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Abstract Quinoa is considered as a valuable re-emergent

crop due to its nutritional composition. In this study, five

quinoa grains from different geographical origin (Real,

CHEN 252, Regalona, BO25 and UDc9) were discriminated

using a combination of FT-MIR and FT-NIR spectra as input

for principal component analysis (PCA), cluster analysis

(CA) and soft independent modelling class analogy

(SIMCA). The results obtained from PCA and CA show a

great power of discrimination, with an average silhouette

width value of 0.96. Moreover, SIMCA showed an error rate

and accuracy values of 0 and 1 respectively with only 4%

misclassified samples. A relationship between each principal

component and the most important variables for the dis-

criminationwere mainly due to vibrations of several oleofins

groups (C–H, C–H2, C–H3), alkene group (–CH=CH–),

hydroxyl group (O–H) and Amides I and II vibrational

modes.

Keywords Infrared spectroscopy � Near infrared
spectroscopy � Quinoa grains � Chemometric methods

Introduction

According to archaeological records, quinoa was domes-

ticated in the basin of the Titicaca Lake 5000 years ago

(Bazile and Baudron 2015). Its cultivation was extended

throughout the central and north-central Andean valleys

and southwards into the Araucanian coastal region and

adjacent Patagonia, diversifying into its five principal

ecotypes: Altiplano, Salares, Inter-Andean valleys, Coastal

and Yunga (Jellen et al. 2015).

Quinoa is considered a crop with a large variability

adapted to many agro-climatic habitats and edaphic con-

ditions, including stress conditions like drought, frost and

or soil with high salinity (Bhargava et al. 2007; Nasci-

mento et al. 2014). During years, quinoa was rejected as

being considered indigenous food. However, during the

second half of the twentieth century it was rediscovered

and revalorized due to its great nutritional benefits mainly

related to the aminoacidic profile (Bazile and Baudron

2015). Quinoa is a grain, but it is considered a pseudoce-

real, as amaranth, buckwheat and chia among others,

because it does not belong to Gramineae family. Quinoa

grain is rich in both macronutrients (proteins, polysaccha-

rides and fats) and some micronutrients (polyphenols,

vitamins and minerals) (Nascimento et al. 2014). However,

these nutrients may significantly differ in different cultivars

or genotypes (Abderrahim et al. 2015; Tang et al. 2015).

Despite its potential, quinoa is still an underutilized crop,

with few active breeding programs and breeding efforts are

needed to improve the crop for important agronomic traits

to expand production worldwide (Jarvis et al. 2017).

In recent years, consumers have shown greater interest in

the relationship between food intake and health, prioritizing

foods with nutritional benefits. Due to this fact, the focus has

been placed on foods with high nutritional value such as
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quinoa grains or their derivatives (Liutho et al. 2016). This

increase in demandmeant that the prices of quinoa grains and

flour increased in several countries, also increasing the risk

of possible adulterations, requiring rapid and efficient ana-

lytical techniques for their detection. Accordingly, many

efforts have been made to characterize and discriminate

quinoa grains or quinoa products by their geographical origin

(Ruiz et al. 2014). The use of quinoa seeds to produce food

ingredients requires a rapid and efficient analysis for their

characterization and/or origin classification according to

possible variations on their nutrient profile. Moreover, dur-

ing the production of food ingredients made of quinoa, there

are risks of contamination with other seeds or cereals. Thus,

innovative analytical methods are necessary for a better

understanding and characterization of quinoa grains, which

have also many interesting functional properties.

The techniques used to characterize different compo-

nents from different cultivars of cereal or pseudo-cereal

flours are Fourier Transform Infrared (FT-IR) spectroscopy

in the mid (450–4000 cm-1, FT-MIR) and near ranges

(4000–10,000 cm-1, FT-NIR). FT-NIR has been combined

with robust multivariate statistics for determination of diet-

ary constituents (moisture, protein, fat, ashes and carbohy-

drates) in cereal and pseudo-cereal grains from different

ecotypes and cultivars (Pojić et al. 2008; González Martı́n

et al. 2014; González-Muñoz et al. 2016; Encina-Zelada

et al. 2017). Moreover, joint FT-MIR and FT-NIR studies

have been used to determine antioxidant capacity of veg-

etables (Li et al. 2015). Spectroscopic results are enhanced in

a greater way when used in combination with multivariate

statistical methods also known as chemometric methods, in

which each measurement is associated with multiple vari-

ables (Van den Berg et al. 2013). Spectroscopic data consist

in many variables, which are the intensities associated to the

frequency or wavelength of each obtained spectrum. These

variables are highly correlated and could contain systematic

variations and chemometric methods are used to reduce the

negative impact of these (Gislum et al. 2004; Kim and Kays

2009). The aim of the present work was to explore the FT-

MIR and FT-NIR to discriminate among different quinoa

grains from diverse geographical areas using different

chemometric approaches, such as, pattern recognition tools.

To the best of our knowledge, quinoa grain discrimination

according to their geographical origin has been not studied

using FT-IR and chemometrics.

Materials and methods

Materials

Ten independent samples of five quinoa (Chenopodium

quinoa Willd.) grains from five different geographical

areas were analyzed: CHEN 252 from Maimará, Jujuy,

Argentina (Inter-Andean valley ecotype), BO25, UDc9 and

Regalona from three different Chilean localities (Coastal

ecotype) and Real from Postosi, Bolivia (Altiplane eco-

type) were grown in a chamber under controlled condi-

tions 16 h light/8 h dark cycles at 25 �C and grains were

collected. Quinoa grains were mortared previous to spec-

troscopic analysis and passed through a sieve with a mesh

of 420 lm.

Methods

Fourier transform mid infrared spectra (FT-MIR)

The FT-MIR spectra were recorded using a FT-IR spec-

trometer (Spectrum 400, Perkin Elmer Inc., Shelton CT,

USA) equipped with an attenuated total reflectance (ATR)

accessory (PIKE technologies, Inc. Madison, WI, USA).

Each sample was placed over the ATR crystal (one

reflectance, incident angle of 45�) and the spectrum was

recorded from 600 to 4000 cm-1 using a resolution of

4 cm-1 and an accumulation of 64 scans. All the spectra

were base-line corrected and normalized (Spectrum Soft-

ware ver. 6.3, Perkin Elmer, Inc.) before chemometric

analysis. Due to strong crystal absorbance, signals from

1800 to 2500 cm-1 were not considered for further

analysis.

Fourier transform near infrared spectra (FT-NIR)

The samples were scanned in the same FT-IR spectrometer

mentioned above. Each powdered sample was put into a

glass recipient until it covered the bottom, the recipient

with the sample was placed over the integrating sphere

accessory and scanned from 4000 to 10,000 cm-1 with a

resolution of 4 cm-1 until 64 scans were averaged. The

resultant spectra were base-line corrected and normalized

using Spectrum Software ver. 6.3 (Perkin Elmer, Inc.)

before application of chemometric methods.

Principal component analysis

Principal component analysis (PCA) is a statistical proce-

dure for determining similarities among the objects in a

data set (e.g. samples by wavelengths). To this end, the

relative locations of the samples on the most important

principal components (the new, latent variables in the new

space) in a two- or three-dimensional plot are compared

(Jolliffe 2002).

Another outcome from the PCA method is the loading

matrix, that includes information of the most relevant

wavenumbers (from FTIR) for grouping the samples by

their similarity. In the present work, PCA on the covariance
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matrix were performed using Infostat/p2011 software (Di

Rienzo et al. 2011) over FT-MIR and FT-NIR normalized

spectra using absorbance units. Pareto test on the scree plot

from PCA was used to select the relevant number of

components.

Cluster analysis (K-means method)

Using partitioning cluster analysis (CA), or k-means cluster

analysis, a set of objects (like PCA) is assigned to two or

more groups (i.e., clusters), specified previously by the

user, in such a way objects belonging to the same cluster

are more similar to each other than objects belonging to

different clusters (Johnson and Wichern 2002). As a result

of the CA a clusterization vector was obtained, which

indicates the assignment of each sample to a cluster.

Additionally, a goodness of fit value, the average silhouette

width (ASW) was obtained. ASW varies from - 1 to 1 and

must be greater than 0.75 for a good assignment of the

samples to the clusters (Kaufman and Rousseeuw 1987).

K-means cluster analysis was performed over FT-IR data

using the Infostat/p2011 software (Di Rienzo et al. 2011).

Soft independent modelling class analogy (SIMCA)

SIMCA is a learning method based on principal component

and models a PCA for each class (each class correspond to

a geographical origin of quinoa seeds). The resulting

components are used to set classification boundaries and

the assignment for each new observation can be done. The

so-called Coomans plot, showing the distances for each

sample and the boundaries is obtained and a sample could

be either included into a class or even not assigned to any

class. For this reason, SIMCA is considered a soft model

(Vanden Branden and Hubert 2005; Luna et al. 2016).

Moreover, a confusion matrix is calculated based on the

number of well and misclassified samples. Then, additional

performance parameters are obtained from the confusion

matrix, such as, sensitivity (SEN), specificity (SPEC),

precision (PREC) for each class and global performance

parameters like accuracy (ACC), error and non-error rates

(ER and NER). SEN represents the rate of correctly rec-

ognized samples to a class and is calculated as TP/(TP ?

FN), where TP is the number of positive cases correctly

classified and FN are the false negative assignments. SPEC

represents the percentage that rejects samples of all other

classes and is calculated as TN/(FP ? TN), where TN is

the number of negative cases correctly classified and FP are

the false positive assignations. PREC represents the ability

to avoid wrong predictions in that class and is defined as

TP/(TP ? FP). SEN, PREC and SPEC values vary

between 1 and 0, representing a perfect classification and

no class discrimination, respectively. ACC represents the

rate of false and positive samples correctly classified

among all positive and negative samples and is calculated

as (TP ? TN)/(TP ? TN ? FP ? FN). NER is the aver-

age value of the sensitivity for all the classes, and ER =

1 - NER. NER and ACC parameters take values from 0

to 1, indicating a perfect classification when the values are

1. ACC, NER and ER are considered global parameters

giving information of the overall classification for each

algorithm step (calibration or validation) (Ballabio et al.

2018).

In the present work, SIMCA was performed with the

Classification Toolbox (Ballabio and Consonni 2013)

under GNU Octave language. The cross-validation step

selected for SIMCA was venetian blinds using 10 groups.

Results and discussion

FT-MIR spectra

The shape of the spectra for the five quinoa grains studied

only revealed differences in the relative intensities of

absorption bands. Each band could be associated to dif-

ferent vibrational modes of the molecular moieties present

in the grain components. Figure 1 shows normalized FT-

MIR spectra, in absorbance units, for one representative

replicate of each quinoa grain samples. In the five spectra

the following absorption bands could be detected. A broad

absorption band from 3010 to 3750 cm-1, due to O–H

stretching mainly associated carbohydrates and moisture

(Kizil et al. 2002). Moreover, a band is observed from 2800

to 3000 cm-1 (with two overlapped peaks), typically

associated to C–H and C–H2 symmetric and asymmetric

stretching, and a band with a maximum of 1745 cm-1

(stretching of the ester carbonyl group) are mainly
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Fig. 1 FT-MIR normalized spectra of one replicate of the five types

of quinoa grains measured: Real (solid blue line), CHEN 252 (long

dash red line), Regalona (short dash black line), BO25 (dotted pink

line) and UDc9 (dash-dot green line) (color figure online)
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attributed to the lipidic components of the grains (Roa et al.

2014). The signals mainly associated to proteins bonds

(Amide I and II) are shown with maxima at 1640 cm-1 and

1540 cm-1 (Barth 2007; Guzman-Ortiz et al. 2014).

Additionally, a small broad band from 1200 to 1500 cm-1

is represented by CH2OH side chain related mode, C–O–H

bending, C–H2 twisting, C–H2 bending and C–O–O stretch.

Spectra also show a strong absorption band, from 900 to

1200 cm-1 due to C–O and C–C stretching (1163 cm-1),

C–O–H bending (1094 cm-1) and C–H bending

(1067 cm-1). Finally, below 900 cm-1, quite small bands

can be observed due to skeletal modes of the pyranose ring

(Kizil et al. 2002; Capron et al. 2007; Warren et al. 2016).

FT-NIR spectra

Figure 2 shows the normalized FT-NIR spectra, in absor-

bance units, for each type of quinoa grain studied. The

spectra obtained for the five different origins were similar,

with slight differences, showing bands with maxima at

8330 cm-1 (C–H second overtone of –CH2, –CH3, –

CH=CH–), 6875 cm-1 (O–H first overtone), 5705 cm-1

(C–H stretching first overtone), 5170 cm-1 (O–H stretch-

ing and deformation), 4745 cm-1 (C–H stretching and

deformation, O–H stretching and C–O deformation of

carbohydrates), 4325 cm-1 (C–H stretching and C–H

deformation of –CH2 and –CH3) (Li et al. 2015; Lohumi

et al. 2015 and references therein).

Application of principal component analysis

and cluster analysis to FT-IR spectra

Initially, in an exploratory analysis, FT-MIR and FT-NIR

spectra were provided separately as input data for PCA

showing a poor discrimination of the grains. However, the

use of both (FT-MIR and FT-NIR) as input variables

together, provided a good grouping pattern according

similarities, and promote the use of further PCA-based

methods, such as SIMCA. Figure 3 shows the three-di-

mensional score plot (3D-PCA-plot, PC1 vs. PC2 vs. PC3)

considering the first three components from PCA, each dot

of this figure is an independent sample of quinoa from five

different geographical areas measured in both FT-MIR and

FT-NIR. The recovered cumulative total variance associ-

ated to the three first principal components (PC1, PC2 and

PC3) was 93.0%. This indicate a good amount of sample’s

variability explained by PCA. The pattern observed exhibit

a clear grouping of the samples according similar charac-

teristics of the quinoa grains into five groups, correspond-

ing to the five geographical areas (Real, CHEN 252,

Regalona, BO25 and UDc9).

In addition, to validate the outcomes from PCA, a

cluster analysis was performed considering the original

variables (FT-MIR and FT-NIR spectra) and the first three

principal components as input. The results agree with those

observed in Fig. 3, obtaining a clear discrimination for five

groups (see cluster ID in Table SM2 in the supplementary

material section), with an ASW of 0.96 (see Figure SM10

in supplementary material section). The result obtained

using cluster analysis confirmed the grouping pattern

observed in PCA, which implies similarities of the quinoa

grains from the different geographical areas.

Table 1 shows the loadings for the first three compo-

nents from PCA, indicating which of the frequencies had

more influence on the discrimination of the quinoa grains.

The three principal components (PC1, PC2 and PC3) are
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Fig. 2 FT-NIR normalized spectra of one replicate of the five types

of quinoa grains measured: Real (solid blue line), CHEN 252 (long

dash red line), Regalona (short dash black line), BO25 (dotted pink

line) and UDc9 (dash-dot green line) (color figure online)
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highly influenced by both, FT-MIR and FT-NIR variables

(wavenumbers). In the case of PC1, the influence was

mainly due to vibrations of several oleofin groups (C–H,

C–H2, C–H3), alkene group (–CH=CH–) and hydroxyl

group (O–H). Moreover, PC2 is influenced by stretching of

the ester carbonyl groups, vibration s of oleofin groups (C–

H, C–H2 and C–H3) and hydroxyl (O–H) stretching and

deformation. Finally, the third principal component is

influenced again by vibrations of oleofin groups (C–H, C–

H2, C–H3), hydroxyl (O–H) stretching and deformation,

Amides I and II. The overtone bands associated with O–H

from FT-NIR spectra (6625–7255 cm-1 and

4970–5390 cm-1) were also found to exert a high impact

on the discrimination of wheat samples (Ziegler et al.

2016).

Application of soft independent modelling class

analogy (SIMCA) to FT-IR spectra

To confirm the outcomes observed using PCA and CA the

data set was used to model a chemometric method for

classification. SIMCA was run using 2 components for

each class previously optimized with cross-validation error

rate. The cumulative variance associated with those two

components were 95, 93, 99, 99, and 99% for the five

geographical origins respectively (Real, CHEN252, Rega-

lona, B025 and UDc9) indicating a great amount of the

data variance captured by SIMCA. Table SM1 (see

Supplementary material section) shows the confusion

matrix (also known as contingency table) obtained in the

validation step, in which, each row of the matrix represents

the real classes for the samples and each column represents

the assigned classes using SIMCA. Only two samples from

class CHEN252 were not assigned to any class. In this

study SEN, SPEC and PREC showed high values (1.00) for

all the classes. ER, NER and ACC values were 0, 1.00 and

1.00 respectively in agreement with the good parameters

obtained for each class. In this case only two samples out

of fifty were not assigned to any class, both belonging to

class CHEN 252 and the percentage of not-assigned sam-

ples was 4%. Figure 4 shows the Coomans plot obtained

for class Real versus class CHEN252, representing the

normalized distances for each sample into the scatter plot.

This plot is divided into four areas or squares by two

straight lines (threshold boundaries). The plot (Fig. 4)

shows a zone for the samples assigned to class Real (red

dots), another zone for the samples of class CHEN252

(blue dots), a large square with all the other samples and an

empty square in the case a sample was misclassified

between both classes. SIMCA showed no errors in the

assignment of the samples in the training step for class Real

versus class CHEN252 and for the all other classes (Fig-

ures SM1 to SM9 provided in Supplementary material

section). Finally, to confirm the good classification results,

receiver operating characteristic curves (ROC) for all the

classes in the training step were provided in the Fig. 5.

Table 1 Original variables (wavenumbers) from PCA with more impact on the first three principal components and the vibrational modes

associated with

Principal

component

Order of relevancea (#) Wavenumber (cm-1) Associated to

Band (from–

to)

Maximum

at

PC1 1 2870–2990 2920 C–H and C–H2 symmetric and asymmetric stretching

2 2800–2870 2855 C–H and C–H2 symmetric and asymmetric stretching

3 7915–8890 8330 C–H second overtone of –CH2, –CH3 and –CH=CH–

4 6625–7255 6875 O–H first overtone

5 4245–4495 4325 C–H stretching and C–H deformation of –CH2 and –CH3

PC2 1 1700–1770 1745 Stretching of the ester carbonyl groups

2 2870–2990 2920 Described above

3 2800–2870 2855 Described above

4 4245–4495 4325 Described above

5 4970–5390 5170 O–H stretching and deformation

PC3 1 4245–4495 4325 Described above

2 1490–1570 1540 C–N stretching, C–O stretching and C–C stretching (Amide II)

3 4970–5390 5170 Described above

4 1570–1705 1640 C=O stretching and N–H bending (Amide I)

5 5380–5990 5705 C–H stretching first overtone

aThe order of relevance of each principal component to each original variable (frequencies) was found after calculating the modulus of each

loading value for each component and sorting that values from the highest to the lowest
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ROC curves show two plots, the plot on the right, is a plot

of SEN and SPEC values varying the threshold limit

(boundary limit of the class), where the optimal threshold

is the value showing the highest SEN and SPEC values.

The area under the plot of the left (AUC) is close to 1 when

the model shows maximum classification ability and in this

work were 1.00 for classes Real, CHEN252, Regalona and

UDc9 and 0.98 for class B025. Recovered AUC were in

good agreement to the values of the parameters found using

the confusion matrix after running SIMCA algorithm

(SEN, SPEC, PREC, ER and ACC). These results were in a

good agreement with two others found in literature for
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other grains. FT-NIR in combination with SIMCA was

used by Ye et al. (2008) to classify with excellent result

different botanical cornstover fractions and by Miralbés

(2008) for discrimination of wheat cultivars.

Conclusion

The use of quinoa grains requires rapid and efficient ana-

lytical techniques for their characterization and classifica-

tion. The observations and procedures proposed in this

work demonstrate the potential capacity of the joint FT-

MIR and FT-NIR analysis using chemometric methods to

discriminate among five quinoa varieties. Principal com-

ponent analysis and cluster analysis were a good option as

a rapid discrimination tool using FT-MIR and FT-NIR

spectra as input data when compared to the results of each

FT-MIR and FT-NIR separate analysis. The differences

observed in PCA and confirmed by CA could be mainly

attributed to origin regions of the quinoa components.

Additionally, SIMCA showed an excellent performance

with a very low of not-assigned samples (only 4%). This

analysis provided an innovative, rapid and powerful tool

for investigating/discriminating the quinoa grains from

different origins. Such kind of tools are necessary for a

better characterization of this re-emerging food source

which has many attracting nutritional and functional

properties, defining adequately their potential applications

and avoiding the risk of adulterations.
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Berrı́os JJ, Mora-Escobedo M (2014) Physico-chemical, nutri-

tional and infrared spectroscopy evaluation of an optimized

soybean/corn flour extrudate. J Food Sci Technol 52:4066–4077

Jarvis DE, Ho YS, Lightfoot DJ, Schmöckel SM, Li B, Borm TJA,
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