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Abstract
In their seminal papers Hanahan and Weinberg described oncogenic processes a
normal cell undergoes to be transformed into a cancer cell. The functions of ion
channels in the gastrointestinal (GI) tract influence a variety of cellular processes,
many of which overlap with these hallmarks of cancer. In this review we focus on
the roles of the calcium (Ca2+), sodium (Na+), potassium (K+), chloride (Cl-) and
zinc (Zn2+) transporters in GI cancer, with a special emphasis on the roles of the
KCNQ1 K+ channel and CFTR Cl- channel in colorectal cancer (CRC). Ca2+ is a
ubiquitous second messenger, serving as a signaling molecule for a variety of
cellular processes such as control of the cell cycle, apoptosis, and migration.
Various members of the TRP superfamily, including TRPM8, TRPM7, TRPM6
and TRPM2, have been implicated in GI cancers, especially through
overexpression in pancreatic adenocarcinomas and down-regulation in colon
cancer. Voltage-gated sodium channels (VGSCs) are classically associated with
the initiation and conduction of action potentials in electrically excitable cells
such as neurons and muscle cells. The VGSC NaV1.5 is abundantly expressed in
human colorectal CRC cell lines as well as being highly expressed in primary
CRC samples. Studies have demonstrated that conductance through NaV1.5
contributes significantly to CRC cell invasiveness and cancer progression. Zn2+

transporters of the ZIP/SLC39A and ZnT/SLC30A families are dysregulated in
all major GI organ cancers, in particular, ZIP4 up-regulation in pancreatic cancer
(PC). More than 70 K+ channel genes, clustered in four families, are found
expressed in the GI tract, where they regulate a range of cellular processes,
including gastrin secretion in the stomach and anion secretion and fluid balance
in the intestinal tract. Several distinct types of K+ channels are found
dysregulated in the GI tract. Notable are hERG1 upregulation in PC, gastric
cancer (GC) and CRC, leading to enhanced cancer angiogenesis and invasion, and
KCNQ1 down-regulation in CRC, where KCNQ1 expression is associated with
enhanced disease-free survival in stage II, III, and IV disease. Cl- channels are
critical for a range of cellular and tissue processes in the GI tract, especially fluid
balance in the colon. Most notable is CFTR, whose deficiency leads to mucus
blockage, microbial dysbiosis and inflammation in the intestinal tract. CFTR is a
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tumor suppressor in several GI cancers. Cystic fibrosis patients are at a significant
risk for CRC and low levels of CFTR expression are associated with poor overall
disease-free survival in sporadic CRC. Two other classes of chloride channels that
are dysregulated in GI cancers are the chloride intracellular channels (CLIC1, 3 &
4) and the chloride channel accessory proteins (CLCA1,2,4). CLIC1 & 4 are
upregulated in PC, GC, gallbladder cancer, and CRC, while the CLCA proteins
have been reported to be down-regulated in CRC. In summary, it is clear, from
the diverse influences of ion channels, that their aberrant expression and/or
activity can contribute to malignant transformation and tumor progression.
Further, because ion channels are often localized to the plasma membrane and
subject to multiple layers of regulation, they represent promising clinical targets
for therapeutic intervention including the repurposing of current drugs.

Key words: Ion channels; Gastrointestinal cancer; Colorectal cancer; Gastric cancer;
Pancreatic cancer; Esophageal cancer; Hepatocellular carcinoma; Prognostic biomarker;
Novel therapies; Clinical targets
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Core tip: Ion channels play an essential function in the physiology of the GI tract. There
is increasing evidence that they are dysregulated at all stages of gastrointestinal (GI)
cancer, from early initiation to metastasis. This information provides for the use of ion
channel expression as useful clinical prognostic biomarkers in GI cancer. Perhaps more
importantly new therapeutic modalities targeting ion channels in the GI tract, including
the potential to target their dysregulation in GI cancers are becoming increasingly
feasible. This strategy includes the repurposing of existing drugs that are used to treat
other ion channel pathologies, or other diseases altogether. This review seeks to provide
an overview of the role of ion channels in GI cancers with an emphasis on the potential
for new therapies that target them.
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INTRODUCTION
In 2019, the American Cancer Society estimates that there will  be more than 1.76
million new cases of cancer in the United States, accompanied by more than 607,000
cancer deaths[1]. Of these, the digestive system will have the highest number of new
cases, and the second highest number of cancer deaths. The lifespan of cells in the
gastrointestinal (GI) tract is very short. Propagated from stem cells, the epithelial cells
of the stomach, small intestine, and colorectum are typically replaced in a matter of
days  and are  some of  the  most  replicative  tissues  in  the  body.  This  turnover  is
necessary due to the constant physical, chemical, and biological insults these tissues
endure.  This  rapid proliferation increases  the likelihood of  cells  in  these tissues
acquiring and accumulating oncogenic mutations.

The basic functions of the GI epithelium are: (1) to act as a physical barrier that
selectively  allows  for  the  absorption  of  nutrients;  while  (2)  excluding  toxic  or
pathogenic substances; and (3) to excrete substances to aid in the digestion process.
These functions require large quantities of water, ions, and nutrients to be transported
across the epithelial layer. The significant driving force for this work is achieved
through the use of ion gradients.

The unequal distribution of ions is required for the survival and function of any
cell.  This  includes  everything  from  concentration  gradients  across  cellular  and
organellar membranes to gradients within the cytosol from one end to the other of a
polarized cell.  The  distribution  of  ions  is  a  consequence  of  the  localization  and
activation of  a  variety  of  ion-specific  channels,  co-transporters,  and pumps.  Ion
channels typically have a gating mechanism controlling when they are open or closed,
and allow for the passive movement of select ions down their concentration gradient.

WJG https://www.wjgnet.com October 14, 2019 Volume 25 Issue 38

Anderson KJ et al. Ion channels in GI cancer

5733

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


In  contrast  to  this  passive  dissipation  of  gradients,  pumps  make  use  of  ATP
hydrolysis to actively set up gradients. Co-transporters, or secondary pumps, exploit
the energy gained by moving one ion down its gradient to power the movement of
another ion or molecule against its gradient. Precise regulation of these elements in
response to changing environmental conditions and the subsequent changes in ion
concentration or flux are necessary for a multitude of cellular processes including
proliferation, motility, absorption/secretion, apoptosis and many others. The goal of
this  review  will  be  to  summarize  what  we  know  about  the  role  of  ion  channel
dysfunction as it pertains to cancer development within the GI epithelium. We focus
on the four main classes of ion channels: potassium (K+), chloride (Cl-), sodium (Na+),
and calcium (Ca2+) and zinc (Zn2+) transporters and the major epithelial cancers that
arise in the GI tract: colorectal cancer (CRC), gastric cancer (GC), esophageal cancer
(EC), pancreatic cancer (PC) and hepatocellular carcinoma (HCC). For other important
GI transporters and aquaporins and other types of cancers we refer readers to other
specific reviews.

Nearly  20  years  ago,  Hanahan and Weinberg presented certain  criteria  that  a
normal cell must acquire to be transformed into a cancer cell[2]. These hallmarks of
cancer have been expanded upon since that seminal paper, but their basic principles
still remain[3]. The functions of ion channels influence a variety of cellular processes,
many of which overlap heavily with these hallmarks of cancer. For this reason, cancer
has been described as a channelopathy[4], with a recent review by Prevarskaya et al[5]

asking whether cancer hallmarks are primarily oncochannelopathies. For example,
Ca2+ channels play major roles in the control of cellular growth and proliferation, as
well as the control of cell death[6]. K+ and Cl- channels are essential for the localized
swelling and shrinking of different areas of a cell,  necessary for cell  migration[7].
Separate from their function as channels, studies of protein interactions with various
ion channels  have demonstrated their  involvement  in  diverse  processes  such as
cytoskeletal architecture and protein targeting[8]. It is clear, from the diverse influences
of ion channels, that their aberrant expression and/or dysfunction can contribute to
the transformation of normal cells into malignancy[4-5,9-15]. As discussed by Djamgoz et
al[12] ion channels are expressed and dysregulated in all cancers throughout the multi-
stage process, from initiation to metastasis. This is certainly true for the GI tract.

POTASSIUM CHANNELS
K+ channels play a major role in maintenance of plasma membrane (PM) potential.
The action of the Na+/K+-ATPase transporter, H+/K+-ATPase transporter, and the
NKCC cotransporter,  coupled  with  the  exit  of  K+  ions  from the  cell  down their
electrochemical gradient maintains a net intracellular negative charge at the PM. This
hyperpolarized membrane potential  is  then used to drive the active transport  of
various  molecules  against  their  gradient.  This  is  especially  important  in  the  GI
epithelium, which must continuously transport mass quantities of water, electrolytes,
and nutrients. With 77 genes coding for K+ channels, they are the largest, most diverse
group of ion channels in the human genome. In addition, many of these genes have
known splice variants, can be post-translationally modified, or form complexes with
regulatory subunits. This immense variability in K+ channel function highlights the
importance of being able to fine-tune K+ conductance and brings into question what
other functions these channels might be serving. Generally, K+ channels are classified
as  either  voltage-gated,  Ca2+-activated,  inward rectifier  channels,  or  2P-domain
channels.

Whereas Nav channels are classically associated with the rapid depolarization of
excitable cells,  voltage-gated K+  (Kv)  channels are responsible for re-polarization
during an action potential. In non-excitable cells, such as those of the GI epithelium,
the  typical  role  of  these  channels  is  hyperpolarization  of  the  PM.  This  negative
membrane  potential  facilitates  Ca2+  signaling  and  is  required  for  regulation  of
intracellular pH and cell volume. Owing to these broad influences, K+ channels are
implicated in a variety of cellular and tissue functions including cell proliferation and
differentiation,  pigmentation,  hearing and the mammalian cochlea,  contractility,
circadian rhythms,  migration,  wound healing,  cell  cycle  progression,  apoptosis,
autophagy,  metabolism,  angiogenesis,  stem  cell  dynamics,  and  carcinogenesis,
including cancer cell proliferation, invasion, migration and metastasis[9,11,16-20]. Notably,
the  mechanisms  underlying  loss  of  control  of  K+  channels  are  still  not  well
understood[18].

KCNQ1
Very prominent among the Kv channels contributing to cancer risk is KCNQ1, which
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demonstrates flexibility in gating permitting functional versatility[21]. In the GI tract
KCNQ1  assembles  with  the  β-subunits  KCNE2  (gastric)  or  KCNE3  (intestinal)
converting  it  from  a  voltage-dependent  channel  in  the  stomach  into  a  voltage-
independent, constitutively open channel in the intestine[22]. In gastric parietal cells,
luminal KCNQ1/KCNE2 is essential for gastric acid secretion, working in conjunction
with a H+/K+-ATPase. In the intestinal and colonic crypts, KCNQ1/KCNE3 is located
basolaterally,  and establishes the driving force for  cAMP-mediated Cl-  secretion
through CFTR, necessary for mucus hydration[23,24]. In the colon, blocking the activity
of KCNQ1/KCNE3 nearly entirely abolishes cAMP-mediated Cl- secretion, versus
only about 50% in the small intestine, demonstrating a reliance on KCNQ1 in the
colon[25].

KCNQ1 deficiency in humans and animal models
Humans carrying germline mutations in KCNQ1  (Jervell  and Lange-Nielsen and
Romano-Ward syndromes) develop a range of pathologies,  most notably cardiac
arrhythmia (long and short QT), but also hearing loss, elevated gastrin levels, gastric
hyperplasia  and in some cases  gastric  neoplasia[26-30].  These phenotypes are  well
modeled in Kcnq1 knockout mice that develop inner ear defects, imbalance, chronic
gastritis, gastric hyperplasia, and gastric metaplasia[31,32].

KCNQ1 and GI cancer
There is strong evidence for KCNQ1 functioning as a tumor suppressor in GI cancers.
The first data came from Sleeping Beauty  (SB) transposon mutagenesis screens for
intestinal cancer in mice. Kcnq1  was the third-ranked common insertion site (CIS)
gene (just  behind Apc  and Rspo2,  well-known Wnt/β-catenin pathway signaling
genes), with a predicted loss of function and 14 unique mutation sites, among 77 CIS
genes identified in the first SB screen published in Science in 2009[33]. Kcnq1 was then
identified as a CIS gene in three subsequent SB screens for intestinal  cancer[34-36].
Kcnq1’s  role was then confirmed in crosses of Kcnq1  knockout mice to the ApcMin

mouse model of  intestinal  cancer where Kcnq1-deficiency significantly enhanced
tumor phenotypes, including the development of invasive adenocarcinomas[37]. The
role of KCNQ1 in human CRC was then investigated, finding that maintenance of
KCNQ1 mRNA and protein levels was associated with significant disease-free and
overall survival in stage II, III, and IV CRC[37,38]. Notably, for stage IV CRC patients
following hepatic resections, maintenance of KCNQ1 protein expression conferred a
23-month survival advantage[37]. In other GI cancers Kcnq1 was a CIS gene in two SB
screens for PC[39,40],  one SB screen for HCC[41]  and in one SB screen for GC, with a
predicted loss of function[42]. Additional evidence in GC is provided by the phenotype
of Kcnq1 knockout mice that develop gastric hyperplasia, metaplasia and occasional
neoplasia[31,32] and in studies of human gastric cells where treatment of cells with atrial
natriuretic peptide reduced cell proliferation by upregulating KCNQ1 expression[43].
In studies of HCC in human tissue and HCC cell lines, expression of KCNQ1  was
down-regulated  by  promoter  hypermethylation  associated  with  epithelial  to
mesenchymal transition (EMT), and poor patient prognosis[44]. Additionally, in HCC it
was  reported  that  KCNQ1  regulated  and  sequestered  β-catenin  via  physical
interactions at the PM[44].

Although KCNQ1 deficiency is associated with poor outcome in CRC[37,38,45] and in
HCC[44],  the mechanisms underlying tumor suppression are not well  understood.
However, one clue is that KCNQ1 is localized to the base of the intestinal epithelial
crypt which is the site of the stem cell compartment and the likely site of origin of
CRC[46]. Functional significance of crypt localization was demonstrated by Than et al[37]

who found that crypts isolated from KCNQ1-deficient colon epithelium displayed
increased  clonogenicity  suggesting  a  possible  selective  advantage  for  tumor
development. In addition, several studies demonstrate involvement of KCNQ1 with
the Wnt/β-catenin pathway[38,44,45,47]. The Wnt/β-catenin pathway is vitally important
in intestinal epithelial physiology and pathophysiology, with deregulation of the
pathway contributing to over 80% of CRCs as well as a large percentage of HCCs. An
early study in Xenopus oocytes demonstrated that β-catenin up regulated KCNQ1-
mediated  currents  by  promoting  its  insertion  into  PM  without  any  effect  on
transcription[47]. More recent studies have looked at the interactions of KCNQ1 and β-
catenin specifically in GI cancers. Analysis of 386 human stage II and III CRC tumors
found correlation between KCNQ1 membrane-associated protein and nuclear β-
catenin protein expression, which was surprising as KCNQ1-low expression was
associated  with  poor  outcome[38].  It  was  proposed  that  KCNQ1  may  be  down-
regulated by promoter methylation in some cancers so that in the presence of β-
catenin, as seen in most CRC, KCNQ1 would be upregulated, but if in addition the
promoter  becomes methylated KCNQ1  would be  down-regulated.  In  contrast,  a
second study found that β-catenin directly negatively regulated KCNQ1 transcription
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in  several  CRC  cell  lines[45].  This  group  also  found  that  KCNQ1  promoted  cell
membrane localization of β-catenin. This had the effect of limiting oncogenesis both
by preventing nuclear localization of β-catenin and by maintaining adherens junctions
that prevent EMT. A third study reported that in HCC cell lines, KCNQ1 expression
was  enhanced  by  treatment  with  a  methyltransferase  inhibiter  suggesting  that
expression may be down-regulated by promoter methylation[44]. However, KCNQ1
appeared to sequester β-catenin at the cell membrane and to limit its transcriptional
activity.  The situation is  further  complicated by the lncRNA KCNQ1OT1,  which
through the recruitment of chromatin and DNA modifying proteins, silences multiple
genes in the KCNQ1 region[48].  KCNQ1OT1  has been associated with poor patient
survival in several GI cancers, including CRC[49], EC[50], and HCC[51]. KCNQ1OT1 itself
is regulated by β-catenin. The Kugoh group has demonstrated that nuclear β-catenin
activates the transcription of KCNQ1OT1  through a TCF-1 binding site within its
promoter region[52]. These studies suggest that multiple factors affect the interactions
between KCNQ1 and β-catenin, and that the balance of these factors differs among
cancers. But apparently loss of KCNQ1 activity, through whatever means, can provide
a selective advantage to the tumor, as each of these studies demonstrates that KCNQ1
is a tumor suppressor. Channel openers such as retigabine have been developed as
treatments for diseases caused by KCNQ1-deficiency[53].  Thus, understanding the
contribution of KCNQ1 to cancer progression could lead to new cancer therapeutic
opportunities.

KCNE2 and KCNE3
Given its role as the β-subunit in the KCNQ1/KCNE2 channel in gastric tissue it is not
surprising that  deficiency for  KCNE2 contributes  to  human GC cell  growth and
progression. This was supported by studies in Kcne2  knockout mice that develop
gastritis  cystica  profunda  and  neoplasia,  pyloric  polyadenomas  and  invasive
adenocarcinomas, linked to upregulation of cyclin D1[54-58]. Kcne3 (intestinal β-subunit)
knockout mice also partially phenocopied loss of KCNQ1, demonstrating a disruption
in intestinal Cl- transport[46].

Human ether-a-go-go related gene 1
While KCNQ1 seems to have tumor-suppressive effects,  another Kv  channel,  the
human ether-a-go-go  related  gene  1  (hERG1)  channel,  has  been  implicated  as  an
oncogene in various GI cancers including CRC[59-62], PC[62-66], EC[67-70], and GC[68,71-74]. In
CRC, while hERG1 is not expressed in normal colonic mucosa, a distinct upregulation
in expression is reported in adenocarcinomas, with the highest levels occurring in
metastatic  cancers,  where  hERG1  expression  was  associated  with  poor  patient
prognosis, and with little to no expression in adenomas. hERG1 expression levels and
activity were positively correlated to cell  migration using channel inhibitors and
clones expressing various levels of the protein[59]. This role in cancer cell migration and
invasion was later expanded upon with the discovery of hERG1’s interactions with
β1-integrins in PM complexes. hERG1 was shown to modulate β1-integrin mediated
VEGF-A secretion through the recruitment of PI3K and AKT[72]. In PC hERG1 over-
expression was reported in 59% of tumors[66] where it promoted cancer cell migration
via modulation of F-actin organization[64]. hERG1 expression was also associated with
lymph node involvement, tumor grade, TNM stage and poor patient prognosis[66].
One report linked hERG1 to dysregulation of the EGFR signaling pathway. In EC,
hERG1 expression was associated with progression from Barrett’s esophagus (BE) to
EC, again associated with poor patient prognosis[70].  Finally,  in GC, hERG1 over-
expression  was  reported  in  69% of  cancers,  where  it  promoted angiogenesis  by
mediating VEGF-A secretion via AKT-dependent regulation of HIF-1, and similarly,
its expression was associated with poor patient prognosis[71-74].

EAG1
Another  ether-a-go-go  family  member,  EAG1,  is  also  reported  to  function  as  an
oncogene in several GI cancers, including CRC[18,75,76], EC[75], and HCC[16,62,75,77]. In all
cases EAG1 is reported to be over-expressed, and associated with invasion of cancer
cells and poor patient prognosis.

Other K+ channels
At least nine other K+ channels have been reported to be dysregulated in GI cancers.
Those  acting  as  oncogenes  include  KCNA5 in  GC[73,78-80],  and CRC[79];  KCNC1 in
CRC[76]; KCND1 in GC[81]; KCNJ3 in PC[65,82]; KCNN4 in CRC[5,14,83], PC[65,84], and HCC;
KCNS3  in  CRC[85];  and  KCNK9[5,86,87]  in  CRC.  Those  acting  as  potential  tumor
suppressors include KCNA3 in CRC[4,76,88] and PC[65,82,89], and KCNH5 in EC[90]. Of note,
the pathophysiological actions of many of these channels seem to involve mechanisms
that  are  independent  of  their  channel  action.  An  example  is  KCNS3/Kv9.3,  an
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electrically  silent  subunit  in  excitable  cells,  whose  expression  has  been  found
increased in CRC and lung cancer cells, with a knockdown showing interference at
the  G0/G1  and  G1/S  cell  cycle  transitions[85].  Overall,  the  great  majority  of  K+

channels discussed here function as oncogenes (with KCNQ1 a prominent exception),
consistent with a model of K+ channel dysregulation/overexpression being necessary
for cancer cell cycle and tumor progression. See Table 1 for a full listing of potassium
ion channels and their role in GI cancers.

CHLORIDE CHANNELS
The functions of Cl-  channels in the GI tract include regulation of transepithelial
transport (in particular major anions), volume control (osmoregulation), membrane
potentials, lipid homeostasis, cell polarity, glucose and other metabolism, oxidative
stress,  inflammation,  mucus,  alterations  in  the  microbiome,  pH,  cell  motility,
autophagy, mitochondrial dysfunction, apoptosis, cell polarity, cell-cell contact, stem
cell  function,  and cellular immune responses[5,91-105].  All  of  these functions can be
dysregulated in and contribute to malignant transformation, particularly in the GI
tract due to its constant exposure to environmental influences.

CFTR
CFTR encodes a Cl-, HCO3- anion channel found primarily on the apical surfaces of
luminal  epithelial  cells.  Mutations  in  CFTR  are  the  cause  of  the  hereditary  life
shortening disease cystic fibrosis (CF). Recently CFTR has been shown to be a tumor
suppressor in CRC and CFTR deficiency has been implicated in several other cancers.
Because the causal connection between CFTR and cancer has been most strongly
established for CRC, this section of the review will focus primarily on CRC.

Normal functions of CFTR
The CFTR gene found on chromosome 7 encodes an mRNA of 6128 nucleotides[106].
The CFTR protein consists of two symmetrical halves. Each half contains 6 membrane
spanning  domains  joined  by  an  intracellular  regulatory  region.  The  membrane
spanning domains assemble to form an aqueous pore that allows flow of Cl-  and
HCO3- ions down their electrochemical gradients. In the intestine the flow of ions is
from the cytoplasm to lumen. Ion specificity is provided by the amino acids lining the
pore. Opening and closing is regulated by binding of ATP to two nucleotide binding
domains in the regulatory region. ATP binding is mediated by cAMP activation of
PKA which phosphorylates a site to open up the ATP binding domains. In vivo cAMP
activity is commonly regulated by cholinergic stimuli. Outflow of ions creates osmotic
pressure  for  the  flow  of  water  in  the  same  direction  so  that  CFTR  indirectly
determines the flow of water as well[107,108]. CFTR also regulates other ion channels
(Na+, K+, Ca2+, and other Cl- channels). For example, CFTR indirectly regulates the
cellular ionic environment by inhibiting activity of the Na+ importing channel SCNN1,
which has the effect of further encouraging outflow of water and also by supporting
additional HCO3- transporters[109]. CFTR also interacts with other membrane proteins
to maintain epithelial tight junctions and barriers to fluid flow, adjusts the levels of
acidity in secretions, and participates in the transport of sphingosine-1 phosphate, a
regulator of cell adhesion and a signaling molecule for inflammation[99]. CFTR also
contains a cytoplasmic C-terminal PDZ-binding motif. This domain interacts with
PDZ-containing  proteins  involved  in  regulating  the  actin  cytoskeleton  and
intracellular signaling[110,111]. CFTR is expressed on the apical surface of the intestinal
epithelium  throughout  the  length  of  the  intestine.  In  the  small  intestine  CFTR
expression decreases  from duodenum to  ileum with strongest  expression in  the
crypts[112]. In addition, functional CFTR is found on the brush border of villus cells and
rare CFTR-high expressing cells throughout the small intestine[113]. In the colon CFTR
is  expressed  in  a  proximal  to  distal  gradient  with  highest  concentration  in  the
proximal region and cecum. CFTR is most highly expressed at the base of the crypt
where  intestinal  epithelial  stem  cells  reside[112,114].  Overall,  CFTR  is  a  major
determinant of ion and water homeostasis and because it is highly expressed at the
base of the crypt it is in a position to influence the intestinal stem cell compartment.

Cystic fibrosis
Inactivating germline mutations in CFTR cause the hereditary life shortening disease
CF.  CF  is  the  most  common  autosomal  recessive  hereditary  disease  among
Caucasians[115]. The most severe clinical manifestations are pulmonary inflammation
and  obstruction  leading  ultimately  to  pulmonary  failure[116].  However,  CFTR is
expressed in many extra-pulmonary tissues including the linings of the pancreatic
and biliary ducts where its loss ultimately leads to CF-related diabetes and CF-related
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Table 1  Potassium channels

Gene name (s) Cancer Role Functional activity

KCNA3/Kv1.3 Colorectal Unclear One report that Kv1.3 is frequently
hypermethylated and expression
down-regulated in CRC; a different
report that Kv1.3 is upregulated in
human and mouse colon
carcinomas[4,76,88]

Pancreatic Tumor suppressor Expression down-regulated by
promoter hypermethylation;
promotes metastasis[65,82,89]

KCNA5/Kv1.5 Gastric Oncogene Expression up-regulated; silencing in
GC cells inhibits proliferation; alters
drug resistance[73,78-80]

Colorectal Oncogene Expression up-regulated[79]

KCNC1/Kv3.1 Colorectal Oncogene Expression up-regulated[76]

KCND1/Kv4.1 Gastric Oncogene Expression up-regulated[81]

KCNE2/MiRP1 Gastric Tumor suppressor Expression down-regulated;
deficiency promotes tumor
progression; knockout mice develop
gastritis cystic profundal and
neoplasia, pyloric polyadenomas;
invasive adenocarcinomas;
upregulation of cyclin D1; down-
regulated in gastric cancer tissues
and cell lines; overexpression in cell
lines suppressed growth in soft agar
and mouse tumor xenografts[54-58]

KCNH1/EAG1/Kv10.1 Colorectal Oncogene Up-regulated; one report showed
75% of CRC tumors positive for Eag1;
another report found overexpression
in 3.4% of adenocarcinomas[18,75,76]

Esophageal Oncogene Expression up-regulated; associated
with depth of invasion; independent
negative prognostic factor[75]

Hepatocellular Oncogene Expression up-regulated[16,62,75,77]

KCNH2/hERG1/Kv11.1 Colorectal Oncogene Expression up-regulated; triggers
angiogenesis and tumor progression
via inducement of PI3K/AKT
signaling and HIF1-induced
activation of VEGF-A; associated
with invasiveness, poor prognosis for
stage I and II; up-regulation in
ApcMin and AOM mouse models
enhanced cancer phenotypes[59-62]

Pancreatic Oncogene Expression up-regulated in 59% of
pancreatic cancers; promotes
migration of cancer cells by
modulation of f-actin organization;
associated with lymph node
involvement, tumor grade, TNM
stage, poor patient prognosis; linked
to EGFR pathway; down-regulated
by miR-96; overexpressed in
pancreatic cancer cell lines[62-66]

Esophageal Oncogene Expression upregulated; promotes
progression from Barrett’s esophagus
to esophageal cancer; associated with
poor patient prognosis[67-70]

Gastric Oncogene Expression up-regulated; stimulates
angiogenesis by promoting VEGF-A
secretion via AKT-dependent
regulation of HIF1; positive in 69% of
gastric cancers; associated with poor
patient prognosis[62,71-74]

KCNH5/EAG2/Kv10.2 Esophageal Tumor suppressor Expression down-regulated by
promoter hypermethylation[90]

KCNJ3/Kir3.1 Pancreatic Oncogene Expression up-regulated[62,82]

KCNN4/Kca3.1 Colorectal Oncogene Expression upregulated; promotes
EMT[5,14,83]
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Pancreatic Oncogene Expression up-regulated[65,84]

Hepatocellular Oncogene Expression up-regulated[62]

KCNS3/Kv9.3 Colorectal Oncogene Silencing causes inhibition of
proliferation of HCT15 CRC cells[85]

KCNK9/K2p9.1/Task3 Colorectal Oncogene Expression up-regulated[5,86,87]

KCNN3/Kca2.3/SK3 Colorectal Oncogene Expression and activity up-regulated;
regulated by SigmaR1; physically
coupled to Orai1[5,91]

KCNQ1/KvLqt1 Colorectal Tumor suppressor Identified as a top 10 common
insertion site (CIS) gene in a sleeping
beauty transposon mutagenesis
screen in mice; predicted loss of
function in the screen; knockout
mouse developed enhanced GI
cancer phenotype in ApcMin model;
expression down-regulated in human
colorectal cancer, associated with
poor prognosis in stage II, III, and IV
disease; found to be down-regulated
by β- catenin, which promotes EMT;
in turn, KCNQ1 physically interacts
with β-catenin, sequestering β-
catenin at the plasma
membrane[33-38,45]

Pancreatic Not determined Identified as a common insertion site
(CIS) gene in two sleeping beauty
transposon mutagenesis screens in
mice[39,40]

Gastric Tumor suppressor Identified as a CIS gene in a Sleeping
Beauty transposon mutagenesis
screen; predicted loss of function;
knockout mouse susceptible to
chronic gastritis, hyperplasia and
metaplasia; atrial natriuretic peptide
reduced proliferation of gastric
cancer cells by upregulating
KCNQ1[31,32,42,43]

Hepatocellular Tumor suppressor Expression down-regulated by
promoter hypermethylation;
associated with poor patient
prognosis; KCNQ1 regulated EMT;
KCNQ1 regulates β-catenin physical
interactions at the plasma
membrane[41,44]

KCNQ1OT1 Colorectal Oncogene Expression up-regulated; promotes
Wnt/β-catenin signaling and
migration, poor patient
prognosis[49,52]

Esophageal Oncogene Expression up-regulated; promotion
of metastasis; poor patient
prognosis[50]

Hepatocellular Oncogene Expression up-regulated; competes
with endogenous miR-504; promotes
cell proliferation, associated with
TNM stage and poor survival[51]

CRC: Colorectal cancer; GC: Gastric cancer; CIS: Common insertion site; EMT: Epithelial to mesenchymal transition; GI: Gastrointestinal.

liver disease[117,118]. CFTR dysfunction in the exocrine pancreas results in ion transport
defects,  β-islet  cell-related  disorders  such  as  dysregulation  of  insulin  release,
obstruction of the pancreatic duct, chronic inflammation and cancer initiation[99,119]. CF
patients also demonstrate defects in the male reproductive system, chronic sinusitis,
and kidney stones. Older CF patients have dysregulation of glucose metabolism and
sleep disorders caused by disruption of circadian rhythms[99].  CFTR is also highly
expressed in the intestinal epithelium. Loss of CFTR in the intestine causes intestinal
obstruction in the ileum and proximal colon known as meconium ileus in infants and
distal intestinal obstruction in older patients. CF results in impaired absorption of
nutrients  due  to  pancreatic  enzyme  deficiency  and  possibly  defects  in  lipid
absorption[120].  CF patients are also prone to celiac disease,  an intestinal disorder
caused by gluten-mediated triggering of TH1 immune and antibody responses[102].
These and other clinical manifestations of CF demonstrate the profound importance
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of CFTR activity in many tissues.

CFTR is a tumor suppressor in CRC
The lifespan of individuals with CF has increased dramatically so that the average life
expectancy  of  a  person  born  with  CF  today  is  approximately  44  years[121].  As
individuals with CF live longer it has become apparent that they are at increased risk
for developing some but not all cancers. Initial evidence linking CF to cancer risk
came from a 20-year epidemiological study that compared incidence of cancers in
individuals in the United States Cystic Fibrosis registry to the predicted age adjusted
risk in the general population to determine standardized incidence ratios. This study
reported that the overall risk of cancer was not increased. However, the risk of all
types of GI cancers was increased and in particular the risk of CRC, the most common
GI cancer, was increased by 6-fold[122]. A recent meta-analysis of population-based
studies is consistent with this result[123]. In support of the clinical significance of this
finding,  endoscopic  screening studies  of  adult  CF patients  found that  polyps in
individuals with CF appeared earlier, and were larger and more aggressive than those
in  the  non-CF  population[124,125].  As  a  result  of  these  studies  the  guidelines  for
endoscopic screening of CF patients have been modified and CF has been declared a
hereditary colon cancer syndrome by the Cystic Fibrosis Foundation[126].

Mouse genetic studies
Mouse genetic studies demonstrated the functional significance of Cftr deficiency. SB
transposon-mediated genetic screens initially identified Cftr as a candidate cancer-
causing gene. Cftr was identified in the top 10% to 50% of candidate genes in three SB
screens to identify CRC driver genes in Apc wildtype[33], Apc-deficient[34], and TGF beta-
deficient[36] backgrounds[127]. Follow up studies evaluated mice carrying a targeted
intestinal specific deletion of Cftr (Cftr-/-) for intestinal tumorigenesis. In the tumor
sensitized ApcMin background Cftr-/- mice developed significantly more adenomas than
ApcMinCftr  wildtype  mice.  Further,  ApcMinCftr-/-  but  not  ApcMinCftr  wildtype  mice
developed invasive lesions. Most striking, Cftr-deficiency alone was sufficient to cause
adenomas in > 60% of mice after a one year interval[128].

CFTR deficiency in the general population
CFTR deficiency is linked to CRC in the general population as well. In a study of 90
Stage II CRC patients stratified by tumor CFTR expression, disease-free survival at 3
years in the 25% of patients with lowest CFTR expression was 30% lower than those
with higher expression[128]. In a second cohort, CFTR mRNA and protein expression
was lower in tumor vs  normal tissue and CFTR mRNA expression was lower in
metastatic vs  non-metastatic tumors. In this study, CFTR-depleted CRC cell  lines
showed enhanced oncogenic characteristics including increased colony formation,
migration and invasion[129]. RAS, PKC and IFNα have been reported to be involved in
the  down-regulation  of  CFTR in  the  colon[119].  It  is  also  possible  that  low CFTR
expression in sporadic tumors is caused by epigenetic silencing of the CFTR promoter
as has been reported in other cancers such as lung and bladder[130-133].

CFTR and the stem cell compartment
The single cell layer of the intestinal epithelium is replaced approximately every 5
days. Stem cells at the base of the crypt drive this renewal[114]. These stem cells and
progenitor  cells  that  acquire stem-like characteristics  are thought to be the CRC
initiating cells[134]. In the colon, CFTR expression is highest at the base of the crypt[112]

and  expression  has  been  reported  in  the  stem cell  itself[93].  CFTR has  also  been
reported to  be involved in intestinal  lineage differentiation with its  knockdown
causing proliferation, migration and expression of EMT genes[135]. Thus, CFTR is in a
position to  influence the renewal  process  of  the intestinal  epithelium and CFTR
deficiency may directly  influence cancer  initiating cells.  Intestinal  crypts  can be
cultured in vitro as 3D organoid cultures. Organoid cultures recapitulate the intestinal
luminal epithelial structure as well as the renewal and differentiation process[136].
CFTR is expressed in these cultures and maintains its ion channel function[137,138]. Thus,
organoid cultures have been developed as surrogates to test the effectiveness of CF
therapeutics as treatments for specific mutations[139-141]. In addition, organoid cultures
derived  from  oncogenic  or  pre-oncogenic  tissues  maintain  the  oncogenic
characteristics of these tissues[142,143]. Accordingly, organoid cultures have been used to
determine the oncogenic characteristics of CFTR deficiency. Than et al[128] determined
that Cftr-deficient colon organoids demonstrate increased clonogenicity. Analysis of
small intestinal organoids by Strubberg et al[93] demonstrated increased proliferation of
Cftr-deficient organoids and localization of Cftr to the LGR5 stem cell. These findings
support a role for Cftr deficiency in the environment of the cancer initiating cell or the
stem cell itself.
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Wnt/β-catenin signaling
The Wnt/β-catenin signaling pathway is dysregulated in more than 85% of human
CRC. Dysregulation contributes to initial adenoma formation and to maintenance of
invasive tumors[144].  In the intestine CFTR deficiency is primarily associated with
enhanced Wnt/β-catenin signaling. Than et al[128] identified nuclear localization of β-
catenin, indicative of activation, as well as increased expression of Wnt/β-catenin
target genes, in intestinal tumors deficient only for Cftr. Strubberg et al[93] identified
increased active β-catenin in Cftr KO crypts and organoids which correlated with
increased proliferation. Mechanistically, Cftr KO or transient inhibition of channel
activity by CFTR(inh)-172 resulted in increased intracellular pH in LGR5+ stem cells.
Increased pH in turn promoted association of Dvl2, a member of the Wnt/β-catenin
signaling pathway, with PM phospholipids, which positioned it to enhance Wnt/β-
catenin  signaling[93]  (Figure  1A).  In  contrast,  Chan and colleagues  reported that
intestinal Cftr deficiency in mice carrying the F508del mutation and knockdown of
CFTR  in  the  Caco-2  CRC  cell  line  results  in  diminished  β-catenin  signaling.
Mechanistically, loss of CFTR destabilizes β-catenin membrane localization allowing
it to be degraded leading to oncogenic phenotypes via activation of NF-κB[145] (Figure
1B). The differences between these two studies may reflect tissue specificity. This
study analyzed Wnt/β-catenin signaling in total intestinal tissue rather than the crypt
and so may reflect  a  different  role  for  CFTR outside the stem cell  compartment.
Further, the effect of CFTR deficiency on Wnt/β-catenin activity varied by tissue in
several other studies by this group[100]. In addition, Wnt/β-catenin signaling may also
play different roles at different stages of CRC. Although it is generally accepted that
dysregulated Wnt/β-catenin signaling is a driving force for initiation of CRC and
progression[144] there is evidence that low levels of expression of Wnt/β-catenin targets
are associated with poor prognosis in CRC[146]. Further, inhibition of Wnt/β-catenin
has been shown to be necessary for survival of latent metastatic cells[147].

Additional mechanisms of tumor suppression
Extensive  evidence  that  CFTR deficiency  plays  a  role  in  many types  of  cancers
suggests that tumor suppression by CFTR goes beyond regulation of Wnt/β-catenin
signaling. The mechanisms of tumor suppression by CFTR are not well understood.
However, the roles of CFTR in normal issue and the consequences of CF suggest
plausible mechanisms.

Intestinal barrier integrity
CFTR plays a pervasive role in intestinal homeostasis through its influence on several
inter-related processes: Epithelial barrier maintenance, microbiota composition and
immune homeostasis. Breakdown of these processes is responsible for some of the
clinical manifestations of CF and is also potentially oncogenic (Figure 2).

CFTR deficiency disrupts protective physical barriers
The intestinal lumen is home to trillions of bacteria. These bacteria provide essential
nutrients and signals needed for intestinal epithelial and immune cell homeostasis.
However, direct contact with the intestinal epithelium must be prevented. The colon
epithelium is protected from direct contact by protective mucus layers and by tight
junctions between the lateral surfaces of the single layer of epithelial cells lining the
lumen. The apical, luminal surface of the epithelium is protected by a dense mucus
layer impenetrable to bacteria that is generated by constitutive secretion of Muc2 from
luminal goblet cells. This dense layer is partially enzymatically digested to generate a
looser  outer  layer  inhabited  by  commensal  bacteria[148].  Muc2  is  secreted  in  a
condensed conformation that expands to form a fully functional mucus layer in the
presence of extracellular HCO3- and H2O. CFTR ion channel activity is required for
direct export of bicarbonate and also for indirect support of export of bicarbonate and
water  through  other  channels[149].  Loss  of  CFTR  ion  channel  activity  results  in
accumulation of dehydrated mucus in the distal small intestine and proximal colon,
which causes intestinal obstruction seen in CF patients in the form of meconium ileus
and distal intestinal obstruction[120]. In addition, severely dilated crypts are seen in the
CFTR-deficient intestine due to accumulation of mucus in goblet cells which may
reflect defects in secretion[150,151]. The CFTR-deficient mucus layer appears to allow
dysregulated  bacterial  contact.  Bacterial  colonies  are  reported  in  crypts  with
accumulated mucus[150]. Further, comparison of gene expression in the Cftr-deficient
mouse intestine to changes in Muc2-deficient intestine using gene set enrichment
analysis (GSEA) showed enrichment in inflammatory gene expression changes[128]

suggesting that Cftr deficiency, like Muc2 deficiency, allows illicit bacterial contact.
The basolateral epithelial surface and underlying lamina propria, including resident
immune cells,  are  protected from bacterial  contact  by  tight  junctions  and CFTR
participates  in  maintenance  of  these  junctions.  In  Cftr-deficient  mice  the  small
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Figure 1

Figure 1  Two models for the effect of CFTR deficiency on Wnt/β-catenin signaling. A: CFTR deficiency promotes Wnt/β-catenin signaling. CFTR deficiency
causes increased intracellular pH. Increased pH promotes association with Dishevelled (DVL) at the membrane and with the Wnt receptor Frizzled (FZD). DVL
association with FZD enhances Wnt/β-catenin signaling leading to increased nuclear localization of β-catenin. Nuclear β-catenin promotes transcription of genes
involved in proliferation, survival and stemness[93]; B: CFTR deficiency inhibits Wnt/β-catenin signaling. CFTR deficiency releases membrane associated β-catenin to
the cytosol where it is degraded thus decreasing Wnt/β-catenin activity. Loss of β-catenin releases NF-κB which translocates to the nucleus where it promotes
transcription of inflammatory targets[145]. FZD: Frizzled; DVL: Dishevelled; AJ: Adherens junctions.

intestine  displays  increased  intestinal  permeability  and  disruption  of  tight
junctions[152]. Several studies link CFTR interactions mediated by its C-terminal PDZ-
binding domain to integrity of tight junctions[152]. Studies in cultured airway epithelial
cells show that interaction between the CFTR-PDZ binding (CFTR PDZBD) domain
and  the  PDZ  domain  of  NHERF1  (SLC9A3R1)  maintains  actin  cytoskeletal
organization  and  tight  junctions[153].  CFTR  deficiency  may  also  maintain  tight
junctions  by  via  direct  interaction  with  ZO-1  an  essential  component  of  these
junctions[8].

CFTR deficiency causes dysbiosis
As described above,  CFTR deficiency as  seen in  CF patients  and animal  models
creates an altered luminal environment. This environment, as well as a high fat/high
calorie diet maintained to overcome nutritional deficits, and CF therapies such as
frequent antibiotic exposure, contributes to bacterial dysbiosis[154,155]. In early studies
dysbiosis  was  reported  as  small  intestinal  bacterial  overgrowth  in  a  CF  mouse
model[156]. Analysis of microbial 16S DNA in small intestine flushed luminal contents
by qRT-PCR demonstrated an estimated 40X increase in bacterial load with decreased
diversity[157].  In a second study using phylogenetic microarray analysis of flushed
small  intestinal  contents  there  was  a  marked  decrease  in  bacterial  community
richness, evenness and diversity, a decrease in the relative abundance of protective
species such as Acinetobacter Iwoffii and Lactobacilliales members, but an increase in
Mycobacteria  species  and  Bacteriodes  fragilis  associated  with  GI  infection  and
immunomodulation[156]. More recently, microbial population composition of CF vs
non-CF individuals has been determined using targeted and metagenomic analysis of
16s rRNA DNA from fecal DNA[94,95,155,158]. Further, CF patients have been reported to
be susceptible to Crohn’s Disease with specific CFTR mutations influencing microbial
dysbiosis  with  increased  intestinal  permeability[159].  In  each  of  these  studies  CF
microbiota demonstrated greatly reduced diversity and significant differences from
non-CF controls indicating that the altered luminal environment not only creates
increased bacterial access but also changes bacterial composition[95,103,156]. Importantly,
alterations to the intestinal microbiome are increasingly associated with CRC[103,160].

CFTR deficiency is associated with immune infiltration
Disruption of  the  mucus  layers  and of  tight  junctions  allows bacterial  access  to
immune cells  and immune infiltration of  the epithelial  layer.  Although immune
infiltration and subsequent inflammation can cause overt damage, this effect has only
been reported  in  one  study in  which  a  capsule  endoscopy study of  CF patients
revealed duodenal lesions[161]. More commonly, immune infiltration has been detected
under  CFTR-deficient  conditions  but  has  not  been  accompanied  by  obvious
morphological and histological damage[162]. In human studies CF patients exhibited
evidence of  immune infiltration in studies evaluating whole gut lavage[163],  fecal
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Figure 2

Figure 2  CFTR deficiency disrupts epithelial barrier integrity. CFTR deficiency disrupts the mucin barrier and
adherens junctions. This allows bacterial contact with the apical and basal surfaces of the epithelial layer. Contact
with the apical layer stimulates inflammatory signaling via toll-like receptors. Contact with the basal layer leads to
immune cell infiltration which results in additional inflammatory signaling. AJ: Adherens junctions; TLR: Toll-like
receptors.

calprotectin[158,161,164] and rectal nitric oxide[165]. Further, microarray analysis of the small
intestine  in  an  early  study by  Norkina  et  al[162]  identified  upregulation  of  genes
expressed  by  granulocytes  which  was  supported  by  microscopy  that  identified
increased mast cells and neutrophils throughout the length of the intestine. Similarly,
Chan  and  colleagues  reported  immunocytochemical  evidence  of  an  increased
presence of macrophage and neutrophils in the small intestine of F508del mice[145].

Potential oncogenic changes
Loss of physical barriers in the GI tract allows dysregulated access of bacteria and
infiltration of immune cells both of which contribute to inflammatory signaling[166-169].
These  contacts  have  the  potential  to  activate  pro-inflammatory  signaling  in  the
intestinal epithelium both directly by interaction between bacteria and epithelial toll-
like receptors[170] and indirectly via activation of lymphocyte cytokine signaling. For
example, Fiorotto et al[171] demonstrated that in primary biliary epithelial cells CFTR
binds Src inhibitors to position them for interaction with Src. Loss of CFTR leads to
mislocalization of these inhibitors and activation of Src. In the presence of bacterial
products this leads to NF-κB signaling which ultimately disrupts tight and adherens
junctions. Proinflammatory signaling by intestinal epithelial cells is associated with
dysregulated proliferation and expansion of  the stem cell  compartment through
reversion of progenitor cells to stem cells[172]. Loss of barrier integrity affects other
processes  as  well.  Loss  of  tight  junctions  facilitates  increased  migration  and
invasion[173]. Dysbiosis may result in appearance of bacterial species associated with
CRC. Phylogenetic  microarray analysis  of  Cftr-deficient  mice detected increased
representation of Bacteroides fragilis[156], a species directly linked to CRC by virtue of its
activation of Stat3 signaling through a Th17 immune response[174].

In vitro models of pro-inflammatory signaling
CFTR deficiency has been linked to NF-κB activation in in vitro models. Chan and
colleagues have carried out  a  series  of  studies  in  cell  lines  derived from several
cancers, that delineate a pathway in which CFTR deficiency leads to activation of NF-
κB, transcription of UPA, and enhanced migration and invasion[175-177]. Other groups
have shown increased basal levels of pro-inflammatory cytokines and other factors
and NF-κB pathway members in CFTR-deficient Caco-2, HT-29 and HEK293 cells and
increased response to inflammatory stimuli, including an increase in TNF-α, IL-6, IL-
1β-induced secretion of IL-8, COX-2 and PGE2, plus increased activities of ERK1/2,
MAPK, IκBα and NF-κB[92,96,178]. Santa-Coloma and colleagues report activation of NF-
κB as a result of autocrine signaling by IL-1β[179]. In addition, the Hedgehog pathway
has recently been reported to be inhibited under CFTR-deficient conditions which is
predicted to activate inflammatory signaling[180].

Stress responses
CFTR deficiency has been reported to both increase oxidative stress via  impaired
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mitochondrial activity[96,97] and to reduce stress by cellular retention of the antioxidant
GSH[181]. In Caco-2/15 cells CFTR knockdown caused an increase in lipid peroxidation
levels accompanied by a decrease in oxidant defenses such as glutathione peroxidase
and catalase[182]. In addition, loss of CFTR has been reported to disable autophagy via
activation  of  Transglutaminase-2  whose  cross-linking  activity  causes  essential
autophagy proteins to be sequestered in aggresomes[183].  Finally,  HIF-1-mediated
repression of CFTR in intestinal epithelium resulted in a reduction in CFTR mRNA,
protein  and activity  in  hypoxic  epithelium[184].  The  impact  of  these  activities  on
oncogenesis is not yet known.

Relationship to CRC
CFTR deficiency results in dysregulation of many processes that may be oncogenic.
However, the relative contributions of these processes to the development of CRC in
vivo  are  not  yet  clear.  In  the  future  it  will  be  important  to  study  CFTR  in  the
environment in which it most likely contributes to development of CRC, the intestinal
stem cell compartment. In the colon, CFTR is most highly expressed in the base of the
crypt which comprises the stem cell compartment and the likely site of origin of CRC.
Because  the  crypt  is  the  environment  for  the  intestinal  stem  cell  it  has  unique
protective  mechanisms.  The  crypt  maintains  a  unique  microbiota  with  reduced
number and diversity compared to the lumen[185]. Limited contact between bacterial
products and crypt epithelial cells contributes to this protected environment. For
example,  goblet  cells  at  the neck of  the crypt orchestrate the release of  mucin in
response to contact with bacterial products[186]. The crypt also has unique mechanisms
to protect from cellular stress. In the stem cell, interaction between the cytosolic innate
immune sensor NOD2 and the bacterial peptidoglycan motif MMP is necessary for
stem cell survival in the face of oxidative stress[187]. Finally, cells in this compartment
are uniquely susceptible to the effects of inflammatory signaling. In a mouse genetic
study NF-κB was shown to synergize with Wnt/β-catenin in intestinal crypt cells to
promote  conversion  of  progenitor  cells  to  stem-like  cells  with  tumor  initiating
capacity[172].  These considerations highlight the importance of  studying potential
oncogenic phenotypes of CFTR deficiency in the crypt and crypt-derived organoid
models.

CFTR and other cancers
Given the widespread distribution of CFTR and its impact on cellular homeostasis it is
not  surprising that  dysregulation of  CFTR is  implicated in  many cancers.  CFTR
overexpression has been correlated with cancer in individual studies, in particular,
gastric and ovarian cancers[101,188-192]. However, in the vast majority of studies CFTR
deficiency is associated with cancer occurrence, and in most of these studies, cancers
with CFTR mutations or down-regulation of expression in tumors are more likely to
exhibit rapid expansion, EMT, decreased apoptosis, increased metabolic potential,
and increased patient morbidity and mortality. Decreased CFTR expression and/or
inactivating  mutations  are  associated  with  non-small  cell  lung  cancer[130,175,193],
glioblastoma[194], bladder[131-133], EC[195,196], PC[197,198], nasopharyngeal[199], prostate[176], and
breast[177]  cancers.  In most  of  these cancers CFTR deficiency was associated with
increased tumor stage and poor survival. Germline CFTR mutations, as seen in CF,
have been linked to increased risk of PC among younger patients[197,198].  Germline
mutations may be an important risk factor in the general population as an estimated
3% of the United States population are heterozygote carriers  for deleterious CF-
causing  CFTR  mutations [200]  and  therefore  potentially  at  risk  due  to  loss  of
heterozygosity or haploinsufficiency. However, in most studies CFTR deficiency was
associated with differentially decreased expression but not specifically with germline
defects. Although germline mutations were not examined in these cases it is unlikely
that decreased expression was caused primarily by CF-causing germline mutations
because F508del, which makes up approximately 70% of CF alleles, causes a 90%
decrease in protein levels but only a modest decrease in mRNA. Known causes of
decreased CFTR expression include hypermethylation as seen in lung and bladder
cancer studies[130-133] and somatic mutations seen in a NSCLC study[130]. In addition,
cigarette smoke (CS) has recently been shown to down-regulate CFTR expression and
CFTR down-regulation has been linked to the etiology of COPD[201]. However, a recent
study also linked CS-mediated down-regulation of CFTR to exacerbation of oncogenic
phenotypes in the A549 lung cancer cell line[202].

CFTR therapies and translational and clinical cancer implications
In the era of precision medicine new CF modulator therapies targeted to specific
CFTR mutations have entered the clinic. These include potentiator drugs that increase
anion flow through CFTR channels already present on the PM and corrector drugs
that  promote  correct  folding  of  mutant  proteins.  Three  modulators,  ivacaftor,
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tezacaftor, and lumacaftor, have been approved for treatment of CF[203]. Ivacaftor is a
potentiator approved for treatment of > 25 CF-causing mutations including gating,
residual function and splice mutations.  Tezacaftor and lumacaftor are correctors
designed  to  improve  the  function  of  the  F508delta  mutation  which  makes  up
approximately 70% of CF alleles. As discussed by Bodewes et al[204] these drugs are
finally targeting CF-related GI diseases, with potential use in cancer therapy. Some
examples include treatment of pancreatitis with Ivacaftor[204], drug treatment of CF
patients that improved proximal small intestine pH as a regulator of bicarbonate
secretion, improvement in cell motility and clinical outcomes in patients with CFTR
G551D mutations[104], improvement in bicarbonate permeability following Lumacaftor-
rescued  F508del  mutations[205],  improvement  in  gut  microbiota  and  intestinal
inflammation following treatment with Ivacaftor, including an increase in Akkermansia
and a decrease in Enterobacteriaceae, and a significant reduction in inflammation in
patients  treated  with  Ivacaftor[206].  Additional  modulators  and  combinations  of
modulators are under development such as the combination of Ivacaftor with 5-Nitro-
2-(3-Phenylpropylamino) Benzoate, that is reported to act synergistically in activation
of G551D mutant CFTR[207]. These mutation-specific drugs are potentially applicable to
the 3% of Caucasians who are CF carriers, having one CF-causing CFTR mutation.
These individuals are potentially at risk for developing CRC due to haploinsufficiency
or loss of heterozygosity. In addition to these Food and Drug Administration (FDA)-
approved therapies, another category of modulator known as amplifiers, represented
by PTI-428, is in clinical trials. This drug is designed to enhance translation of CFTR
mRNA to increase protein production and facilitate the activity of corrector drugs[99].
Thus, this drug has the potential to improve CFTR activity in sporadic CFTR-low
CRC. In addition, testing strategies used for screening and diagnosis of CF may be
applicable to early detection and even prevention of CRC. Currently genetic testing
for CF-causing mutations is recommended for all pregnant couples. If carrier status
proves to be a risk factor for CRC, then this genetic testing may be adaptable for early
detection of CRC as well. A significant technical advance to test new CF therapies has
been the development of patient-derived colorectal organoids. An example is the
work of Dekkers et al[208] who have demonstrated proof of this idea in rectal organoids
derived  from  CF  patients  to  test  a  range  of  CF  drugs,  including  Ivacaftor  and
Lumacaftor. While these new targeted CF therapies have yet to enter the cancer clinic,
they may soon do so, along with the repurposing of other ion channel activators and
blockers as more becomes known about the precise contribution of ion channels to
cancer development.

Ca2+ activated Cl- channels
Ca2+ activated Cl- channels (CLCAs) are a family of secreted self-cleaving proteins that
activate Ca2+-dependent Cl- channels. CLCAs are involved in Cl- conductance across
epithelial cells and therefore influence epithelial fluid secretion, cell-cell adhesion,
apoptosis, cell cycle control, tumorigenesis and metastasis, mucus production and cell
signaling[209,210].  There  are  four  CLCAs (1-4)  in  humans  and  two of  these  family
members  (CLCA1,2)  are  implicated  in  GI  cancers,  almost  invariably  as  tumor
suppressors whose down-regulation is associated with cancer progression and poor
patient prognosis. CLCA1 is down-regulated in CRC and this is associated with poor
patient  prognosis [4 ,211 ,212].  CLCA1  has  also  been  reported  to  suppress  CRC
aggressiveness via inhibition of the Wnt/β-catenin signaling pathway[213]. CLCA1 is
also reported to be a prognostic biomarker for PC, with lower CLCA1 expression
correlated with shorter disease-free survival[214]. CLCA2 is also down-regulated in
CRC[4,212].

Cl- intracellular channels
Cl-  intracellular  channels  (CLICs)  are  novel,  auto-inserting,  self-assembling
intracellular anion channels involved in a wide variety of fundamental cellular events
including regulated secretion, cell adhesion, cell cycle and apoptosis. However, the
actions of CLICs remain to be fully explained. They are a class of intracellular anion
channels that do not resemble classical ion channel proteins. CLICs can exist as both
soluble globular proteins and integral membrane proteins with ion channel function.
Human  CLIC1  adopts  at  least  two  stable  soluble  structures,  with  redox  status
controlling the transition between them. CLIC proteins  are  characterized by the
presence of a 240 residue CLIC module whose structure belongs to the glutathione S-
transferase fold superfamily[215].  Three CLICs appear to be functional  in humans
(CLIC1,3,4) with two CLIC proteins (CLIC1 and CLIC4) that appear to be essential
molecular  components  of  anion channels,  with  CLIC1 capable  of  forming anion
channels in planar lipid bilayers in the absence of other cellular proteins. However,
these  putative  ion channel  proteins  are  controversial  because  they exist  in  both
soluble and membrane forms, with at least one transmembrane domain[209,215]. All three
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CLICs are involved in GI cancers, with all implicated as oncogenes. CLIC1 is over-
expressed in CRC[216-219]; in PC[65,217], where it was reported to be upregulated in 69% of
tumors and associated with poor patient prognosis; and in GC[65,218,220-223], where it was
found  upregulated  in  68%  of  tumors,  correlated  with  lymph  node  metastasis,
lymphatic  invasion,  perineural  invasion and poor patient  prognosis.  It  was also
reported  to  promote  GC progression  by  regulating  ROS-mediated  MAPK/AKT
signaling. CLIC1 was also reported to be upregulated in HCC[65,224] and gall bladder
cancer[225,226]. CLIC3 is upregulated in PC where it was reported to promote integrin
recycling from late endosomes to drive PC progression[65,227]. CLIC3 is also a secreted
protein that is reported to drive cancer progression through its glutathione-dependent
oxireductase  activity.  In  particular  CLIC3  was  identified  as  part  of  the  cancer
associated-fibroblast  secretome  where  it  promotes  the  invasive  behavior  of
endothelial cells to promote angiogenesis and invasion. CLIC3 is also secreted by
cancer  cells[228],  and CLIC3 is  described as  a  pH sensor,  important  as  changes in
cellular pH influence cell proliferation and the balance between cell survival and cell
death[229]. CLIC4 is upregulated in CRC where it was found to be a direct response
gene for  C-MYC and TP53,  with  its  overexpression associated with  poor  5-year
patient survival[218,230]. CLIC4 is also upregulated in PC with its expression associated
with tumor grade, invasion and poor patient survival[231]. CLIC4 was also found to be
expressed in mitochondria where it regulates pH and cell volume.

ANO1
ANO1 is also referred to as Anoctamin-1, DOG1 and TMEM16A. ANO1 is a Ca2+-
activated Cl- channel that mediates receptor-activated Cl- currents that are involved in
a range of physiological processes. ANO1 is activated by intracellular Ca2+. ANO1 has
8 putative transmembrane domains and demonstrates  no similarity  to  other  ion
channels. It is expressed in a variety of secretory epithelia, including the gut. ANO1
activity is implicated in regulating CFTR Cl- channel activity. In all of the GI cancers
studied, ANO1 expression and activity has been reported to upregulated, thus ANO1
can  be  described  as  an  oncogene  in  the  GI  tract.  In  CRC,  ANO1  expression  is
upregulated, associated with EMT and poor patient prognosis[232-236]. In PC, ANO1
expression is important for cell migration[234,237]. In EC, ANO1 is a biomarker of EC
progression[234,238]. In GC, its expression is upregulated[234,239], and in GI stromal tumors,
ANO1 expression is used as a diagnostic biomarker, and it is associated with negative
regulation of IGFBP5[240-242]. See Table 2 for a full listing of chloride ion channels in GI
cancers.

CALCIUM CHANNELS
Ca+ is a ubiquitous second messenger, serving as a signaling molecule for a variety of
cellular processes such as control of the cell  cycle,  apoptosis,  and migration. Ca+

concentrations are tightly regulated within the cell,  with basal cytoplasmic levels
being many orders of magnitude less than in the extracellular space. This control is
essential for cellular homeostasis[253]. In addition to extracellular Ca2+, the endoplasmic
reticulum  (ER)  and  mitochondria  are  also  significant  stores  of  Ca2+.  Selective
distribution and activation of Ca2+ channels at any of these sources allows for Ca2+

micro-domains and adds another level of specificity to Ca2+ signaling[6]. Because it is
involved  in  such  a  broad  array  of  processes,  and  signaling  molecules  are  often
sensitive to very minute changes in Ca2+, it is easy to see how perturbations in Ca2+

handling could lead to significant physiological outcomes.
Ca2+  signaling  is  typically  initiated  through  the  ligand  activation  of  various

receptors that activate phospholipase C[254]. This leads to the production of inositol
triphosphate, which diffuses to the ER, where it binds to and opens its receptor and
Ca2+ channel. Upon its release into the intracellular space, Ca2+ binds to calmodulin
and a variety of other Ca2+-activated proteins to elicit a wide variety of responses.
Over time, these intracellular stores would be depleted if not for being replenished by
extracellular Ca2+. The release and depletion of ER Ca2+ triggers the process of store-
operated calcium entry (SOCE), in which PM Ca2+ channels are opened in order to
allow entry of extracellular Ca2+[254]. One of the proteins responsible for sensing the
depletion  of  ER  stores,  and  initiating  SOCE,  is  stromal  interaction  protein  1
(STIM1)[254]. In CRC, STIM1 over-expression has been associated with increased tumor
size,  depth  of  invasion,  lymph  node  metastasis,  and  increased  serum  levels  of
carcinoembryonic antigen[15,255,256].  When injected into immunocompromised mice,
CRC cells expressing a higher level of STIM1 had a much higher incidence of lung
and liver metastasis than those expressing lower levels[257].

The  PM Ca2+  channels  opened by  STIM1 activation  include  ORAI1  as  well  as
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Table 2  Chloride channels

Gene name (s) Cancer Role Functional activity

CLCA1/Chloride channel accessory
1

Colorectal Tumor suppressor Expression down-regulated; down
regulated in primary tumors and
CRC cells; acts via inhibition of
Wnt/β-catenin signaling; there is one
report that high expression
associated with non-response to
chemo radiation therapy in rectal
cancer[4,211-213]

Pancreatic Tumor suppressor Expression down-regulated; low
expression associated with poor
patient prognosis[214]

CLCA2/Chloride channel accessory
2

Colorectal Tumor suppressor Expression down-regulated[4,212]

CLIC1/Chloride intracellular
channel 1

Colorectal Oncogene Expression up-regulated;
overexpressed by MS analysis of
human CRCs; expressed on nuclear
and plasma membranes[216-219]

Pancreatic Oncogene Expression up-regulated; over
expression associated with poor
patient prognosis, tumor grade and
size; overexpression in 69% of
tumors; knockdown of PC cells
reduced cell proliferation and
anchorage-independent growth on
soft agar, and cell migration[65,217-219]

Gastric Oncogene Expression up-regulated;
overexpression associated with poor
patient prognosis; upregulated in
68% of gastric cancer, correlates with
lymph node metastasis, lymphatic
invasion, perineural invasion and
pathological staging; induced
proliferation, apoptosis, invasion and
migration of GC cells in culture;
promotes progression by regulating
MAPK/AKT pathway; regulates
migration and invasion via ROS-
mediated P38 MAPK
pathway[65,220-223]

Hepatocellular Oncogene Expression up-regulated[65,224]

Gall bladder Oncogene Expression up-regulated; knockdown
in GBC cells reduced proliferation,
migration and invasion of cells;
associated with metastasis, based on
proteomic analysis[284-286]

CLIC3/Chloride intracellular
channel 3

Pancreatic Oncogene Expression up-regulated; CLIC3 and
Rab25 collaborate to promote integrin
recycling from late
endosomes/lysosomes to drive PaC
progression[65,227]

CLIC4/Chloride intracellular 4 Colorectal Oncogene Expression up-regulated; associated
with poor 5-yr patient survival;
CLIC4 regulated by TP53 and TNF-
alpha and is a direct response gene
for C-MYC and TP53[218,230]

Pancreatic Oncogene Expression up-regulated; associated
with tumor grade, lymph node
metastasis, tumor invasion and poor
patient survival; expressed in
mitochondria and regulates pH and
cell volume[231]
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CFTR/Cystic fibrosis
transmembrane conductance
regulator

Colorectal Tumor suppressor Expression down-regulated; CF
patients at significant risk of early
aggressive colorectal tumors based
on colonoscopy screening and other
clinical findings; CFTR down-
regulated in sporadic CRC,
associated with worse prognosis;
CFTR was a CIS gene in four sleeping
beauty transposon mutagenesis
screens in mice, both CRC and GC; >
60% conditional CFTR KO mice
develop intestinal tumors and
crossing to ApcMin model causes an
enhanced tumor phenotype and the
development of adenocarcinomas;
enhanced organoid outgrowth; CFTR
deficiency causes an invasive
phenotype in CRC cells; loss of CFTR
causes upregulation of NF-κB; CFTR
modulates Wnt/β-catenin signaling
and stem cell proliferation; enhanced
risk of CRC in CF patients following
lung trans-
plants[33-34,36,93,103,119,123-126,128,243-247]

Pancreatic Tumor suppressor Expression down-regulated;
increased risk of PC in carriers of 4
specific CFTR
mutations[101,118,122,123,197,198,248-250]

Small intestine Tumor suppressor Expression down-regulated[122-123,243]

Gastric Oncogene Expression up-regulated in late
stage[101,191,192]

Esophageal Tumor suppressor Expression down-regulated; silencing
of CFTR caused upregulation of
NFKB; CFTR inhibitors caused
enhanced growth of EC cell mouse
xenografts; enhanced risk of EC in CF
patients following lung transplants;
CFTR heterozygous carriers at
enhanced risk of EC[195,196,243,251]

Hepatocellular Tumor suppressor Expression down-regulated by
promoter hypermethylation[89,252]

ANO1/anoctamin1/TMEM16A/DO
G1

Colorectal Oncogene Expression up-regulated; negatively
regulated by miR-144 miR-9, and
miR-132; associated with EMT and
poor patient prognosis[232-236]

Pancreatic Oncogene Expression up-regulated; important
for cell migration[234,237]

Esophageal Oncogene Expression up-regulated; biomarker
for EC progression[234,238]

Gastric Oncogene Expression up-regulated[234,239]

GI stromal (GIST) Oncogene Expression up-regulated; used as a
diagnostic biomarker; associated with
negative regulation of IGFBP5[240-242]

CRC: Colorectal cancer; PC: Pancreatic cancer; GC: Gastric cancer; GBC: Gall bladder cancer; EMT: Epithelial to mesenchymal transition; EC: Esophageal
cancer; GIST: Gastrointestinal stromal tumors; CF: Cystic fibrosis.

members of  the TRP superfamily of  cation channels.  In addition to replenishing
intracellular stores, these PM channels also contribute to Ca2+ signaling in response to
intracellular or extracellular cues. Different members of the TRP superfamily are
activated  by  physical  changes  such  as  mechanical  stress,  osmotic  pressure,  or
temperature; or chemical changes such as pH, growth factors/cytokines, pO2, or
ROS[258]. With all of these being central factors in a tumor microenvironment, how a
cell alters its response to these conditions could ultimately influence the death or
survival of a potentially cancerous cell.

Transient receptor potential family
Various members of the transient receptor potential (TRP) superfamily have been
implicated in GI cancers, in particular the TRPM (m = melastatin) and TRPC (c =
canonical)  sub-families.  The  cold-activated  TRPM8,  well  known  for  its  role  in
androgen-dependent prostate carcinoma, is also over-expressed and necessary for the
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proliferation and migration of PC cells[259-262]. TRPM7 also plays a role in PC, but by
increasing motility and thus the potential for metastasis, with its depletion causing a
decrease in invasiveness through the HSP90α/uPA/MMP-2 proteolytic  axis  and
targeted senescence, while results vary as to its role in proliferation[5,258-261,263-267]. TRPM7
has also been implicated as an oncogene in CRC[268] and GC[269-271]. Though a specific
mechanism has not been proposed, TRPM2 over-expression has also been shown to
reduce  PC  as  well  as  GC  patient  survival  by  increasing  invasiveness  and  pro-
liferation[272,273].  Expression of TRPC1 is reported to be upregulated in CRC[5,256,274],
where it promotes metastasis, EC[275], and GC[68]. TRPC6 expression is upregulated in
EC[276,277]  where  it  was  found  to  be  necessary  for  Ca2+  increase  to  promote  G2
progression, and association with tumor stage and poor patient prognosis, GC[5,278],
and HCC[4].

ORAI1
Through its contribution to hyperactivity of intracellular Ca2+ oscillations, ORAI1-high
cells  had  increased  activation  of  ERK,  AKT,  and  myocyte  enhancer  factor  2D,
indicating a possible mechanism explaining their increased proliferative and invasive
phenotype[275]. ORAI1 expression is also upregulated in CRC[5], where it is activated by
STIM1; PC[92,279], where it mediates SOCE and promotes apoptotic resistance in PC
cells;  GC[68],  where it  is  associated with promoting metastasis;  and in EC,  where
ORAI1 over-expression had a negative effect on patient prognosis.

Other oncogenic Ca2+ channels include SIGMAR1 in CRC[280-282], L-TYPE CACNA1C
in CRC[283], T-type CACNA1I in GC[284], where its upregulation is associated with poor
patient survival, and T-type CACNA1H in GC[284], where it is also associated with
poor patient survival.

Tumor suppressor Ca2+ channels
While  most  Ca2+  channels  appear  to  function  in  an  oncogenic  fashion  when
dysregulated there are several exceptions. TRPM6 has been reported to be down-
regulated in CRC (16 of 20 tumors studied) with high expression associated with
better patient survival[285]. STIM2 is reported to be down--regulated in CRC leading to
apoptosis resistance[15,256,274]. Expression of the T-type channel CACNA1G is reported
to be down-regulated by promoter hypermethylation in CRC[286], PAC[287], and GC[288],
with  high  expression  associated  with  improved  overall  survival.  CACNA2D3
expression is down-regulated by promoter hypermethylation, associated with worse
patient  prognosis[91,289]  and expression  of  CACNB2 is  also  reported  to  be  down-
regulated by promoter hypermethylation[90]. See Table 3 for a full listing of the role of
calcium ion channels in GI cancers.

SODIUM CHANNELS
Voltage-gated sodium channels (VGSCs) are classically associated with the initiation
and conduction of action potentials in electrically excitable cells such as neurons and
muscle cells. They are typically heteromeric complexes composed of one of 9 pore-
forming α-subunits and one of 5 regulatory β-subunits, though the α-subunit can
usually  be  a  functional  channel  by  itself.  These  channels  have  recently  been
discovered in non-excitable cell types such as glia, fibroblasts, immune cells, and
cancer cells, where their function is less understood[290].  In the developing central
nervous  system,  VGSCs  regulate  the  migration  and  pathfinding  of  neurite
outgrowth[291-293]. Similarly, in the vast majority of cancers where these channels have
been studied, their major influence has been to increase the motility and invasiveness
of cancer cells.

The VGSC NaV1.5 is abundantly expressed in human CRC cells SW620, SW480, and
HT29, as well as being highly expressed in tumor biopsies relative to adjacent normal
tissue[294]. Through pharmacological inhibition, siRNA knockdown, and controlling for
Ca2+  influence,  House  et  al[294]  demonstrated  that  conductance  through  NaV1.5
contributes significantly to CRC cell invasiveness and cancer progression. This group
later  demonstrated this  contribution mechanistically  through correlating NaV1.5
activity to RAP-1 mediated MAPK activation and changes in gene expression through
the  PKA/ERK/c-Jun/ELK-1/ETS-1  signaling  pathway [295].  While  this  group
demonstrated the metastatic contribution of NaV1.5, Peng et al[296] have recently shown
Nav1.5 expression to be predictive of clinical outcomes in non-metastatic CRC, with
the potential involvement of estrogen receptor (ER)-β, implicating multiple roles for
the same channel in different stages of cancer progression.

In GC, high expression of the VGSC Nav1.7 has similarly been shown to correlate
with higher recurrence and reduced survival[297]. The detailed mechanism proposed by
Xia et al[297] involves increased expression of the oncoprotein metastasis-associated in
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Table 3  Calcium channels

Gene name (s) Cancer Role Functional activity

TRPC1 Colorectal Oncogene Expression up-regulated; promotes
metastasis[5,256,274]

Esophageal Oncogene Expression up-regulated[275]

Gastric Oncogene Expression up-regulated[276]

Hepatocellular Oncogene Expression up-regulated[249]

TRPC6 Esophageal Oncogene Expression up-regulated; necessary
for Ca2+ increase to promote G2
progression; associated with tumor
stage and poor prognosis[276,277]

Gastric Oncogene Expression up-regulated[5,278]

Hepatocellular Oncogene Expression up-regulated[4]

TRPM2 Colorectal Oncogene Expression up-regulated[270]

Pancreatic Oncogene Expression up-regulated; enhanced
proliferation, invasion &
metastasis[272,273]

Gastric Oncogene Expression up-regulated; inhibition
reduced proliferation of gastric
cancer cells, increased autophagy and
sensitized cells to paxlitaxel and
doxorubicin[68,272,273]

TRPM6 Colorectal Tumor suppressor Expression down-regulated in 16/20
(80%) of primary tumors; high
expression associated with better
patient survival[285]

TRPM7 Colorectal Not determined Genetic polymorphism associated
with enhanced risk of adenomas,
linked to high Ca2+:Mg2+ ratio in
diet[268]

Pancreatic Oncogene Expression up-regulated; increased
tumor growth, invasiveness and
metastasis; targeted silencing
induced replicative
senescence[5,258-261,263-267]

Gastric Oncogene Highly expressed in gastric cancer
cell lines; required for GC survival
linked to Mg; suppression induces
cell death in culture[4,269-271]

TRPM8 Pancreatic Oncogene Expression up-regulated; regulates
proliferation and migration; silencing
in cell lines induces replicative
senescence [259-262]

L-type/a1c subunit/CACNA1C Colorectal Oncogene Expression up-regulated[283]

Sig1R/SIGMAR1 Colorectal Oncogene Expression up-regulated in CRC cell
lines and primary CRC tumors[280-282]

Stim1/Stromal interaction protein 1 Colorectal Oncogene Expression up-regulated; increased
CRC cell motility; STIM1
overexpression enhanced lung and
liver metastases in mouse xenograft
models; also associated with poor
prognosis in CRC patients[15,255,256]

Pancreatic Oncogene Expression up-regulated; promotes
invasion and metastasis; STIM1 and
Orai1 are the molecular components
of SOCE[14]

Stim2/Stromal interaction protein 2 Colorectal Tumor suppressor Expression down-regulated;
depletion causes apoptosis
resistance[15,256,274]

Orai1/CRAMC1 Colorectal Oncogene Expression up-regulated; activated
by STIM1[5]

Pancreatic Oncogene Expression up-regulated; mediate
SOCE and promote apoptotic
resistance in pancreatic cancer
cells[91,279]

Esophageal Oncogene Expression up-regulated; promotes
tumor-promoting Ca2+ oscillations in
EC[275]
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Gastric Oncogene Expression up-regulated; promotes
metastasis[68]

T-type CACNA1G/CaV3.1 Colorectal Tumor suppressor expression down-regulated by
promoter hypermethylation[284,286]

Pancreatic Tumor suppressor Expression down-regulated by
promoter hypermethylation[284,287]

Gastric Tumor suppressor Expression down-regulated by
promoter hypermethylation; high
expression associated with improved
overall survival[284,288]

T-type CACNA1I/CaV3.3 Gastric Oncogene High expression associated with poor
survival[284]

T-type CACNA1H/CaV3.2 Gastric Oncogene High expression associated with poor
survival[284]

CACNA2D3 Gastric Tumor suppressor Expression down-regulated by
promoter hypermethylation,
associated with worse
prognosis[91,289]

CACNB2 Esophageal Tumor suppressor Expression down-regulated by
promoter hypermethylation[90]

GC: Gastric cancer; CRC: Colorectal cancer; EC: Esophageal cancer; SOCE: Store-operated calcium entry; STIM1: Stromal interaction protein 1.

colon cancer-1 (MACC1) by Nav1.7 activation in a p38/NFkB-dependent manner.
Increased MACC1 expression subsequently leads to HGF/c-Met/c-Jun-dependent
activation of another oncoprotein, the Na+/H+ exchanger-1 (NHE1) which, through its
involvement  in  maintaining intracellular  and extracellular  pH,  has  been shown
elevated in a variety of cancers[298-301].  Reports involving other Nav  channels in GI
cancer  are  fewer  than  for  Nav1.5  and  Nav1.7.  Nav1.1  has  been  reported  to  be
upregulated in CRC[302], associated with a shorter time to cancer recurrence in stage II
and III disease. In contrast, there is one report of Nav1.6 being down-regulated in
CRC[303].

The  mechanisms through which VGSC α and β  subunits  contribute  to  cancer
progression typically differs according to their physiological functions: α subunits,
through the conduction of Na+ currents, and β subunits through the regulation of
adhesion interactions, though contributions of any β subunit have yet to be shown in
a GI cancer. The reason that only α subunits have been associated with GI cancers
may  owe  in  part  to  these  differences  in  function  relative  to  the  demands  of  GI
epithelial  physiology.  This  specificity  may  also  prove  advantageous  in
pharmacologically targeting these subsets of cancers, as drugs targeting α subunit
function have proven effective in reducing metastasis in murine xenograft breast
cancer models[304,305]. See Table 4 for a full listing of sodium ion channels in GI cancer.

ZINC TRANSPORTERS
Zinc is a key trace element in the human body. Approximately 10% of human genes
have the potential for zinc binding and a large number of human proteins (as many as
3000), including transcription factors, a variety of receptors, kinases, ligases and other
enzymes, require zinc for their catalytic activity or tertiary structure[306,307]. Zinc exists
in cells as Zn2+ ions that are maintained in this valence state under all biologically
relevant redox potentials and pH conditions in a cell. Zinc mediates a wide range of
cellular processes that are important for maintenance of tissue homeostasis[306,308,309].
Therefore,  alterations in cellular zinc levels,  such as zinc deficiency,  can disrupt
cellular function[306,308]. Furthermore, zinc is toxic to cells, thus zinc levels are tightly
regulated within cells. As zinc cannot freely pass across cellular membranes a variety
of Zn2+-permeable channels and transporters regulate Zn2+ entry and exit from cells[306].
Zinc transporters include both influx and efflux transporters[306,310,311]. Zinc also enters
cells via other ion channels, such as Zn2+ activation of several of the Zn2+-permeable
voltage-gated Ca2+ ion channels[309]. Examples include the store-operated Ca2+ entry
(SOCE)  channels  and the  TRP family  of  Ca2+  channels  (discussed  earlier  in  this
review).

Here,  the review will  focus on the functions of  the two major families  of  Zn2+

transporters: ZnT/SLC30A and ZIP/SLC39A. Members of both of these families of
proteins are reported to be dysregulated in human cancers, including GI cancers.
There are 14 ZIP proteins (ZIP1-ZIP14) and 10 ZnT proteins (ZnT1-ZnT10) in the
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Table 4  Sodium channels

Gene name (s) Cancer Role Functional activity

SCN1A/Nav1.1 Colorectal Oncogene Time to reoccurrence of stage II and
III CRC is shorter in patients carrying
Nav1.1 variants[302]

SCN5A/Nav1.5 Colorectal Oncogene Expression up-regulated; mediates
invasion via MAPK signaling; key
regulator of a transcriptional network
that includes Wnt/β-catenin
signaling; associated with poor
patient prognosis; linked to
upregulation of ER-β[5,294-296]

SCN8A/Nav1.6 Colorectal Tumor suppressor Expression down-regulated in CRC
tumor tissues compared with
control[303]

SCN9A/Nav1.7 Gastric Oncogene Expression up-regulated;
mechanistically related to
upregulation of MACC1 and
NHE1[297]

CRC: Colorectal cancer.

human body with differential tissue-specific expression[310,311].

ZIPs
These  proteins  are  encoded  by  the  solute  carrier  family  39A  genes  (SLC39A1-
SLC39A14). ZIPs mainly participate in the uptake of Zn into the cytoplasm from the
extracellular  space  or  from intracellular  compartments  such as  the  ER,  Golgi  or
mitochondria. In the GI tract ZIPs 1, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 14 are reported to be
normally  expressed in  the  intestines;  ZIPs  1,  3,  4,  5,  6,  7,  8,  9,  10,  and 14  in  the
pancreas; ZIPs 1, 2, 3, 5, 6, 7, 8, 9, and 14 in the liver; and ZIPs 1, 3, 4, 5, 6, 7, 8, 9 10,
and 11 in stomach[310,312,313].

ZnTs
These  proteins  are  encoded  by  the  solute  carrier  family  30A  genes  (SLC30A1-
SLC30A10).  ZnTs  participate  in  the  efflux  of  Zn  from  the  cytoplasm  into  the
extracellular space or to sequester Zn in intracellular compartments. In the GI tract,
ZnT1 expression is normally expressed ubiquitously; ZnTs 2, 3, 5, 6, 7 and 10 are
normally expressed in the intestines; ZnTs 2, 3, 5, 6, 7 and 8 in pancreas; and ZnT 5, 6,
7 and 10 in liver and ZnT 6, and 7 in stomach[310,312,313].

Zinc and zinc transporters in the GI tract
It  is  well  known  that  dysregulation  of  zinc  homeostasis  results  in  GI  dys-
function[311,312,314,315].  Examples include zinc deficiency resulting in diarrhea[311],  and
inflammatory  bowel  disease[316],  clinical  problems  that  are  ameliorated  by  zinc
supplementation[311,316,317]. This effect of zinc supplementation may be mediated by a
zinc sensing receptor molecule, GPR39, that is similarly shown to be protective in the
colon[318].  Zinc is  also reported to enhance tight  junctions and intestinal  mucosal
barrier  functions  in  general[319,320].  Maintenance  of  zinc  homeostasis  is  primarily
mediated by zinc transporters that act to absorb diet-derived zinc for distribution to
the peripheral tissues[321]. But excess zinc is toxic to both intestinal epithelial cells[308,315]

and also peripheral tissue cells, thus zinc transporters maintain cytosolic zinc levels
via  both influx and efflux of zinc ions[306].  The physiological role of zinc and zinc
transporters have been best studied in the intestinal tract, where zinc is required for
intestinal epithelial homeostasis, a process mediated by several zinc transporters. In
intestinal absorptive enterocytes, ZIP4 and ZnT1 regulate zinc absorption, while ZIP5
and ZnT5B regulate zinc excretion.  In intestinal Paneth cells,  ZnT2 and ZIP4 are
required for zinc accumulation in Paneth cell granules and are important for Paneth
cell maintenance overall. Of potential importance to intestinal cancer, ZIP4 and ZIP7
are expressed in the intestinal crypt stem cell compartment where they contribute to
Lgr5+  stem  cell  maintenance  and  help  maintain  transit  amplifying  cell
proliferation[312].

Zinc transporters and GI cancer
The role of zinc transporters in human cancer have been best studied in prostate and
breast cancer[308,322]. In the prostate gland ZIPs, especially ZIP1, are considered tumor
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suppressors[323]. In breast cancer, increased levels of zinc correspond to upregulation of
several  ZIPs  (and  a  few  ZnTs  as  well),  thus  zinc  transporters  as  a  group  are
considered as oncogenes in breast cancer[324]. In the GI tract, the majority of reports
show upregulation of both ZIPs and ZnTs in all major GI organ cancers (Table 5),
although for some cancers there is clearly conflicting evidence. The strongest evidence
for dysregulation of zinc transporters in GI tract cancers has been for PC, where zinc
transporter upregulation has been associated with enhanced cancer cell migration and
worse patient  prognosis.  This is  especially true for ZIP4.  In one study increased
mRNA expression of  ZIP4 was observed in  16  of  17  pancreatic  adenocarcinoma
samples[325], a finding that was supported in ZIP4-expressing xenografts in mice that
yielded  larger  tumors [326].  These  findings  were  confirmed  by  several  other
groups[327-329], such as Xu et al[329] who found that ZIP4 was upregulated in a set of 23
PCs and that ZIP4 expression could be used as a diagnostic and prognostic marker.
While the case of ZIP4 as an oncogene is very clear, for other zinc transporters the
data is sometimes contradictory, with some reports of upregulation and others of
down-regulation of non-ZIP4 zinc transporters[313,330]. Studies employing zinc-sensitive
histochemical  staining  have  reported  a  general  reduction  in  zinc  levels  in  PC
samples[331,332],  a  report  that  is  difficult  to  reconcile  with  upregulation  of  zinc
transporters, although it has also been noted that increases in zinc transporter mRNAs
do not always correspond to increased protein expression and activity as many zinc
transporters,  including ZIP4,  are  regulated by posttranslational  mechanisms[322].
Further, some studies have shown down-regulation of virtually all zinc transporters
in PC, with the exception of ZIP4[313]. Another case for zinc transporters acting as an
oncogene or tumor suppressor is in EC, where an inherited genetic variant in the 5’
untranslated region of ZIP6 results in constitutive expression of ZIP6, enhancing the
malignancy  of  ESCC cells[333].  In  ESCC cell  lines  upregulation  of  ZIP6  enhances
proliferation, migration, and invasion of cancer cells, while down-regulation of ZIP6
suppresses these effects[333]. Similarly, Jin et al[334] reported that knockdown of ZIP5
significantly inhibited human ESCC cell progression and Kumar et al[335]  reported
upregulation of  ZIP7 in ESCC. In contrast,  other studies have reported that zinc
deficiency  contributes  to  progression  of  EC.  Choi  et  al[336]  reported  that  zinc
supplementation inhibited proliferation of ESCC cell lines, a process mediated by
inhibition of Orai-mediated SOCE and subsequent Ca2+  oscillations. For other GI
cancers such as CRC and GC, there is less evidence but those reports point to an
oncogenic role for zinc transporters[337-339],  despite zinc’s known protective effects
against colonic inflammation.

Mechanisms in cancer cells
The mechanisms underlying the effects of dysregulation of zinc homeostasis and zinc
transporter expression in cancer are unclear,  and are almost certainly tissue and
cancer specific as seen in the evidence that zinc transporters appear to clearly act as
tumor suppressors in the prostate gland but as oncogenes in breast cancer. Less is
known in GI tract cancers, and that data is controversial (see conflicting PC and EC
studies above) but some potential mechanisms of action are listed below.

Zinc signaling within cells:  Changes in intracellular concentration can lead to it
acting as a second messenger for external signals, including activation of mitogen-
activated protein kinase (MAPK), extra-cellular signal-related kinase (ERK) and the c-
Jun  N-terminal  kinase  (JNK)  pathways  that  can  act  to  phosphorylate  proteins
involved in regulating cell proliferation, differentiation and apoptosis[306,322]. This has
been best studied in breast cancer where ZIP-mediated signaling pathways promote
cell proliferation and metastasis in luminal and tamoxifen-resistant breast cancer
cells[322]. Overall, zinc is recognized as an important signaling molecule in normal cell
functions as well as pathologies such as cancer. How zinc signaling is conveyed from
zinc transporters to downstream signaling pathways is still largely unclear.

Regulation of the intestinal stem cell compartment: In normal tissue several zinc
transporters are involved in maintenance of Lgr5+ stem cells and Paneth cells, which
themselves are important for stem cell  maintenance[312].  Further evidence for this
mechanism  is  the  role  of  ZIP7  in  resolving  ER  stress  in  the  intestinal  stem  cell
compartment[340]. Mice lacking ZIP7 in intestinal epithelium triggered ER stress that
led to loss of intestinal stem cells and proliferative progenitor cells.

Requirement for zinc in rapidly proliferating cells:  Zinc is required for protein
structure, catalytic activity, such as for zinc finger transcription factors.

Action of increased cellular zinc on other ion channels: TRP Ca2+ and K+ channels
are sensitive to zinc activation[308].
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Table 5  Zinc transporters

Gene name Cancer Role Functional activity

ZnT1/SLC30A1 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZnT2/SLC30A2 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZnT3/SLC30A3 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZnT4/SLC30A4 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZnT5/SLC30A5 Colorectal Oncogene Increased mRNA expression in
tumors[337]

ZnT6/SLC30A6 Colorectal Oncogene Increased mRNA expression in
tumors[337]

ZnT7/SLC30A7 Esophageal colorectal Oncogene oncogene Increased mRNA expression in
tumors[308,335] Increased mRNA
expression in tumors[337]

ZnT8/SLC30A8 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZnT9/SLC30A9 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZIP1/SLC39A1 Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor Down regulated mRNA expression in
tumors[313]

ZIP2/SLC39A2 Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor mRNA expression down-regulated in
tumors[313]

ZIP3/SLC39A3 Pancreatic Tumor suppressor Decreased expression in
adenocarcinoma[308,313,331,343]

Oncogene Medium to high mRNA expression in
multiple human PC cell lines[313]

ZIP4/SLC39A4 Hepatocellular Oncogene Increased mRNA and protein
expression, repressed apoptosis,
enhanced cell cycle and
migration[308,325,344-346]

Pancreatic Oncogene Increased expression in PDAC and
PC cell lines, link to CREB-miR-373
axis, promotes cancer xenograft
growth in nude mice[313,325-327]

Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

ZIP5/SLC39A5 Esophageal Oncogene Increased expression in ESCC,
knockdown in cell lines inhibited
migration and invasion[308,334]

Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZIP6/LIV-1/SLC39A6 Pancreatic Oncogene Increased expression in tumors and
cell lines[313,330]

Tumor suppressor Decreased mRNA expression in
tumors[313]

Hepatocellular Oncogene Increased mRNA and protein
expression[308,347]

Esophageal Oncogene Increased expression in ESCC[308,333]

Colorectal Oncogene Increased mRNA expression in
tumors[337]

Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

ZIP7/SLC39A7 Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

Oncogene Medium to high mRNA expression in
multiple human cell lines[313]
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Colorectal Oncogene Increased mRNA expression in
tumors and CRC cell lines,
knockdown inhibits cell growth and
induces apoptosis in cell lines[339]

Gastric Undetermined Increased mRNA expression, but
better patient prognosis[338]

ZIP8/SLC39A8 Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

Oncogene Medium to high mRNA expression in
multiple human cell lines[313]

ZIP9/SLC39A9 Colorectal Oncogene Increased mRNA expression in
tumors[337]

Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

Oncogene Medium to high mRNA expression in
multiple human cell lines[313]

ZIP10/SLC39A10 Colorectal Oncogene Increased mRNA expression in
tumors[337]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

Oncogene Medium to high mRNA expression in
multiple human cell lines[313]

ZIP11/SLC39A11 Colorectal Oncogene Increased mRNA expression in
tumors[337]

Gastric Undetermined Increased mRNA expression in
tumors, better patient prognosis[338]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

Oncogene Medium to high mRNA expression in
multiple human cell lines[313]

ZIP12/SLC39A12 Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

ZIP13/SLC39A13 Gastric Oncogene Increased mRNA expression in
tumors, worse patient prognosis[338]

Pancreatic Tumor suppressor Decreased mRNA expression in
tumors[313]

Oncogene Medium to high mRNA expression in
multiple human cell lines[313]

ZIP14/SLC39A14 Hepatocellular Tumor suppressor Decreased expression in hepatoma
tissues[308,348]

Gastric Undetermined Increased mRNA expression in
tumors, but better patient
prognosis[338]

Tumor suppressor Decreased mRNA expression in
tumors[313]

Pancreatic Oncogene Medium to high mRNA expression in
multiple human cell lines[313]

PDAC: Pancreatic ductal adenocarcinoma; ESCC: Esophageal squamous cell carcinoma; CRC: Colorectal cancer; PC: Pancreatic cancer.

Zinc deficiency: Zinc deficiency leading to disruption of intestinal epithelial barrier
function and enhanced colonic inflammation as zinc supplementation has been shown
to improve inflammatory bowel disease-related phenotypes in animal models.

Therapeutic opportunities
In contrast with other ion channels discussed in this review drugs targeting various
zinc transporters have been slow in development. Myers[341] and Bin et al[342] discuss
some  of  the  challenges  to  drug  development  represented  by  zinc  transporter
structure. One of these, ZnT8, which is especially associated with type-2 diabetes is
the subject of current drug development research. Potentially, knowledge gained from
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targeting ZnT8 could lead to targeting of other transporters such as ZIP4 in PC. One
therapeutic area that is immediately available is zinc supplementation, also discussed
by Myers and Bin et al[342]. For conditions, including cancers, that demonstrate zinc
deficiency, zinc supplementation may have immediate therapeutic value. This has
been demonstrated for inflammatory bowel disease and may have utility for zinc-
deficient cancers. See Table 5 for a full listing of zinc transporters and their role in GI
cancers.

CONCLUSION
Ion channels play an essential role in the GI tract, mediating a range of cellular and
tissue processes. They are also commonly dysregulated in major GI malignancies such
as CRC, HCC, PC, GC and EC. In these cancers, ion channels modulate many of the
well-known hallmarks of  cancer,  with increasing evidence that  ion channels  are
important for the regulation of tissue and cancer stem cells.  The influence of ion
channels  on  cancer  cell  processes  has  led  to  cancer  being  described  as  a
channelopathy. For a summary of mechanisms of selected ion channels in GI cancer
see Figure 3. Notably, ion channels represent potentially important clinical targets for
several reasons.

First,  ion channels and transporters are predominantly found in the PM of the
lumens of GI tract organs thus the majority of ion channels should be accessible to
therapeutic drugs.

Second, the structures of all of the major families of ion channels found in the GI
tract are known and their functions have been well-characterized, primarily due to
studies prompted by dysregulation of these ion channels outside the GI tract, e.g.,
CFTR in CF lung pathology,  thus they should be readily amenable to  new drug
design and preclinical and clinical testing.

Third, drugs are currently used to target several ion channels for disorders outside
the GI tract e.g., retigabine for KCNQ-deficiency and many other examples, thus these
drugs can be repurposed for clinical use in the GI tract. Current examples of drug
repurposing in the GI tract include CFTR potentiators, activators, correctors, and
amplifiers such as for patients with specific CFTR mutations. These include Ivacaftor
(potentiator for > 25 CF-causing mutations, including G551D), and Tezacaftor and
Lumacaftor  (correctors  for  patients  with F508delta  mutations which account  for
aaproximately 70% of CF patients). These drugs have been shown to be effective in
ameliorating lung pathology in CF patients and are now being used to treat several GI
pathologies in CF patients. For example, Ivacaftor is being used to treat pancreatitis,
and intestinal inflammation (including producing an improvement in gut microbiota)
and Lumacaftor has been shown to improve intestinal bicarbonate permeability. As
CF patients are highly susceptible to the development of CRC, these drugs may be
readily repurposed for prevention and treatment of CRC, likely in combination with
other standard therapy. Data generated by the repurposing efforts underway for non-
cancer therapy will provide support for the next step into the cancer clinic.

Fourth, further research into the mechanisms of action of various ion channels,
including the rapidly growing utility of bioinformatics analysis, can lead to greater
drug  repurposing  strategies.  For  example,  through  a  bioinformatics  approach,
tricyclic antidepressants were recently and rapidly repurposed by the FDA for use in
treatment of small cell lung carcinoma[349]. In other cases, research into mechanisms of
drug action reveals ion channels as novel mediators. For example, it has long been
known that daily aspirin is protective against CRC, but only recently has it  been
determined that the mechanism of this effect is likely through the remodeling of the
SOCE Ca2+  channel[256].  Further understanding of the canonical and non-canonical
roles that ion channels play in cancer development can lead to further repurposing of
drugs  to  treat  specific  GI  cancers[350].  This  is  especially  true  as  precision  cancer
medicine embraces combinatorial treatment modalities.

Fifth, ion channels and transporters can provide novel cancer biomarkers with
diagnostic  and  prognostic  implications,  e.g.,  KCNQ1 in  later  stage  CRC,  where
patients who maintain high expression of KCNQ1 show better disease free survival at
stage II and III CRC[38], and a 23-month survival advantage for stage IV CRC patients
following hepatic resection[37]; CFTR in CF-related CRC[122-126]; hERG1 in several GI
cancers[59-74].  and zinc transporters such as ZIP4 in PC[325-329].  For example in CRC,
hERG1  is  not  expressed  in  normal  colon  mucosa  but  is  upregulated  in
adenocarcinoma,  with  its  highest  expression in  CRC metastasis.  It  is  noted that
stereoselective hERG1 channel blockers for treatment of cardiac arrhythmias have
been used in the clinic for several decades.

Sixth, there is research data linking several ion channels to regulation of the stem
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Figure 3

Figure 3  Oncogenic mechanisms of selected ion channels. Because ion channels influence the basic biochemical environment of the cell as well as complex
interactions with other proteins, they have profound and pleiotropic effects on cell function. As a result, it is often difficult to determine specific mechanisms for
oncogenic phenotypes. However, progress has been made in defining mechanisms in some cases. This figure shows examples from each category of channels with
accompanying pathways linking dysregulation of channel function to tumorigenesis. For additional information and references please see text and Tables 1-5. GI:
Gastrointestinal; EMT: Epithelial to mesenchymal transition; TRP: Transient receptor potential; SOCE: Store-operated calcium entry; VGSC: Voltage-gated sodium
channels; STIM1: Stromal interaction protein 1.

cell compartment in GI tract organs. This is especially true for the intestinal tract. For
example, both CFTR[93,112] and KCNQ1 (R.Cormier and P.Scott, unpublished studies)
are expressed in the stem cell compartment of the colon, where they have been shown
to influence stem call capacity in mouse organoids models[37,128], as well as regulating
the expression of stem cell related genes, again in transgenic mouse models[37,128]. As
the intestinal stem cell is thought to be the precursor for the intestinal cancer stem cell,
better understanding of the underlying mechanisms of how ion channels such as
CFTR and KCNQ1 may regulate stem cell function will be very important. A key tool
in this research and a technical advance in therapeutic development has been the
creation of patient-derived tissue and cancer organoid surrogate models[136], e.g., that
have been used to test the function of CFTR[137,138],  as well as the efficacy of CFTR
modulator drugs in CF patient-derived rectal organoids[208].  The same strategy of
biobanking of patient-derived organoids is currently used to test patient-specific CRC
treatment protocols that can include ion channel modulator drugs.

Seventh, as patient genomic sequencing efforts increase, more has become known
about  specific  germline  genomic  variants  in  ion  channel  genes  and  potential
susceptibility to GI tract cancers. For example, CF patients who are homozygous for
CFTR mutations are at a significantly heightened risk for developing early onset CRC.
What is the risk for CRC for heterozygous carriers of CFTR mutations, a group that
represents more than 10 million individuals in the United States alone? CRC patients
whose cancers show reduced expression of CFTR demonstrate worse CRC disease
prognosis[128]. Current ongoing studies of CRC risk in CFTR carriers may help inform
on the lifetime risk of CRC in these patients, potentially leading to earlier screening
and chemoprevention.

A final comment here, as discussed by Humphries et al[351], is that while there exists
great promise in targeting ion channels in human diseases there remains significant
challenges,  especially  related  to  target  specificity  and off-target  toxicity,  before
development  of  ion  channel  targeting  can  lead  to  more  widespread  effective
personalized cancer treatment.
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