

− 1
2 ∑

i = 1

N
xi

∂2 f i(x)
∂xn∂x j

.

(43)

where δk = 1 if k = 0 and otherwise δk = 0. Thus, the Hessian of ρred(·) at x equals

Hρred(x) = I − 1
2J f (x) − 1

2[J f (x)]⊤ − 1
2 ∑

i = 1

N
xiH f i(x) .

(44)

This expression can be contrasted with the Hessian expression from [1, (60)], which reads

I − J f (x) .

(45)

Interestingly, (44) differs from (45) even when the denoiser has a symmetric Jacobian J f(x). 

One implication is that, even if eigenvalues of J f(x) are limited to the interval [0, 1], the 

Hessian Hρred(x) may not be positive semi-definite due to the last term in (44), with possibly 

negative implications on the convexity of ρred(·). That said, the RED algorithms do not 

actually minimize the variational objective ℓ(x; y) + λρred(x) for common denoisers f(·) (as 

established in Section III-H), and so the convexity of ρred(·) may not be important in 

practice. We investigate the convexity of ρred(·) numerically in Section III-I.
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H. Example RED-SD Trajectory

We now provide an example of how the RED algorithms from [1] do not necessarily 

minimize the variational objective λ(x; y) + λρred(x).

For a trajectory {xk}k = 1
K  produced by the steepest-descent (SD) RED algorithm from [1], 

Fig. 1 plots, versus iteration k, the RED Cost Cred(xk) from (14) and the error on the fixed-

point condition (15), i.e., ∥g(xk)∥2 with

g(x) ≜ 1
σ2 A⊤(Ax − y) + λ x − f (x) .

(46)

For this experiment, we used the 3 × 3 median-filter for f(·), the Starfish image, and noisy 

measurements y = x + 𝒩(0, σ2I) with σ2 = 20 (i.e., A = I in (14)).

Figure 1 shows that, although the RED-SD algorithm asymptotically satisfies the fixed-point 

condition (15), the RED cost function Cred(xk) does not decrease with k, as would be 

expected if the RED algorithms truly minimized the RED cost Cred(·). This behavior implies 

that any optimization algorithm that monitors the objective value Cred(xk) for, say, 

backtracking line-search (e.g., the FASTA algorithm [35]), is difficult to apply in the context 

of RED.

I. Visualization of RED Cost and RED-Algorithm Gradient

We now show visualizations of the RED cost Cred(x) from (14) and the RED algorithm’s 

gradient field g(x) from (46), for various image denoisers. For this experiment, we used the 

Starfish image, noisy measurements y = x + 𝒩(0, σ2I) with σ2 = 100 (i.e., A = I in (14) and 

(46)), and λ optimized over a grid (of 20 values logarithmically spaced between 0.0001 and 

1) for each denoiser, so that the PSNR of the RED fixed-point x is maximized.

Figure 2 plots the RED cost Cred(x) and the RED algorithm’s gradient field g(x) for the 

TDT, MF, NLM, BM3D, TNRD, and DnCNN denoisers. To visualize these quantities in two 

dimensions, we plotted values of x centered at the RED fixed-point x and varying along two 

randomly chosen directions. The figure shows that the minimizer of Cred(x) does not 

coincide with the fixed-point x, and that the RED cost Cred(·) is not always smooth or 

convex.

IV. Score-Matching by Denoising

As discussed in Section II-D, the RED algorithms proposed in [1] are explicitly based on 

gradient rule
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∇ρ(x) = x − f (x) .

(47)

This rule appears to be useful, since these algorithms work very well in practice. But Section 

III established that ρred(·) from (11) does not usually satisfy (47). We are thus motived to 

seek an alternative explanation for the RED algorithms. In this section, we explain them 

through a framework that we call score-matching by denoising (SMD).

A. Tweedie Regularization

As a precursor to the SMD framework, we first propose a technique based on what we will 

call Tweedie regularization.

Recall the measurement model (10) used to define the “denoising” problem, repeated in (48) 

for convenience:

r = x0 + e, e ∼ 𝒩(0, νI) .

(48)

To avoid confusion, we will refer to r as “pseudo-measurements” and y as “measurements.” 

From (48), the likelihood of x0 is p(r ∣ x0; ν) = 𝒩(r; x0, νI).

Now, suppose that we model the true image x0 as a realization of a random vector x with 

prior pdf px. We write “px” to emphasize that the model distribution may differ from the true 

distribution px (i.e., the distribution from which the image x is actually drawn). Under this 

prior model, the MMSE denoiser of x from r is

𝔼p𝗑
{x ∣ r} ≜ f mmse, ν(r),

(49)

and the likelihood of observing r is
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pr(r; ν) ≜ ∫
ℝN p(r ∣ x; ν)px(x) dx

(50)

∫
ℝN𝒩(r; x, νI)px(x) dx .

(51)

We will now define the Tweedie regularizer (TR) as

ρ𝖳𝖱(r; ν) ≜ − ν ln pr(r; ν) .

(52)

As we now show, ρTR(·) has the desired property (47).

Lemma 4 (Tweedie). For ρTR(r; ν) defined in (52),

∇ρ𝖳𝖱(r; ν) = r − f mmse, ν(r),

(53)

where f mmse, ν( ⋅ ) is the MMSE denoiser from (49).

Proof. Equation (53) is a direct consequence of a classical result known as Tweedie’s 

formula [36], [37]. A short proof, from first principles, is now given for completeness.

∂
∂rn

ρ𝖳𝖱(r; ν) = − ν ∂
∂rn

ln∫
ℝN px(x)𝒩(r; x, νI) dx

(54)
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= −
ν∫

ℝN px(x) ∂
∂rn

𝒩(r; x, νI) dx

∫
ℝN px(x)𝒩(r; x, νI) dx

(55)

=
∫

ℝN px(x)𝒩(r; x, νI)(rn − xn) dx

∫
ℝN px(x)𝒩(r; x, νI) dx

(56)

= rn − ∫
ℝN xn

px(x)𝒩(r; x, νI)
∫

ℝN px(x′)𝒩(r; x′, νI) dx′dx

(57)

= rn − ∫
ℝN xn px ∣ r(x ∣ r; ν) dx

(58)

= rn − [ f mmse, ν(r)]n,

(59)

where (56) used ∂
∂rn

𝒩(r; x, νI) = 𝒩(r; x, νI)(xn − rn) ∕ ν. Stacking (59) for n = 1, …, N in a 

vector yields (53). □

Thus, if the TR regularizer ρTR(·; ν) is used in the optimization problem (14), then the 

solution x must satisfy the fixed-point condition (15) associated with the RED algorithms 
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from [1], albeit with an MMSE-type denoiser. This restriction will be removed using the 

SMD framework in Section IV-C.

It is interesting to note that the gradient property (53) holds even for non-homogeneous 

f mmse, ν( ⋅ ). This generality is important in applications under which f mmse, ν( ⋅ ) is known to 

lack LH. For example, with a binary image x ∈ {0, 1}N modeled by 

px(x) = ∏n = 1
N 0.5(δ(xn) + δ(xn − 1)), the MMSE denoiser takes the form 

[ f mmse, ν(x)]n = 0.5 + 0.5 tanh(xn ∕ ν), which is not LH.

B. Tweedie Regularization as Kernel Density Estimation

We now show that TR arises naturally in the data-driven, non-parametric context through 

kernel-density estimation (KDE) [8].

Recall that, in most imaging applications, the true prior px is unknown, as is the true MMSE 

denoiser fmmse,ν(·). There are several ways to proceed. One way is to design “by hand” an 

approximate prior px that leads to a computationally efficient denoiser f mmse, ν( ⋅ ). But, 

because this denoiser is not MMSE for x ~ px, the performance of the resulting estimates x
will suffer relative to fmmse,ν.

Another way to proceed is to approximate the prior using a large corpus of training data 

{xt}t = 1
T . To this end, an approximate prior could be formed using the empirical estimate

px(x) = 1
T ∑

t = 1

T
δ(x − xt),

(60)

but a more accurate match to the true prior px can be obtained using

px(x; ν) = 1
T ∑

t = 1

T
𝒩(x; xt, νI)

(61)

with appropriately chosen ν > 0, a technique known as kernel density estimation (KDE) or 

Parzen windowing [8]. Note that if px is used as a surrogate for px, then the MAP 

optimization problem becomes
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x = arg min
r

1
2σ2 Ar − y

2
− ln px(r; ν)

(62)

= arg min
r

1
2σ2 Ar − y

2
+ λρ𝖳𝖱(r; ν) for λ = 1

ν ,

(63)

with ρTR(·; ν) from (50)-(52) constructed using px from (60). In summary, TR arises 

naturally in the data-driven approach to image recovery when KDE is used to smooth the 

empirical prior.

C. Score-Matching by Denoising

A limitation of the above TR framework is that it results in denoisers f mmse, ν with 

symmetric Jacobians. (Recall the discussion of MMSE denoisers in Section III-D.) To justify 

the use of RED algorithms with non-symmetric Jacobians, we introduce the score-matching 
by denoising (SMD) framework in this section.

Let us continue with the KDE-based MAP estimation problem (62). Note that x from (62) 

zeros the gradient of the MAP optimization objective and thus obeys the fixed-point 

equation

1
σ2 A⊤(Ax − y) − ∇ ln px(x; ν) = 0 .

(64)

In principle, x in (64) could be found using gradient descent or similar techniques. However, 

computation of the gradient
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∇ ln px(r; ν) =
∇ px(r; ν)
px(r; ν) =

∑t = 1
T (xt − r)𝒩(r; xt, νI)
ν∑t = 1

T 𝒩(r; xt, νI)

(65)

is too expensive for the values of T typically needed to generate a good image prior px.

A tractable alternative is suggested by the fact that

∇ ln px(r; ν) =
f mmse, ν(r) − r

ν

(66)

for f mmse, ν(r) =
∑t = 1

T xt𝒩(r; xt, νI)
∑t = 1

T 𝒩(r; xt, νI)
,

(67)

where f mmse, ν(r) is the MMSE estimator of x ∼ px from r = x + 𝒩(0, νI). In particular, if we 

can construct a good approximation to f mmse, ν( ⋅ ) using a denoiser fθ(·) in a 

computationally efficient function class ℱ ≜ { fθ:θ ∈ Θ}, then we can efficiently 

approximate the MAP problem (62).

This approach can be formalized using the framework of score matching [38], which aims to 

approximate the “score” (i.e., the gradient of the log-prior) rather than the prior itself. For 

example, suppose that we want to want to approximate the score ∇ ln px( ⋅ ; ν). For this, 

Hyvärinen [38] suggested to first find the best mean-square fit among a set of 

computationally efficient functions ψ(·; θ), i.e., find

θ = arg min
θ

𝔼px
ψ(x; θ) − ∇ ln px(x; ν) 2 ,

(68)
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and then to approximate the score ∇ ln px( ⋅ ; ν) by ψ( ⋅ ; θ). Later, in the context of denoising 

autoencoders, Vincent [39] showed that if one chooses

ψ(x; θ) =
f θ(x) − x

ν

(69)

for some function fθ( ⋅ ) ∈ ℱ, then θ from (68) can be equivalently written as

θ = arg min
θ

𝔼px
f θ x + 𝒩(0, νI) − x 2 .

(70)

In this case, fθ( ⋅ ) is the MSE-optimal denoiser, averaged over px and constrained to the 

function class ℱ.

Note that the denoiser approximation error can be directly connected to the score-matching 

error as follows. For any denoiser fθ(·) and any input x,

f θ(x) − f mmse, ν(x)
2

= ν2 f θ(x) − x
ν − ∇ ln px(x; ν)

2

(71)

= ν2 ψ(x; θ) − ∇ ln px(x; ν) 2

(72)

where (71) follows from (66) and (72) follows from (69). Thus, matching the score is 

directly related to matching the MMSE denoiser.

Plugging the score approximation (69) into the fixed-point condition (64), we get
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1
σ2 A⊤(Ax − y) + λ x − f θ(x) = 0 for λ = 1

ν ,

(73)

which matches the fixed-point condition (15) of the RED algorithms from [1]. Here we 

emphasize that ℱ may be constructed in such a way that fθ(·) has a non-symmetric Jacobian, 

which is the case for many state-of-the-art denoisers. Also, θ does not need to be optimized 

for (73) to hold. Finally, px need not be the empirical prior (60); it can be any chosen prior 

[39]. Thus, the score-matching-by-denoising (SMD) framework offers an explanation of the 

RED algorithms from [1] that holds for generic denoisers fθ(·), whether or not they have 

symmetric Jacobians, are locally homogeneous, or MMSE. Furthermore, it suggests a 

rationale for choosing the regularization weight λ and, in the context of KDE, the denoiser 

variance ν.

D. Relation to Existing Work

Tweedie’s formula (53) has connections to Stein’s Unbiased Risk Estimation (SURE) [40], 

as discussed in, e.g., [41, Thm. 2] and [42, Eq. (2.4)]. SURE has been used for image 

denoising in, e.g., [43]. Tweedie’s formula was also used in [44] to interpret autoencoding-

based image priors. In our work, Tweedie’s forumula is used to provide an interpretation for 

the RED algorithms through the construction of the explicit regularizer (52) and the 

approximation of the resulting fixed-point equation (64) via score matching.

Recently, Alain and Bengio [45] studied the contractive auto-encoders, a type of 

autoencoder that minimizes squared reconstruction error plus a penalty that tries to make the 

autoencoder as simple as possible. While previous works such as [46] conjectured that such 

auto-encoders minimize an energy function, Alain and Bengio showed that they actually 

minimize the norm of a score (i.e., match a score to zero). Furthermore, they showed that, 

when the coder and decoder do not share the same weights, it is not possible to define a valid 

energy function because the Jacobian of the reconstruction function is not symmetric. The 

results in [45] parallel those in this paper, except that they focus on auto-encoders while we 

focus on variational image recovery. Another small difference is that [45] uses the small-ν 
approximation

f mmse, ν(x) = x + ν∇ ln px(x) + o(ν),

(74)

whereas we use the exact (Tweedie’s) relationship (53), i.e.,
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f mmse, ν(x) = x + ν∇ ln px(x),

(75)

where is px the “Gaussian blurred” version of px from (51).

V. Fast RED Algorithms

In [1], Romano et al. proposed several ways to solve the fixed-point equation (15). 

Throughout our paper, we have been referring to these methods as “RED algorithms.” In this 

section, we provide new interpretations of the RED-ADMM and RED-FP algorithms from 

[1] and we propose new RED algorithms based on accelerated proximal gradient methods.

A. RED-ADMM

The ADMM approach was summarized in Algorithm 1 for an arbitrary regularizer ρ(·). To 

apply ADMM to RED, line 3 of Algorithm 1, known as the “proximal update,” must be 

specialized to the case where ρ(·) obeys (13) for some denoiser f(·). To do this, Romano et 

al. [1] proposed the following. Because ρ(·) is differentiable, the proximal solution υk must 

obey the fixed-point relationship

0 = λ∇ρ(vk) + β(vk − xk − uk − 1)

(76)

= λ vk − f (vk) + β(vk − xk − uk − 1)

(77)

vk = λ
λ + β f (vk) + β

λ + β (xk + uk − 1) .

(78)

An approximation to υk can thus be obtained by iterating
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zi = λ
λ + β f (zi − 1) + β

λ + β (xk + uk − 1)

(79)

over i = 1, …, I with sufficiently large I, initialized at z0 = vk–1. This procedure is detailed in 

lines 3-6 of Algorithm 2. The overall algorithm is known as RED-ADMM.

B. Inexact RED-ADMM

Algorithm 2 gives a faithful implementation of ADMM when the number of inner iterations, 

I, is large. But using many inner iterations may be impractical when the denoiser is 

computationally expensive, as in the case of BM3D or TNRD. Furthermore, the use of many 

inner iterations may not be necessary.

For example, Fig. 3 plots PSNR trajectories versus runtime for TNRD-based RED-ADMM 

with I = 1, 2, 3, 4 inner iterations. For this experiment, we used the deblurring task described 

in section V-G, but similar behaviors can be observed in other applications of RED. Figure 3 

suggests that I = 1 inner iterations gives the fastest convergence. Note that [1] also used I = 1 

when implementing RED-ADMM.

Algorithm 2 RED-ADMM with I Inner Iterations [1]

Require:ℓ ⋅ ; y , f ⋅ , β, λ, v0, u0, K, and I

1: for k = 1, 2, …, K do

2: xk = arg minx ℓ x; y + β
2 y − vk − 1 + uk − 1

2

3: z0 = vk − 1
4: for i = 1, 2, …, I do

5: zi = λ
λ + β f zi − 1 + β

λ + β xk + uk − 1
6: end for
7: vk = zI
8: uk = uk − 1 + xk − vk
9: end for

10: Return xK

With I = 1 inner iterations, RED-ADMM simplifies down to the 3-step iteration summarized 

in Algorithm 3. Since Algorithm 3 looks quite different than standard ADMM (recall 

Algorithm 1), one might wonder whether there exists another interpretation of Algorithm 3. 

Noting that line 3 can be rewritten as
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vk = vk − 1 − 1
λ + β [λ∇ρ(vk − 1) + β(vk − 1 − xk − uk − 1)]

(80)

= vk − 1 − 1
λ + β ∇ λρ(v) + β

2 v − xk − uk − 1
2

v = vk − 1

(81)

we see that the I = 1 version of inexact RED-ADMM replaces the proximal step with a 

gradient-descent step under stepsize 1/(λ + β). Thus the algorithm is reminiscent of the 

proximal gradient (PG) algorithm [47], [48]. We will discuss PG further in the sequel.

Algorithm 3 RED-ADMM with I =1

Require:ℓ ⋅ ; y , f ⋅ , β, λ, v0, u0, and K

1: for k = 1, 2, …, K do

2: xk = arg minx ℓ x; y + β
2 x − vk − 1 + uk − 1

2

3: vk = λ
λ + β f vk − 1 + β

λ + β xk + uk − 1
4: uk = uk − 1 + xk − vk
5: end for
6: Return xK

Algorithm 4 RED-PG Algorithm

Require:ℓ ⋅ ; y , f ⋅ , β, λ, v0, u0, L > 0, and K

1: for k = 1, 2, …, K do

2: xk = arg minx ℓ x; y + λL
2 x − vk − 1

2

3: vk = 1
L f xk − 1 − L

L xk
4: end for
5: Return xK
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C. Majorization-Minimization and Proximal-Gradient RED

We now propose a proximal-gradient approach inspired by majorization minimization (MM) 

[49]. As proposed in [50], we use a quadratic upper-bound,

ρ(x; xk) ≜ ρ(xk) + [∇ρ(xk)]⊤ (x − xk) + L
2 x − xk 2

2
,

(82)

on the regularizer ρ(x), in place of ρ(x) itself, at the kth algorithm iteration. Note that if ρ(·) 

is convex and ∇ρ(·) is Lρ-Lipschitz, then ρ(x; xk) “majorizes” ρ(x) at xk when L ≥ Lρ, i.e.,

ρ(x; xk) ≥ ρ(x) ∀x ∈ 𝒳

(83)

ρ(xk; xk) = ρ(xk) .

(84)

The majorized objective can then be minimized using the proximal gradient (PG) algorithm 

[47], [48] (also known as forward-backward splitting) as follows. From (82), note that the 

majorized objective can be written as

ℓ(x; y) + λρ(x; xk)

= ℓ(x; y) + λL
2 x − xk − 1

L ∇ρ(xk)
2

+ const

(85)
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= ℓ(x; y) + λL
2 ‖x − xk − 1

L xk − f (xk)

≜ vk

‖
2

+ const,

(86)

where (86) follows from assuming (47), which is the basis for all RED algorithms. The 

RED-PG algorithm then alternately updates υk as per the gradient step in (86) and updates 

xk+1 according to the proximal step

xk + 1 = arg min
x

ℓ(x; y) + λL
2 x − vk

2
,

(87)

as summarized in Algorithm 4. Convergence is guaranteed if L ≥ Lρ; see [47], [48] for 

details.

We now show that RED-PG with L = 1 is identical to the “fixed point” (FP) RED algorithm 

proposed in [1]. First, notice from Algorithm 4 that υk = f(xk) when L = 1, in which case

xk = arg min
x

ℓ(x; y) + λ
2 x − f (xk − 1)

2
.

(88)
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Algorithm 5 RED-DPG Algorithm

Require:ℓ ⋅ ; y , f ⋅ , β, λ, v0, L0 > 0, L∞ > 0, and K

1: for k = 1, 2, …, K do

2: xk = arg minx ℓ x; y +
λLk − 1

2 x − vk − 1
2

3: Lk = 1
L∞

+ 1
L0

− 1
L∞

1
k + 1

−1

4: vk = 1
Lk

f xk −
1 − Lk

Lk
xk

5: end for
6: Return xK

For the quadratic loss ℓ(x; y) = 1
2σ2 Ax − y

2
, (88) becomes

xk = arg min
x

1
2σ2 Ax − y

2
+ λ

2 x − f (xk − 1)
2

(89)

= 1
σ2 A⊤ A + λI

−1 1
σ2 A⊤ y + λ f (xk − 1) ,

(90)

which is exactly the RED-FP update [1, (37)]. Thus, (88) generalizes [1, (37)] to possibly 

non-quadratic3 loss ℓ(·; y), and RED-PG generalizes RED-FP to arbitrary L > 0. More 

importantly, the PG framework facilitates algorithmic acceleration, as we describe below.

The RED-PG and inexact RED-ADMM-I = 1 algorithms show interesting similarities: both 

alternate a proximal update on the loss with a gradient update on the regularization, where 

the latter term manifests as a convex combination between the denoiser output and another 

term. The difference is that RED-ADMM-I = 1 includes an extra state variable, uk. The 

3The extension to non-quadratic loss is important for applications like phase-retrieval, where RED has been successfully applied [51].
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experiments in Section V-G suggest that this extra state variable is not necessarily 

advantageous.

D. Dynamic RED-PG

Recalling from (86) that 1/L acts as a stepsize in the PG gradient step, it may be possible to 

speed up PG by decreasing L, although making L too small can prevent convergence. If ρ(·) 

was known, then a line search could be used, at each iteration k, to find the smallest value of 

L that guarantees the majorization of ρ(x) by ρ(x; xk) [47]. However, with a non-LH or non-

JS denoiser, it is not possible to evaluate ρ(·), preventing such a line search.

We thus propose to vary Lk (i.e., the value of L at iteration k) according to a fixed schedule. 

In particular, we propose to select L0 and L∞, and smoothly interpolate between them at 

intermediate iterations k. One interpolation scheme that works well in practice is 

summarized in line 3 of Algorithm 5. We refer to this approach as “dynamic PG” (DPG). 

The numerical experiments in Section V-G suggest that, with appropriate selection of L0 and 

L∞, RED-DPG can be significantly faster than RED-FP.

Algorithm 6 RED-APG Algorithm

Require:ℓ ⋅ ; y , f ⋅ , λ, v0, L > 0, and K

1: t0 = 1

2: for k = 1, 2, …, K do

3: xk = arg minx ℓ x; y + λL
2 x − vk − 1

2

4: tk =
1 + 1 + 4tk − 1

2

2

5: zk = xk +
tk − 1 − 1

tk
xk − xk − 1

6: vk = 1
L f zk − 1 − L

L zk
7: end for
8: Return xK

E. Accelerated RED-PG

Another well-known approach to speeding up PG is to apply momentum to the υk term in 

Algorithm 4 [47], often known as “acceleration.” An accelerated PG (APG) approach to 

RED is detailed in Algorithm 6. There, the momentum in line 5 takes the same form as in 

FISTA [52]. The numerical experiments in Section V-G suggest that RED-APG is the fastest 

among the RED algorithms discussed above.

By leveraging the principle of vector extrapolation (VE) [53], a different approach to 

accelerating RED algorithms was recently proposed in [54]. Algorithmically, the approach 

in [54] is much more complicated than the PG-DPG and PG-APG methods proposed above. 
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In fact, we have been unable to arrive at an implementation of [54] that reproduces the 

results in that paper, and the authors have not been willing to share their implementation 

with us. Thus, we cannot comment further on the difference in performance between our 

PG-DPG and PG-APG schemes and the one in [54].

F. Convergence of RED-PG

Recalling Theorem 1, the RED algorithms do not minimize an explicit cost function but 

rather seek fixed points of (15). Therefore, it is important to know whether they actually 

converge to any one fixed point. Below, we use the theory of non-expansive and α-averaged 

operators to establish the convergence of RED-PG to a fixed point under certain conditions.

First, an operator B(·) is said to be non-expansive if its Lipschitz constant is at most 1 [55]. 

Next, for α ∈ (0,1), an operator P(·) is said to be α-averaged if

P(x) = αB(x) + (1 − α)x

(91)

for some non-expansive B(·). Furthermore, if P1 and P2 are α1 and α2-averaged, 

respectively, then [55, Prop. 4.32] establishes that the composition P2 ∘ P1 is α-averaged 

with

α = 2
1 + 1

max{α1, α2}
.

(92)

Recalling RED-PG from Algorithm 4, let us define an operator called T(·) that summarizes 

one algorithm iteration:

T(x)

≜ arg min
z

ℓ(z; y) + λL
2 z − ( 1

L f (x) − 1 − L
L x) 2

(93)
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= proxℓ ∕ (λL)
1
L( f (x) − (1 − L)x)

(94)

Lemma 5. If ℓ(·) is proper, convex, and continuous; f(·) is non-expansive; and L > 1, then 

T(·) from (94) is α-averaged with α = max{ 2
1 + L , 2

3}.

Proof. First, because ℓ(·) is proper, convex, and continuous, we know that the proximal 

operator proxℓ/(λL)(·) is α-averaged with α = 1/2 [55]. Then, by definition, 1
L f (z) − 1 − L

L z is 

α-averaged with α = 1/L. From (94), T(·) is the composition of these two α-averaged 

operators, and so from (92) we have that T(·) is α-averaged with α = max{ 2
1 + L , 2

3}. □

With Lemma 5, we can prove the convergence of RED-PG.

Theorem 2. If ℓ(·) is proper, convex, and continuous; f(·) is non-expansive; L > 1; and T(·) 

from (94) has at least one fixed point, then RED-PG converges.

Proof. From (94), we have that Algorithm 4 is equivalent to

xk + 1 = T(xk)

(95)

= αB(xk) + (1 − α)xk

(96)

where B(·) is an implicit non-expansive operator that must exist under the definition of α-

averaged operators from (91). The iteration (96) can be recognized as a Mann iteration [30], 

since α ∈ (0,1). Thus, from [55, Thm. 5.14], {xk} is a convergent sequence, in that there 

exists a fixed point x⋆ ∈ ℝN such that limk→∞ ∥xk – x*∥ = 0. □

We note that similar Mann-based techniques were used in [9], [56] to prove the convergence 

of PnP-based algorithms. Also, we conjecture that similar techniques may be used to prove 

the convergence of other RED algorithms, but we leave the details to future work. 

Experiments in Section V-G numerically study the convergence behavior of several RED 

algorithms with different image denoisers f(·).
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G. Algorithm Comparison: Image Deblurring

We now compare the performance of the RED algorithms discussed above (i.e., inexact 

ADMM, FP, DPG, APG, and PG) on the image deblurring problem considered in [1, Sec. 

6.1]. For these experiments, the measurements y were constructed using a 9 × 9 uniform blur 

kernel for A and using AWGN with variance σ2 = 2. As stated earlier, the image x is 

normalized to have pixel intensities in the range [0, 255].

For the first experiment, we used the TNRD denoiser. The various algorithmic parameters 

were chosen based on the recommendations in [1]: the regularization weight was λ = 0.02, 

the ADMM penalty parameter was β = 0.001, and the noise variance assumed by the 

denoiser was ν = 3.252. The proximal step on ℓ(x; y), given in (90), was implemented with 

an FFT. For RED-DPG we used4 L0 = 0.2 and L∞ = 2, for RED-APG we used L = 1, and 

for RED-PG we used L = 1.01 since Theorem 2 motivates L > 1.

Figure 4 shows

PSNRk ≜ − 10 log10
1

N2562 x − xk
2

versus iteration k for the starfish test image. In the figure, the proposed RED-DPG and RED-

APG algorithms appear significantly faster than the RED-FP and RED-ADMM-I = 1 

algorithms proposed in [1]. For example, RED-APG reaches PSNR = 30 in 15 iterations 

whereas RED-FP and inexact RED-ADMM-I = 1 take about 50 iterations.

Figure 5 shows the fixed-point error

1
N

1
σ2 AH(Axk − y) + λ(xk − f (xk))

2

verus iteration k. All but the RED-APG and RED-ADMM algorithms appear to converge to 

the solution set of the fixed-point equation (15). The RED-APG and RED-ADMM 

algorithms appear to approximately satisfy the fixed-point equation (15), but not exactly 

satisfy (15), since the fixed-point error does not decay to zero.

Figure 6 shows the update distance 1
N xk − xk − 1

2
 vs. iteration k for the algorithms under 

test. For most algorithms, the update distance appears to be converging to zero, but for RED-

APG and RED-ADMM it does not. This suggests that the RED-APG and RED-ADMM 

algorithms are converging to a limit cycle rather than a unique limit point.

Next, we replace the TNRD denoiser with the TDT denoiser from (30) and repeat the 

previous experiments. For the TDT denoiser, we used a Haar-wavelet based orthogonal 

discrete wavelet transform (DWT) W, with the maximum number of decomposition levels, 

and a soft-thresholding function g(·) with threshold value 0.001. Unlike the TNRD denoiser, 

4Matlab code for these experiments is available at http://www2.ece.ohio-state.edu/~schniter/RED/index.html.
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this TDT denoiser is the proximal operator associated with a convex cost function, and so 

we know that it is 1
2-averaged and non-expansive.

Figure 7 shows PSNR versus iteration with TDT denoising. Interestingly, the final PSNR 

values appear to be nearly identical among all algorithms under test, but more than 1 dB 

worse than the values around iteration 20. Figure 8 shows the fixed-point error vs. iteration 

for this experiment. There, the errors of most algorithms converge to a value near 10−7, but 

then remain at that value. Noting that RED-PG satisfies the conditions of Theorem 2 (i.e., 

convex loss, non-expansive denoiser, L > 1), it should converge to a fixed-point of (15). 

Therefore, we attribute the fixed-point error saturation in Fig. 8 to issues with numerical 

precision. Figure 9 shows the normalized distance versus iteration with TDT denoising. 

There, the distance decreases to zero for all algorithms under test.

We emphasize that the proposed RED-DPG, RED-APG, and RED-PG algorithms seek to 

solve exactly the same fixed- point equation (15) sought by the RED-SD, RED-ADMM, and 

RED-FP algorithms proposed in [1]. The excellent quality of the RED fixed-points was 

firmly established in [1], both qualitatively and quantitatively, in comparison to existing 

state-of-the-art methods like PnP-ADMM [10]. For further details on these comparisons, 

including examples of images recovered by the RED algorithms, we refer the interested 

reader to [1].

VI. Equilibrium View of RED Algorithms

Like the RED algorithms, PnP-ADMM [10] repeatedly calls a denoiser f(·) in order to solve 

an inverse problem. In [9], Buzzard, Sreehari, and Bouman show that PnP-ADMM finds a 

“consensus equilibrium” solution rather than a minimum of any explicit cost function. By 

consensus equilibrium, we mean a solution (x, u) to

x = F(x + u)

(97a)

x = G(x − u)

(97b)

for some functions F, G:ℝN ℝN. For PnP-ADMM, these functions are [9]
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Fpnp(v) = arg min
x

ℓ(x; y) + β
2 x − v

2

(98)

Gpnp(v) = f (v) .

(99)

A. RED Equilibrium Conditions

We now show that the RED algorithms also find consensus equilibrium solutions, but with G 
≠ Gpnp. First, recall ADMM Algorithm 1 with explicit regularization ρ(·). By taking iteration 

k → ∞, it becomes clear that the ADMM solutions must satisfy the equilibrium condition 

(97) with

Fadmm(v) = arg min
v

ℓ(x; y) + β
2 x − v

2

(100)

Gadmm(v) = arg min
x

λρ(x) + β
2 x − v

2
,

(101)

where we note that Fadmm = Fpnp.

The RED-ADMM algorithm can be considered as a special case of ADMM Algorithm 1 

under which ρ(·) is differentiable with ∇ρ(x) = x – f(x), for a given denoiser f(·). We can thus 

find Gred-admm(·), i.e., the RED-ADMM version of G(·) satisfying the equilibrium condition 

(97b), by solving the right side of (101) under ∇ρ(x) = x – f(x). Similarly, we see that the 

RED-ADMM version of F(·) is identical to the ADMM version of F(·) from (100). Now, the 

x = Gred‐admm(v) that solves the right side of (101) under differentiable ρ(·) with ∇ρ(x) = x – 

f(x) must obey
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0 = λ∇ρ(x) + β(x − v)

(102)

= λ(x − f (x)) + β(x − v),

(103)

which we note is a special case of (15). Continuing, we find that

0 = λ(x − f (x)) + β(x − v)

(104)

0 = λ + β
β x − λ

β f (x) − v

(105)

v = λ + β
β I − λ

β f (x)

(106)

x = λ + β
β I − λ

β f
−1

(v) = Gred‐admm(v),

(107)

where I represents the identity operator and (·)−1 represents the functional inverse. In 

summary, RED-ADMM with denoiser f(·) solves the consensus equilibrium problem (97) 

with F = Fadmm from (100) and G = Gred-admm from (107).
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Next we establish an equilibrium result for RED-PG. Defining uk = υk – xk and taking k → 
∞ in Algorithm 4, it can be seen that the fixed points of RED-PG obey (97a) for

Fred‐pg(v) = arg min
x

ℓ(x; y) + λL
2 x − v

2
.

(108)

Furthermore, from line 3 of Algorithm 4, it can be seen that the RED-PG fixed points also 

obey

u = 1
L ( f (x) − x)

(109)

x − u = x − 1
L ( f (x) − x)

(110)

= L + 1
L I − 1

L f (x)

(111)

x = L + 1
L I − 1

L f
−1

(x − u),

(112)

which matches (97b) when G = Gred-pg for
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Gred‐pg(v) = L + 1
L I − 1

L f
−1

(v) .

(113)

Note that Gred-pg = Gred-admm when L = β/λ.

B. Interpreting the RED Equilibria

The equilibrium conditions provide additional interpretations of the RED algorithms. To see 

how, first recall that the RED equilibrium (x, u) satisfies

x = Fred‐pg(x + u)

(114a)

x = Gred‐pg(x − u),

(114b)

or an analogous pair of equations involving Fred-admm and Gred-admm. Thus, from (108), 

(109), and (114a), we have that

x = Fred‐pg x + 1
L ( f (x) − x)

(115)

= Fred‐pg
L − 1

L x + 1
L f (x)

(116)
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= arg min
x

ℓ(x; y) + λL
2 x − L − 1

L x − 1
L f (x)

2
.

(117)

When L = 1, this simplifies down to

x = arg min
x

ℓ(x; y) + λ
2 x − f (x)

2
.

(118)

Note that (118) is reminiscent of, although in general not equivalent to,

x = arg min
x

ℓ(x; y) + λ
2 x − f (x)

2
,

(119)

which was discussed as an “alternative” formulation of RED in [1, Sec. 5.2].

Insights into the relationship between RED and PnP-ADMM can be obtained by focusing on 

the simple case of

ℓ(x; y) = 1
2σ2 x − y

2
,

(120)

where the overall goal of variational image recovery would be the denoising of y. For PnP-

ADMM, (90) and (98) imply

Fpnp(v) = 1
1 + λσ2 y + λσ2

1 + λσ2v,

(121)
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and so the equilibrium condition (97a) implies

xpnp = 1
1 + λσ2 y + λσ2

1 + λσ2 (xpnp + upnp)

(122)

upnp =
xpnp − y

λσ2 .

(123)

Meanwhile, (99) and the equilibrium condition (97b) imply

xpnp = f (xpnp − upnp)

(124)

= f λσ2 − 1
λσ2 xpnp + 1

λσ2 y .

(125)

In the case that λ = 1/σ2, we have the intuitive result that

xpnp = f (y),

(126)

which corresponds to direct denoising of y. For RED, ured is algorithm dependent, but xred is 

always the solution to (15), where now A = I due to (120). That is,

Reehorst and Schniter Page 43

IEEE Trans Comput Imaging. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



y − xred = λσ2 xred − f (xred) .

(127)

Taking λ = 1/σ2 for direct comparison to (126), we find

y − xred = xred − f (xred) .

(128)

Thus, whereas PnP-ADMM reports the denoiser output f(y), RED reports the x for which the 
denoiser residual f (x) − x negates the measurement residual y − x. This x can be expressed 

concisely as

x = (2I − f )−1(y) = Gred‐pg(y)
L = 1 .

(129)

VII. Conclusion

The RED paper [1] proposed a powerful new way to exploit plug-in denoisers when solving 

imaging inverse-problems. In fact, experiments in [1] suggest that the RED algorithms are 

state-of-the-art. Although [1] claimed that the RED algorithms minimize an optimization 

objective containing an explicit regularizer of the form ρred(x) ≜ 1
2 x⊤(x − f (x)) when the 

denoiser is LH, we showed that the denoiser must also be Jacobian symmetric for this 

explanation to hold. We then provided extensive numerical evidence that practical denoisers 

like the median filter, non-local means, BM3D, TNRD, or DnCNN lack sufficient Jacobian 

symmetry. Furthermore, we established that, with non-JS denoisers, the RED algorithms 

cannot be explained by explicit regularization of any form.

None of our negative results dispute the fact that the RED algorithms work very well in 

practice. But they do motivate the need for a better understanding of RED. In response, we 

showed that the RED algorithms can be explained by a novel framework called score-
matching by denoising (SMD), which aims to match the “score” (i.e., the gradient of the log-

prior) rather than design any explicit regularizer. We then established tight connections 

between SMD, kernel density estimation, and constrained MMSE denoising.
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On the algorithmic front, we provided new interpretations of the RED-ADMM and RED-FP 

algorithms proposed in [1], and we proposed novel RED algorithms with much faster 

convergence. Finally, we performed a consensus-equilibrium analysis of the RED algorithms 

that lead to additional interpretations of RED and its relation to PnP-ADMM.
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Fig. 1. 
RED cost Cred(xk) and fixed-point error ∥A⊤(Axk – y)/σ2 + λ(xk – f(xk))∥2 versus iteration k 

for {xk}k = 1
K  produced by the RED-SD algorithm from [1]. Although the fixed-point 

condition is asymptotically satisfied, the RED cost does not decrease with k.
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Fig. 2. 
Contours show RED cost Cred(xα, β) from (14) and arrows show RED-algorithm gradient 

field g(xα, β) from (46) versus (α, β), where xα, β = x + αe1 + βe2 with randomly chosen e1 

and e2. The subplots show that the minimizer of Cred(xα, β) is not the fixed-point x, and that 

Cred(·) may be non-smooth and/or non-convex.
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Fig. 3. 
PSNR versus runtime for RED-ADMM with TNRD denoising and I inner iterations.
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Fig. 4. 
PSNR versus iteration for RED algorithms with TNRD denoising when deblurring the 

starfish.
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Fig. 5. 
Fixed-point error versus iteration for RED algorithms with TNRD denoising when 

deblurring the starfish.
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Fig. 6. 
Update distance versus iteration for RED algorithms with TNRD denoising when deblurring 

the starfish.
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Fig. 7. 
PSNR versus iteration for RED algorithms with TDT denoising when deblurring the starfish.
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Fig. 8. 
Fixed-point error versus iteration for RED algorithms with TDT denoising when deblurring 

the starfish.
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Fig. 9. 
Update distance versus iteration for RED algorithms with TDT denoising when deblurring 

the starfish.
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TABLE I

Average Jacobian-symmetry error on 16 × 16 images

TDT MF NLM BM3D TNRD DnCNN

e f
J (x) 5.36e-21 1.50 0.250 1.22 0.0378 0.0172
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TABLE II

Average gradient error on 16 × 16 images

e f
∇(x) TDT MF NLM BM3D TNRD DnCNN

∇ρred(x) from (13) 0.381 0.904 0.829 0.790 0.416 1.76

∇ρred(x) from (38) 0.381 1.78e-21 0.0446 0.447 0.356 1.69

∇ρred(x) from (22) 4.68e-19 1.75e-21 1.32e-20 4.80e-14 3.77e-19 6.76e-13
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TABLE III

Average local-homogeneity error on 16 × 16 images

TDT MF NLM BM3D TNRD DnCNN

e f
𝖫𝖧, 1(x) 2.05e-8 0 1.41e-8 7.37e-7 2.18e-8 1.63e-8

e f
𝖫𝖧, 2(x) 0.0205 2.26e-23 0.0141 3.80e4 2.18e-2 0.0179
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