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Abstract: Chloride (Cl−) has traditionally been considered a micronutrient largely excluded by plants
due to its ubiquity and abundance in nature, its antagonism with nitrate (NO3

−), and its toxicity
when accumulated at high concentrations. In recent years, there has been a paradigm shift in this
regard since Cl− has gone from being considered a harmful ion, accidentally absorbed through NO3

−

transporters, to being considered a beneficial macronutrient whose transport is finely regulated by
plants. As a beneficial macronutrient, Cl− determines increased fresh and dry biomass, greater leaf
expansion, increased elongation of leaf and root cells, improved water relations, higher mesophyll
diffusion to CO2, and better water- and nitrogen-use efficiency. While optimal growth of plants
requires the synchronic supply of both Cl− and NO3

− molecules, the NO3
−/Cl− plant selectivity varies

between species and varieties, and in the same plant it can be modified by environmental cues such as
water deficit or salinity. Recently, new genes encoding transporters mediating Cl− influx (ZmNPF6.4
and ZmNPF6.6), Cl− efflux (AtSLAH3 and AtSLAH1), and Cl− compartmentalization (AtDTX33,
AtDTX35, AtALMT4, and GsCLC2) have been identified and characterized. These transporters have
proven to be highly relevant for nutrition, long-distance transport and compartmentalization of Cl−,
as well as for cell turgor regulation and stress tolerance in plants.

Keywords: chloride homeostasis; beneficial macronutrient; ion transport; anion channels; plant
nutrition; turgor; nitrate; water balance; WUE; NUE; stress

1. Introduction

The chloride (Cl−) anion is the dominant form of the halogen element chlorine in soils. Especially
in the agronomic context, Cl− has traditionally been considered a toxic anion rather than a plant
nutrient. This is a consequence of two main reasons: Toxicity resulting from excessive Cl− accumulation
in sensitive organs under salt stress conditions, and the widespread belief that Cl− and nitrate (NO3

−)
are antagonistic molecules. As a result, root Cl− uptake and accumulation occurs to the detriment
of nitrate (NO3

−) nutrition, an important source of nitrogen (N) for higher plants. However, unlike
NO3

−, Cl− is one of the 16 essential elements for plant growth. Since Cl− is supposedly needed only in
small quantities for healthy growth of plants (about 50–100 µM in the nutrient media), it is classified as
a micronutrient [1]. Consequently, the vast majority of published information on the role and effects of
Cl− in higher plants deals with two extreme situations: Its function as an essential micronutrient and
its toxicity under salt stress conditions.
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Recently, Cl− has been described as a beneficial element for the adequate development of plants
when it is accumulated to macronutrient levels [2–4]. While many agronomic studies have also
reported a substantial increase in yield for many crops in response to Cl− fertilization [5], it was
unclear the physiological processes affected, or to what extent the beneficial effects are Cl−-specific
or associated with the accompanying cations. It is therefore necessary to expand our knowledge on:
(i) The identification of the biological functions requiring macronutrient Cl− levels; (ii) the degree of
Cl− specificity in these processes; (iii) the identification of genes encoding Cl− membrane transporters
relevant for plant nutrition; (iv) the signal-transduction pathways regulating Cl− nutrition processes;
and (v) a better understanding of the Cl− versus NO3

− in vivo interaction. The fact that Arabidopsis
thaliana is a poor Cl− includer (Table 1; Section 4.2) may have hampered the identification of genes
specifically involved in Cl− nutrition mechanisms. The availability of the genome sequence of many
other plant species and varieties, including crops, with contrasting Cl− inclusion abilities is expected to
rapidly allow the identification of new genes and alleles involved in the regulation of Cl− homeostasis
in higher plants.

These new focuses of interest, including the identification of new genes involved in Cl− transport,
have revived the interest of physiologists and molecular biologists in this essential nutrient. Excellent
reviews have been published regarding the origin and abundance of chlorine in the environment,
its function as a mineral micronutrient for plants, the occurrence and effects of Cl− deficiency, its
distribution in the plant, its toxicity under saline stress conditions, and the identification of genes
involved in Cl− exclusion mechanisms [3–12]. In this review we will particularly cover: The new vision
of Cl− as a beneficial macronutrient, away from the classical view as a toxic element for agriculture; the
proposed biological functions in which Cl− is involved as a beneficial macronutrient; the gene families
implicated in the regulation of Cl− transport, mainly in light of the recently identified genes; and their
role in nutritional, biochemical, and stress-acclimatization functions.

2. Cl− as an Essential Micronutrient

The Cl− ion is an essential cofactor for oxygen evolution of photosystem II (PSII) in the chloroplast,
stabilizing the water splitting system at the oxidizing site of PSII. Two Cl− molecules are required to
maintain the coordination structure of the Mn(4)Ca cluster [13], facilitating the proton flux from the
water oxidation complex to the thylakoid lumen, thereby keeping the oxygen-evolving complex fully
active (reviewed in [3]). Chloride also regulates the activity of some enzymes such as the asparagine
synthetase [14], and the vacuolar proton-pumping ATPase [15]. A role of Cl− in regulating amylase
activity has also been proposed [16]. To ensure these cellular functions, only micromolar amounts of
Cl− are required in glycophyte plants. Accordingly, it has been generally accepted that the minimum
Cl− requirement for adequate plant growth in most plant species is in the range of 0.2–0.4 mg·g−1

dry weight (mg·g−1 DW) [1,12,17], which corresponds to the content of a micronutrient. Chloride is
sufficiently abundant in nature to fulfil these requirements [7].

3. Cl− as a Beneficial Macronutrient

Despite the supposed low requirements, average Cl− content in plants is much higher than the
concentration required as a micronutrient [5]. It is actually the most abundant inorganic anion in plant
cells when this nutrient is available at concentrations present in most environments [12]. Surprisingly,
these Cl− contents overlap with those reported as toxic to many plant species [5,7,12]. While average
Cl− content in plants varies in the range of 2.0–20.0 mg·g−1 DW (Figure 1A), the critical tissue Cl−

content for toxicity previously reported is about 4–7 and 15–35 mg·g−1 DW for Cl−-sensitive and
Cl−-tolerant glycophyte species, respectively (Figure 1B). Thus, according to this traditional vision of
plant Cl− homeostasis, adequate plant development requires micronutrient Cl− contents. However,
plants accumulate about 10 to 100 times higher concentrations despite being toxic to many species. This
vision implies that plants are unable to adequately regulate optimal levels of Cl− and, as a consequence,
the dominant homeostatic strategy should be the exclusion of this element. This is, in fact, the common
view that currently exists about Cl− management in agriculture.



Int. J. Mol. Sci. 2019, 20, 4686 3 of 32

Recent reports have shown that prolonged treatments with a nutrient solution containing Cl– in
the low milli-molar range (e.g., 4–5 mM Cl−) determine leaf Cl− accumulation values between 25 and
50 mg·g−1 DW in different plant species (Figure 1C; Table 1). Despite these Cl– contents clearly exceed
the critical toxicity values mentioned above, these plants develop normally and grow without apparent
symptoms of stress [2,18–20]. Root Cl− uptake and long-distance transport require a considerable use
of metabolic energy [18,21,22], clearly indicating that shoot Cl− accumulation to macronutrient levels
responds to specific biological adaptations. Under these conditions, Cl− plays specific physiological
roles that result in increased dry biomass and improved plant performance [2,23]. Beneficial elements
are defined as those elements that stimulate growth, but are not essential in certain plant species, or
under specific conditions [24]. Since Cl− is not an essential macronutrient but it stimulates growth
when accumulated to macronutrient levels, in addition to an essential micronutrient, Cl− has been
defined as a beneficial macronutrient [2].

The growth of tobacco plants is stimulated by Cl− contents up to values of around 50 mg·g−1

DW (Figure 2; [2]), which is 5-fold the critical toxicity threshold previously reported for this species
(Figure 1B; [5]). This apparent discrepancy may be due to the type of treatment applied. While
prolonged treatments below 5–10 mM Cl− can determine high leaf accumulations with no stress
symptoms and/or positive growth responses, shorter salt stress treatments above 10–15 mM Cl− can
produce symptoms of toxicity with relatively low leaf Cl− contents [5,25–29]. This is indicative that
moderate Cl− applications enable adequate transport and distribution of Cl− at the subcellular, organ,
and whole-plant levels (e.g., optimal rates of root uptake, xylem translocation, shoot accumulation,
and intracellular compartmentalization). For example, after 30 weeks of undergoing a nutritional
treatment of 4.5 mM Cl−, different varieties of citrus, a supposedly Cl−-sensitive crop, accumulated
between 150 and 425 mM Cl− in their leaf tissues with no symptoms of salt stress [18].

In summary, at concentrations commonly present in soils, in excess to those needed to satisfy
micronutrient requirements but insufficient to cause toxicity (e.g., in a beneficial range of around
1–5 mM; [2]), plants accumulate Cl− to macronutrient levels, leading to a better plant performance.
Known or proposed biological processes favored by macronutrient Cl− levels are explained below.
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Figure 1. Cl− homeostasis in glycophyte plants. Schematic illustration of Cl− homeostasis in glycophyte
plants according to the classical view of Cl− nutrition (A), the classical view of Cl− toxicity (B), and
comparison with the recently proposed role of Cl− as a beneficial macronutrient in glycophyte plants
(C). (A,B) have been made from the data of Cl− contents reported in different plant species, obtained
from the review by Xu et al. [5]. Cl− homeostasis as a beneficial macronutrient in glycophyte plants is
illustrated in (C), according to the data recently reported [2,18–20]. Ci, citrus; Tb, tobacco; Tm, tomato;
Cie, citrus excluder genotypes; Cii, citrus includer genotypes.
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Figure 2. Stimulation of tobacco plant growth by macronutrient Cl− contents. The data, obtained
from Franco-Navarro et al. [2] and from Colmenero-Flores et al (umpublished results) illustrates
growth stimulation in terms of dry weight biomass in a range of leaf Cl− contents within the beneficial
macronutrient range, which clearly overlaps with the previously reported toxic contents for this
species [5]. There is a widespread belief that the accumulation of Cl− in plant tissues does not necessary
reflect the quantity requested. Chloride applications in the 1–5 mM Cl− range determine increasing
values of leaf Cl− accumulation in a linear fashion, which in turn determine positive responses in
terms of dry biomass, strongly supporting that plants regulate the required amount of Cl− within
the beneficial macronutrient range. Although the response remains positive with the application
of 5 mM Cl−, the response curve inflection indicates that the trend can be reversed at higher Cl−

concentrations. For example, in a similar assay, in comparison to the 5 mM Cl− treatment, 15 mM Cl−

application resulted in lower dry weight, indicating that this concentration exceeds the beneficial range
of Cl− nutrition.

Table 1. Leaf Cl− Concentration in different plant species grown with nutrient solutions containing Cl−

in the low milli-molar range (4.5–5.0 mM).

Citrus Cl−
Excluder 2

Arabidopsis
(Col0) 3

Citrus Cl−
Includer 4 Tomato 5 Tobacco 6

Leaf Cl− Concentration
(mg·g−1 DW) 5–13 25 30 32 50

Cl− Excess (Respect to
micronutrient requirement) 1 25–70 125 150 150 250

1 Considering 0.2 mg·g−1 DW as the critical Cl− requirement. 2 Cleopatra mandarin and Rangpur lime plants
(respectively) treated for 30 weeks with a nutrient solution containing 4.5 mM Cl− [18]. 3 Arabidopsis thaliana
(Columbia ecotype) treated for 5 weeks with a nutrient solution containing 5.0 mM Cl− [20]. 4 Carrizo citrange
plants treated for 30 weeks with a nutrient solution containing 4.5 mM Cl− [18]. 5 Tomato plants treated for 6 weeks
with a nutrient solution containing 5 mM Cl− [19]. 6 Tobacco plants treated for 6 weeks with a nutrient solution
containing 5 mM Cl− [2].

3.1. Charge–Balance, Osmoregulation, Turgor, Cell Volume, and Growth

Besides the micronutrient functions previously described, other roles largely attributed to Cl−

are the regulation of cell osmolarity and the electrical charge balance of cations [6,12]. Being a
non-assimilating highly mobile anion, Cl− is the preferred molecule to balance the electric charges of
important cations such as potassium (K+), calcium (Ca2+), and protons (H+), playing important roles
in the stabilization of the electric potential of cell membranes and the regulation of pH gradients and
electrical excitability [7,30]. Vacuoles accumulate high concentrations of Ca2+ and sodium (Na+), with
Cl− acting as a major counteranion. Chloride also plays a prominent role in signal perception and
transduction, since a variety of signals (light, pressure, elicitors) cause membrane depolarization by
stimulating anion efflux (see Section 3.7).

At the Cl− concentration range usually found in plants of around 50–150 mM of tissue water [5],
within the range defined as beneficial (Figure 1C), it represents the dominant inorganic anion in the
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vacuole, with leaf contents that can be similar to those of the macronutrient K+ [2], determining
central functions in cell osmoregulatory and turgor-driven processes. It is generally assumed that Cl−

serves a non-specific osmotic function and that other anions can provide osmolarity into the plant
vacuoles or balance positive charges. However, evidences have recently been provided indicating that
Cl− is a quantitatively and qualitatively preferred osmoticum in plants, and cannot be sufficiently
replaced by other anionic macronutrients [2,4]. Given that Cl− is not assimilated throughout anabolic
metabolism, its accumulation efficiency into shoot tissues of tobacco plants is four times higher than
the accumulation of NO3

−, and three times higher than the sum of sulphate (SO4
2−) + phosphate

(PO4
3−) anions, determining more negative osmotic potential and higher turgor [2].
Cells regulate water movement and water-holding capacity by controlling the movement and

accumulation of ions. This is constrained by both osmotic and charge balance, and is driven by ion
and voltage gradients and by active ion transport. The osmolarity of biomolecules sequestered inside
a cell creates a pressure that can easily reach an atmosphere or more in animal cells [31]. Given the
absence of cell walls, animal cells must equilibrate internal and external osmolarity. Since the net
charge of biomolecules is negative, the osmotic equilibrium is maintained through the reduction of the
intracellular Cl− concentration. This is achieved by the driving force of the plasma membrane (PM)
electric potential (Em), negative inside, generated by the Na+/K+-ATPase [31]. Therefore, the internal
Cl− concentration is of crucial importance to regulate cell osmolarity in animal cells. Computational
modeling indicates that in the absence of Cl− conductances, the transmembrane (TM) movements
of cations are always osmotically balanced. When a Cl− conductance is present, the only way to
keep the Cl− equilibrium potential in accordance with the changed Em is to adjust cell volume. Thus,
while cations are primarily responsible for the Em, the Cl− conductance determines the extent of water
movement and cell volume changes [32]. The participation of Cl− in controlling osmoregulation and
water balance is also relevant in plant cells. Unlike animal cells, plant cells do not live submerged in
saline plasma that maintains homogeneous concentrations of Cl− and Na+. Extracellular levels of these
ions in plant tissues depend on their concentrations in the rhizosphere, so instead of a Na+/K+-ATPase,
plant cells possess H+-ATPases in the PM. In addition, the control of water transport is also different in
plant cells because of the external cell walls and turgor. To generate turgor pressure, plant cells have a
higher intracellular than extracellular osmolarity. The large hypertonic vacuole is the plant cell organ
that regulates osmolarity, water accumulation, and cell turgor. Therefore, contrary to animal cells,
cytoplasmic Cl− exclusion in plant cells occurs mainly by vacuolar compartmentalization. This may be
the reason why Cl− specifically stimulates the vacuolar proton-pumping V-type ATP-ase [33], whereas
the PM H+-ATPase is stimulated by monovalent cations, particularly K+ [12]. Therefore, Cl− fluxes
through the PM and tonoplast is also an essential regulator of intracellular osmotic potential, turgor,
and cell volume regulation in plant cells [34]. Not only because of its role in salt partitioning during
turgor normalization, but also because Cl− efflux through anion channels depolarizes the PM [35–37].
Given that the equilibrium potential for Cl− ions is normally positive (cytosolic concentration exceeding
extracellular concentration), activation of Cl− channels results in strong efflux of Cl− from plant cells,
leading to PM depolarization. This depolarization activates, in turn, outward rectifying K+ channels,
which determines a positive feedback for a massive discharge of salts and water. Indeed, anion
fluxes have been described as the "pacemaker" of plant cell turgor control [38]. Consistent with the
role of Cl− in the regulation of water transport and cell volume in plants, Cl− fluxes are specifically
required for the proper functioning of specialized motor cells like the pulvini of leguminous plants
during seismonastic and nystinastic leaf movements [39–41], and guard cells during stomatal opening
and closure [42,43]. Osmotically-driven water fluxes are also essential for endogenous plant organ
movement or circumnutation [44]. While transmembrane ionic fluxes necessarily involve electroneutral
transport with K+, the activation of PM anion channels is often the triggering element that connects
environmental cues with the response of the corresponding motor cell, as observed in the stomatal
closure or the circadian-regulated leaf opening [45,46].
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As a result, Cl− is more efficient in providing cell osmolarity, water accumulation, and turgor, the
driving force of plant cell elongation. Then, is Cl− specifically well suited to stimulate cel elongation?
When available at macronutrient levels, Cl− is distributed throughout the plant, reaching its maximum
concentration in adult leaves, where it is stored in the large vacuoles (Figure 3A). However, when
present at lower concentrations, sufficient to meet micronutrient requirements but insufficient as a
macronutrient, tobacco plants prioritize preferential Cl− accumulation in actively growing young
leaves (Figure 3B), indicating a biological role in plant cell growth. Micronutrient nutrition is important
to ensure adequate cell division rates [47] but, at higher concentrations, Cl− is specifically required to
stimulate leaf cell elongation in tobacco plants [2]. Chloride-dependent stimulation of plant cell growth
has been demonstrated in other organs and cell types like: Epidermal cells from elongating internodes
of Pisum sativum [48]; cells of elongating coleoptiles of grass seedlings [49–51]; the elongating stigma of
grasses at the onset of flower anthesis [52]; and during pollen tube elongation [34,53–55]. For some of
these processes, its substitution by NO3

− or other inorganic anions avoids or reduces the stimulation of
cell elongation [2,51], revealing Cl− specificity. In fact, strong stimulation of leaf expansion and plant
growth resulting from NO3

− application (e.g., from 5 to 10 mM NO3
−) is a consequence of an increased

rate of cell division, but not of cell elongation, which specifically requires Cl− [2]. Interestingly, the
stimulation of leaf cell size in tobacco plants occurred with Cl− treatments as low as 150 µM Cl− [2].
This treatment hardly increased leaf Cl− concentration by 4 mM, suggesting that besides the osmotic
effect, a specific signaling role of Cl− on the stimulation of leaf cell growth [2]. Most of the processes
where Cl− stimulates cell elongation or the functioning of motor cells have been proved responsive
to auxin [51], which in turn stimulates cell Cl− uptake [40,48,49] as a prerequisite for cell elongation.
The mechanisms that regulate the interactions between plant development, cell cycle, phytohormone
activity, and chloride homeostasis in plants are unknown.
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Figure 3. Preferential accumulation of Cl− in growing tissues. When available at macronutrient levels
(A), Cl− is distributed throughout the plant, reaching its maximum concentration in adult leaves,
where it is stored in their large vacuoles. When present at lower concentrations, sufficient to meet
micronutrient requirements but insufficient as a macronutrient (B), tobacco plants prioritize preferential
Cl− accumulation in actively growing young leaves, indicating a biological role in plant cell growth.
Colmenero-Flores et al., unpublished data.

Besides the physiological evidence, genetic approaches have revealed the relevance of Cl−

homeostasis in cell elongation (see Section 4.3). Thus, disruption of DTX33 and DTX35 genes, encoding
vacuolar channels involved in Cl− compartmentalization during cell expansion, resulted in shorter root
hairs and defective pollen-tube growth. In addition, lines of different plant species mutated in the gene
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encoding cation-chloride cotransporter (CCC) proteins, involved in the regulation of Cl− homeostasis
in animal and plant cells, display severe alterations in the elongation of different cell types such as the
elongating region of the inflorescence stem of A. thaliana [56], and the elongating root cells of rice [57].

3.2. Cell Water Balance and Tissue Hydration
The stability of water molecule interaction is atypically high in the solvation shell of halogen

anions [58,59], making Cl− an osmolyte with uncommon physical properties, very suitable to enhance
the retention of water. Chloride is also the anion that generates the lowest density solution of any
of the biologically relevant anions considered by Boyd and Gradmann [60]. Taken together, this
and the previously described properties of Cl−, promoting higher osmolarity, larger leaf cells with
higher ability for ion compartmentalization, and higher turgor, it is expected that macronutrient Cl−

nutrition increases the water storage capacity of plant cells. In agreement with this proposition, Cl−

accumulation to macronutrient levels specifically increases water content, relative water content, and
succulence in the leaf [2], confirming the traditional role attributed to Cl− in favoring the hydration of
plant tissues [5,6].

3.3. Whole-Plant Water Relations, Photosynthesis, and Water-Use Efficiency
A recently reported and unexpected effect of Cl− nutrition on the physiology of tobacco plants is

the reduction of leaf transpiration as a consequence of a lower stomatal conductance (gs; [2]). This
effect was not a consequence of a lower stomatal opening, but resulted from the reduction of the
stomatal density associated to the higher enlargement of leaf cells in Cl−-treated plants [23]. Therefore,
Cl− simultaneously stimulates growth and reduces water consumption, which results in a clear
improvement of water-use efficiency (WUE; [2,23]). Interestingly, the reason why a lower gs does
not result in lower photosynthetic capacity (as expected for C3 plants) is because Cl− specifically
increases the mesophyll diffusion conductance to CO2 (gm; [23]). This phenomenon is associated,
at least in part, with a higher surface area of chloroplasts exposed to the intercellular airspace of
mesophyll cells, pointing to a role of Cl− nutrition on chloroplast performance (see Section 3.6). The
higher gm compensates for the reduction in gs, resulting in overall higher WUE (Figure 4). Increasing
crop yields, while also improving WUE, has become a major focus of plant research. The beneficial
effect of macronutrient Cl− levels in maintaining high photosynthesis rates while improving WUE
is particularly challenging in C3 plants, in which water loss through transpiration is inherent to the
process of fixing atmospheric CO2.
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Figure 4. Chloride (Cl−) nutrition at macronutrient levels significantly increases the size of leaf cells,
resulting in a reduction in stomatal density and, therefore, conductance (gs). At the same time, Cl−

improves mesophyll diffusion conductance to CO2 (gm), due, at least in part, to increased surface area
of chloroplasts exposed to the intercellular airspace. The higher mesophyll diffusion conductance
compensates for the reduction in stomatal conductance, resulting in overall higher WUE [23]. Upward
arrows indicate higher values, and downwards indicate lower values. Figure obtained from Maron,
2019 [61].
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Improvement of WUE as a result of water balance regulation by Cl− nutrition, at both the cellular
and whole-plant levels, probably responds to adaptive mechanisms that increase the ability of plants
to withstand water deficit, a hypothesis that deserves further investigation.

Correlations between root hydraulics (water flow) and K+ [62] or NO3
− [63,64] ions homeostasis

have been established. Also, a positive correlation between water use and Cl− transport has been
reported when comparing citrus genotypes with contrasting capacity of Cl− inclusion [65,66]. However,
the specific effect of Cl− on root hydraulic conductivity, through regulation of aquaporin-mediated
water transport across the PM of root cells, is an issue still unknown. According to its relevance in
the regulation of plant osmolarity and water flux, a role in maintaining xylem volume flow and root
pressure has been reported for both K+ and Cl− ions [12]. Additionally, a role of Cl− in facilitating
loading and unloading of sugars in the phloem sap has been also proposed [67,68].

3.4. Energy Efficiency and Increase of Dry Biomass

The increase of biomass production induced by macronutrient Cl− nutrition is associated with
the stimulation of higher turgor, cell size, and shoot expansion (see Section 3.1). However Cl− not
only increases fresh weight as a consequence of greater water accumulation, but it also promotes
higher dry biomass [2]. This phenomenon requires an effective increase in the efficient assimilation of
both carbon and N. The most abundant anionic species used as osmoregulatory molecules in plants
are Cl−, NO3

−, and malate. Considering the energy cost, Cl− accumulation is particularly efficient.
On the one hand, the energy cost of generating osmolarity by Cl− influx is invariably less than that
of synthesizing organic acids [3]. On the other hand, the cost of vacuolar compartmentalization
of Cl− might require less energy in comparison to NO3

− sequestration [4]. The proposed reason
is that the prevalent transport mechanism for Cl− compartmentalization is based on the activity of
anion channels [69,70], whereas NO3

− depends to a higher extent on secondary active transport
mechanisms [71]. In addition, compartmentalization of Cl−, a highly available and "cheap" osmolyte,
reduces the vacuolar accumulation of malate and NO3

−, making these important sources of carbon
and N more available for plant metabolism and growth [2,6]. The calculated contribution of organic
anions to balance the positive charge of inorganic cations in plants treated with 10 mM NO3

− was
reduced 2.6 times in plants treated with 5 mM NO3

− + 5 mM Cl− [2]. Supporting the role of Cl−

in preventing the diversion of important sources of N and carbon, halophyte plants growing under
Cl−-deficient conditions accumulate higher concentrations of NO3

− [72,73] and malate [74] than those
plants growing under optimal sodium chloride (NaCl) concentrations. Apart from these considerations,
it is expected that all the benefits associated with macronutrient Cl− nutrition, such as better water
status, greater mesophyll diffusion to CO2, and possibly other factors yet to be described, improve
plant development, metabolism, and growth.

3.5. Cl−/NO3
− Interaction and Nitrogen-Use Efficiency

Nitrogen is the most limiting nutrient for the growth of land plants, essential for protein, nucleic
acid, and secondary metabolism. Nitrate is one of the major N sources, as well as a signal molecule
involved in the control of many physiological processes, plant growth, and crop yield [75–77]. Both
NO3

− and Cl− are the most abundant inorganic anions in plants and share similar physical properties
and TM transport mechanisms, which is in the origin of the strong dynamic interactions between the two
monovalent anions [4]. Root Cl− uptake is apparently inhibited in the presence of external NO3

− [78,79].
Similarly, a higher accumulation of Cl− leads to lower NO3

− content in plants, suggesting that influx
of the two anions could be facilitated by the same transport mechanisms [5,80]. This antagonistic
interaction between Cl− and NO3

− is one of the reasons why Cl− is considered harmful to agriculture,
with many publications reporting a detrimental competition between Cl− and NO3

− in many crops
(reviewed in [5]). The terms by which this competition is generally explained point to a strong
preference for NO3

− over Cl− in plants. It is a reasonable strategy, given the nutritional importance of
NO3

−, a molecule that after root uptake is preferentially used for anabolic assimilation, whereas Cl−
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accumulates in plant tissues because it is not metabolized. In addition, if the net Cl− uptake rate is
substantially higher than the dilution rate determined by the plant growth, progressive increase of
Cl− concentration may eventually damage sensitive plant organs. The different types of selectivities
explaining how these two anions are discriminated by proteins have been recently described in
detail [4], and more recent findings will be addressed in Section 4.1.

Nitrogen use efficiency (NUE), which defines the plant yield per unit of applied N, is an important
agricultural trait to reduce excessive use of chemical fertilizers, with substantial benefits to farmers
and the environment [81,82]. Nitrate uptake and allocation are key factors regulating NUE [76]. Given
the close interaction between Cl− and NO3

−, it is expected that Cl− can significantly influence NUE.
The key question is whether Cl− improves NUE or makes it worse. The common belief is that Cl−

reduces NUE by constraining not only root NO3
− uptake, but also root-to-shoot translocation or

vacuolar compartmentalization. Different studies have reported a negative effect of Cl− on root NO3
−

uptake [83,84], which is expected to impair NUE. Nevertheless, net NO3
− uptake results from the

difference between NO3
− influx mediated by active transport and its passive efflux through anion

channels. Root anion efflux to the rhizosphere might be important to regulate H+-ATPase activity,
maintaining the H+ charge balance [85], or to regulate plant cell growth [86]. The release of Cl−

from root cells through anion channels, replacing NO3
− efflux, could be an important mechanism to

prevent the loss of such an important source of N [4], which is expected to improve NUE. Vacuolar
compartmentalization of NO3

− determines the extent to which this nutrient can be accumulated in
plant tissues, and different studies have revealed a close relationship between NO3

− content and NUE.
Thus, the lower compartmentalization capacity of the A. thaliana knockout line aha2/aha3, with lack
of vacuolar ATPase function, deals to 80% reduction in NO3

− storage capacity and severe growth
reduction [87]. In a Brassica napus variety, increased NUE correlates with higher shoot and lower root
NO3

− accumulation [81]. According to the nutrients diversion hypothesis described in Section 3.3, we
could expect a different scenario. Thus, the idea underlying the preferential compartmentalization
of Cl− points to plants using Cl− as a preferred osmoregulatory molecule, while NO3

−, an essential
nitrogen source for land plants, should be preferentially assimilated and used as an osmolyte when
Cl− is not sufficiently available in the soil [2], or as a result of high NO3

− content in the external
medium [88,89]. The addition of to a basal nutrient solution of a salt supplement containing 5 mM
Cl− reduced leaf NO3

− content of tobacco plants by 6.5 times, whereas the supplementation with
salts containing equivalent amounts of phosphate + sulphate salts reduced leaf NO3

− content by
1.7 times [2]. Interestingly, although Cl−-treated plants contained 3.6 times less NO3

− concentration
than phosphate + sulphate plants, they had higher biomass. This strongly suggests that Cl− improves
NUE, despite significantly reducing foliar NO3

− storage. This would represent a radical change in
the perception of Cl− from a NO3

− antagonist to a nutrient that promotes a more efficient use of N.
To summarize, the most likely scenario proposed is the following. When NO3

− is available, active
transport mechanisms (frequently more selective for NO3

− than for Cl−; see Section 4.1) prioritize
NO3

− influx by inhibiting Cl− uptake [78,90]. When little NO3
− is available, Cl− influx is less inhibited,

increasing root uptake and intracellular Cl− concentration, which is expected to replace NO3
− in

serving an osmotic function, allowing a more efficient use of the available N. Species or varieties
with higher Cl− inclusion capacity (e.g., tobacco) may have anion influx transporters with higher Cl−

selectivity (see Section 4.1). Nevertheless, direct evidence is still required to clarify whether NUE is
favored by either efficient NO3

− or Cl− compartmentalization in shoot tissues.
Another aspect that may suggest an interaction between Cl− and NUE is the stimulatory effect of

Cl− on the asparagine synthetase activity. Chloride increases the affinity of asparagine synthetase for
glutamate, its substrate [14]. Asparagine is a major compound in the long-distance transport of soluble
N in many plant species, suggesting a role of Cl− nutrition in N metabolism and transport [12].
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3.6. Chloroplast and Organellar Performance

Chloride is the most abundant anion in the chloroplast stroma (50–90 mM Cl−) [91]. After onset
of illumination, Cl− influx from the stroma to the lumen is essential for thylakoid swelling. Conversely,
Cl− re-export to the stroma would cause the thylakoid to shrink during transition to darkness [92,93].
Similar to the role played by Cl− in promoting cell turgor and elongation [2,4], regulation of thylakoid
swelling suggests a possible role of Cl− in promoting chloroplast osmoregulation and growth, which
could be a prerequisite for its subsequent division [94]. Thus, increased mesophyll diffusion to CO2

in plants treated with Cl− at macronutrient levels is apparently related to a greater biogenesis of
chloroplasts [23]. Chloride fluxes also play important roles in the regulation of photosynthetic electron
transport and photoprotective mechanisms in chloroplasts (see Section 4.3). The accumulation of
protons in the thylakoid lumen is electrically counterbalanced by Cl− influx [92,93,95], suggesting that
Cl− regulates the generation of the pH gradient between the lumen and the stroma [11]. Adequate Cl−

homeostasis, regulated by thylakoid Cl− channels (see Section 4.3), is required to adjust photosynthesis
to fluctuating light and environmental conditions [96–100]. Therefore, Cl− is important for the proper
functioning of the chloroplast, introducing an element of specificity (e.g., it requires Cl−-specific
channels) that, at least in part, may explain the requirement of Cl− over similar molecules such as
NO3

− [23]. Recent data in animal cells indicate a crucial role of Cl− transport in organellar physiology
that goes beyond the electrical shunt required for acidification of cellular organelles [101]. Other
relevant functions in animal cells point to the regulation of adequate endocytosis and lysosomal storage,
as well as membrane traffic by regulating organellar ion homeostasis and osmolarity [101,102]. In
contrast, the role of Cl− in vesicular trafficking and function remains unexplored in plant cells.

3.7. Other Functions: Electrical Signals, Circulating Ion Currents, and Plant Immunity

Specific roles of Cl− in propagating electrical signals, and in circulating ion currents have also
been described, although these functions do not apparently require macronutrient Cl− levels. Electrical
signals, including action potentials, variation potentials, slow wave potentials, and system potentials,
are rapidly propagated in response to both biotic and abiotic stimuli, and are defined as an ion
imbalance across the PM, leading to a voltage transient [103–105]. Ion fluxes circulating through pollen
tubes, involving both Cl− uptake in mature zones and Cl− release at the growing apex, are important
for pollen germination and pollen tube growth [53,106].

Activation of R-type anion channels has been proposed as an essential step for triggering
the ROS-dependent plant innate immune response [107]. Besides its function in chloroplast Cl−

homeostasis, the A. thaliana thylakoid Cl− channel AtCLCd negatively regulates plant immunity,
whereas elicitors regulate in turn the AtCLCd gene expression [108]. Interestingly, diuretic compounds,
which are specific inhibitors of animal and plant cation/Cl− cotransporters, prime plant immunity
in A. thaliana [109]. Further research is required to better understand the interaction between Cl−

homeostasis and the plant immunity response.

3.8. Relevance of Cl− for Crop Yield

The idea that only small amounts of Cl− are required for optimal plant growth and that naturally
occurring Cl− levels amply meet crops requirements still underlies the agronomic—and even the
scientific—fields [10]. However, according to the findings described above, crops could benefit from
Cl− fertilization more broadly than is generally believed. The amount of Cl− fertilization required to
ensure beneficial macronutrient requirements would depend on the levels naturally present in the
soil and on the specific necessity of the cultivated crop. In inland regions, far from the ocean, the
low deposition of Cl−, a highly mobile molecule subject to leaching in the soil, can limit the yield of
crops [110]. Substantial responses to Cl−-containing fertilizers have been reported for different crops
in many parts of the world [5,111]. However, most of these studies did not clarify to what extent plant
yield enhancement was due to the accompanying cations, or whether other anions could replace Cl− in
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such a growth-promoting effect. It has been recently proven that a number of physiological disorders
impairing the growth and yield of durum wheat under field conditions are specifically due to soil Cl−

deficiency [112].
For reasons still unknown, some plant species such as kiwi fruit [113] and palm trees [114] have

higher Cl− requirements, which cannot be alleviated through NO3
− addition. These plants can be

valuable models for better understanding of the regulation of Cl− homeostasis in higher plants [4]. For
example, coconut plants appear to have greater dependence on Cl− for proper regulation of stomatal
function, since stomatal opening is delayed by about 3 h in Cl−-deficient plants [5]. Interestingly,
guard cells of another palm tree, Phoenix dactilifera, release Cl− rather than NO3

− during stomatal
closure, while NO3

− is required as a signal molecule to trigger the abscisic acid (ABA)-dependent
response [115]. This clearly demonstrates that full understanding of Cl− homeostasis in higher plants
requires going beyond of model plant species. Watanabe et al. [116] reported leaf Cl− concentrations
for 670 species from 138 families of terrestrial seed plants collected from their natural habitats. The
most frequent plant Cl− content reported was around 5 mg g−1 DW, which is below the beneficial range
of Cl− nutrition (Figure 1C). This suggests that plants might frequently benefit from Cl− fertilization
in many environments. In the agronomic context, Cl−-deficient soils can be identified in terms of
plant growth for important crops like coconut, oil palm, wheat, durum wheat, and maize (reviewed in
Xu et al. [5] and Raven [3]). Therefore, these—and most probably other—species are favored by Cl−

fertilization, which is expected to improve plant performance and crop yield.
In addition, given the close correlation between Cl− homeostasis and NUE (see Section 3.5)

adequate management of optimal NO3
−/Cl− ratios in different agriculture systems could reduce NO3

−

input rates without compromising plant performance [117]. Chloride-dependent reduction of plant
NO3

− accumulation in vegetables could also be used as a strategy to decrease excessive NO3
− content.

Vegetables are classified as NO3
− accumulators [118] and the NO3

− metabolic derivatives nitrite and
nitrosamines are well-known risk factor for human health [119].

3.9. Cl− and Salinity

Salt stress conditions produced by high levels of NaCl in the medium can be a serious problem
in plant species with little capacity to exclude Cl− from photosynthetic tissues. Typical examples of
Cl−-sensitive crops are citrus and grapevine. Many works dealing with this topic have been published
in the last 30 years. Recently, different types of anion transporters have been characterized that can
be relevant in the ability of plants to exclude Cl−. This issue has been addressed in an important
number of recent publications and reviews [8,9,11,80,120–122], which is the reason why it has not been
included here.

As a synopsis of this section, a table summarising major breakthrough regarding Cl− function
research in plants is given in Table 2. Many relevant findings have been described during the last
ten years.
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Table 2. Major breakthrough regarding Cl− function research in plants.

Year Cl− Function Reference

1946 - Cl− is required for photochemical activity in washed chloroplasts
- Cl− is proposed to be an essential micronutrient [123]

1954 - Demonstration of Cl− as essential micronutrient in tomato plants [1]

1956 - Demonstration of Cl− as essential micronutrient in other plant species [17]

1963 - Cl− is required for Oxygen evolution in Photosystem-II [124]

1977 - The requirement of Cl− is not limited to photosynthesis
- Cl− is also required for adequate cell division rate in the leaves [47]

1980 - Cl− regulates the activity of some proteins [14,15]

1987 - Some plant species require Cl− beyond micronutrient levels [112–114]

1991 - Cl− has a more tightly bound hydration shell [58,59]

2009 - Localization and role of Cl− in oxygen-evolving Photosystem II [13]

2014 - Cl− is required for adequate cell elongation [2,51]

2015 - Occurence of Cl− deficiency in agricultural soils is demonstrated for a
relevant crop species [112]

2016 - Cl− specifically improves osmoregulation, water balance and turgor
- Cl− is proposed as a beneficial macronutrient [2]

2016 - Chloroplast Cl− homeostasis regulates photosynthetic electron transport
and photoprotective mechanisms [97,98]

2019 - As beneficial macronutrient Cl− improves water-use efficiency by reduced
stomatal conductance and increased mesophyll diffusion to CO2

[23]

4. Regulation of Cl− Homeostasis

Although the pathways for root Cl− entry and movement within the plant have been biochemically
and electrophysiologically characterized [7,125], their molecular determinants are poorly defined. The
recently raised interest on Cl− homeostasis has been accompanied by the identification and functional
characterization of genes involved in the transport of this nutrient [4,8,11,80,120,125]. The interest
has focused more on the study of Cl− exclusion mechanisms, important for salinity resistance [8,80],
while transport mechanisms relevant to Cl− nutrition are less understood. Guard cell membrane anion
transport systems and their regulatory components have been exhaustively characterized and do not
present great relevance in the regulation of Cl− nutrition, so they will not be addressed in this review.
We refer the reader to recent reviews that address and update this topic [126–128].

4.1. Cl− Influx and Net Cl− Uptake in the Root

Under external Cl− concentrations relevant for Cl− nutrition in the micro- and macronutrient ranges
(Figure 1), the symplastic pathway dominates root Cl− uptake and transport in plants [18,129–136].
This point has been demonstrated in citrus and grapevine varieties with contrasting capacities to
accumulate Cl− [18,136]. Using a Cl− concentration within the beneficial range (4.5 mM Cl−), it is
shown that both active and poor Cl− includer citrus rootstocks modulated Cl− influx according to
the availability of the nutrient, since uptake capacity was induced by Cl− starvation but inhibited
after Cl− re-supply. And both active and poor Cl− includer rootstocks take up Cl− to much higher
concentrations than those needed to fulfil micronutrient requirements [18]. Therefore, regulation of
Cl− transport and accumulation resemble that of a nutrient like K+, instead of that of a toxic element
like Na+. For instance, the efflux to influx ratio of Cl− and K+ across the PM of plant cells is rather
similar, whereas the ratio for Na+ is normally higher [22]. The fact that Cl− applications in the 1–5 mM
Cl− range determine increasing values of leaf Cl− accumulation in a linear fashion [2], which in turn
determine positive responses in terms of dry biomass (Figure 2), strongly supports that plants regulate
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the required amount of Cl− within the beneficial macronutrient range. Regulation of Cl− transport is
adjusted through changes in the maximum transport capacity and the affinity for Cl− [137–139].

In plant cells, net Cl− uptake results from combined activities of influx and efflux
transporters [22,50]. The principal driving force for Cl− flux across the PM is its electrochemical gradient.
Since Cl− is a negatively-charged molecule, and taking into account its cytosolic concentration around
10–15 mM [80,140,141], Cl− equilibrium potential is much lower than the resting potential of the PM
under non-saline conditions. As a consequence, under most circumstances, Cl− influx requires active
transport that drives Cl− against the electrochemical gradient through high- and low-affinity Cl−/H+

symport mechanisms [21,50,133,137,142–144]. Cell Cl− release is, however, down the electrochemical
gradient and mediated by anion channels [7,22,125]. Passive Cl− uptake through anion channels
is only possible as a consequence of a strong and rapid increase in soil salinity, when transient
PM depolarization permits Em to be less negative than the Cl− equilibrium potential. Under these
circumstances pH-independent Cl− and NO3

− influx activities have been registered [140,141,145]. These
currents, mediated by anion channels and activated by PM depolarization, are probably important to
maintain electroneutral Na+ uptake, thereby preventing excessive PM depolarization [125]. However,
according to Bazihizina et al. [146], this scenario is unlikely for the majority of Cl− concentrations in
field conditions, and active Cl−/H+ symport mechanisms should dominate root Cl− uptake even in
halophyte species up to 600 mM external NaCl.

4.1.1. Cl− Influx

The molecular identity of PM transporters likely to catalyze Cl− influx has been recently
revealed [147]. Members of the plant Nitrate transporter 1/Peptide transporter Family (NPF; [148])
have been primarily described as low-affinity active NO3

− transporters with a H+ coupling ratio of
2H+:NO3

−. However, many NPF family members also transport several other substrates such as
nitrite, glucosinolates, phytohormones, and Cl− [149]. Although a substrate is known for many of
the Arabidopsis NPF members, the detailed transport mechanisms and selectivity are not adequately
described for most of them [150]. The H+-coupled active transport ability requires the ExxER/K
motif containing three chargeable residues that can bind protons in the first TM domain [151]. In
the model plant A. thaliana, the identified NPF proteins capable of transporting Cl−, AtNPF2.4, and
AtNPF2.5 lack the ExxER/K motif and mediate passive Cl− release [152,153]. In the monocot Zea
mays, two members of the NPF6 subfamily have been characterized as active transporters involved
in H+-coupled Cl− influx [147]. These PM active Cl− transporters, ZmNPF6.4 and ZmNPF6.6, are
the closest maize homologs of the A. thaliana NO3

− transceptor AtNPF6.3, also known as CHL1
or NRT1.1 [154]. AtNPF6.3 has been characterized as a dual affinity transporter that moves NO3

−

in both the high- and the low-affinity ranges [155,156]. Taking advantage of the AtNPF6.3 crystal
structure [157,158], a key role for NO3

− binding has been proposed to the protonable His356 residue.
The maize transporter ZmNPF6.6, which contains the equivalent His362 residue, is a high-affinity
NO3

− transporter that can also transport Cl− in the low-affinity range. Both AtNPF6.3 and ZmNPF6.6
transport Cl− when NO3

− is absent, and this transport capacity is strongly inhibited by NO3
−, possibly

as a consequence of NO3
− occupation of the substrate-binding pocket [90]. However, the maize

transporter ZmNPF6.4, which contains a Tyr370 residue (not protonable at physiological pH) in the
equivalent position of the putative substrate-binding pocket, is a high-affinity Cl− selective transporter
(not inhibited by increasing external NO3

− concentrations up to 1 mM) [147]. Interestingly, mutation of
the NPF6.4 Tyr-370 to His (Y370H) resulted in change from Cl− selective to high-affinity NO3

− selective
transport activity. Furthermore, the reciprocal mutation in NPF6.6, H362 to Tyr (H362Y) eliminated
both NO3

− and Cl− transport activities. Wen et al. [147] proposed that the His residue is required for
the high affinity NO3

− activity in ZmNPF6.6, while a yet unknown protonable residue is required for
high affinity Cl− transport in ZmNPF6.4.

These results indicate that within the NPF family, active high- and low-affinity Cl− transporters
occur in different plant species. In A. thaliana, which may have a lower Cl− requirement (Table 1;
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Section 4.2), the AtNPF6.3 transporter is highly selective for NO3
−. In maize, which could have a

higher nutritional requirement for Cl− according to Section 3.6, besides the selective NO3
− ortholog

ZmNPF6.6, an additional protein homolog is present, ZmNPF6.4, which is a high-affinity Cl− selective
transporter [147]. It could be interesting to analyze the amino acids present in the substrate-binding
pocket of NPF6 homologs in plant species that can be considered Cl− includers, some of them classified
as Cl−-sensitive plants due to their greater accumulation capacity. Thus, in tobacco (N. tabacum), citrus
(C. clementina), grapevine (V. vinifera), and sunflower (H. annus) species, the phylogenetic equivalents
of AtNPF6.3 contain, in all cases, a tyrosine in their putative substrate-binding pocket. This raises two
questions: (i) Whether the absence of histidine and/or the presence of tyrosine in the substrate-binding
pocket can serve as a predictor of the Cl− transport ability in proteins present in the AtNPF6.3
phylogenetic branch; and (ii) if this is the case, does it make sense of the absence of an NO3

−-selective
NPF6 ortholog in the aforementioned Cl−-includer species? While the role of ZmNPF6.4 in active Cl−

influx has been clearly established, direct demonstration that it is a component of the plant root Cl−

uptake system deserves further investigation.
Cation Cl− Cotransporter (CCC) proteins catalyze the co-ordinated symport of K+, Na+ and Cl−,

and are inhibited by the ‘loop’ diuretic bumetanide, a specific inhibitor of vertebrate 2Cl−:Na+:K+

cotransporters [56]. In the halophyte Suaeda maritima, 100 µM bumetanide halved root Na+

concentrations, suggesting a possible direct or indirect role of CCCs in regulating root Na+ and
Cl− uptake [159].

4.1.2. Cl− Efflux

A second component regulating net Cl− uptake is its release from root epidermal and
cortical cells down the electrochemical gradient through anion channels, or other passive transport
mechanisms [7,22,125,160]. There are excellent reviews describing PM anion channels, describing their
kinetic properties and their functions in plants [7,125,160–162]. Chloride release has been proposed
to make a considerable contribution to the resultant net Cl− uptake at Em values more negative than
−50 mV [50], although anion channels involved in fine-tuning of cytosolic Cl− concentration (e.g., to
modulate Cl− nutrition in plants) have not been clearly identified yet. Electrophysiological studies
revealed high expression of depolarization-activated anion efflux channels in the PM of epidermal
root hair and cortical cells of A. thaliana [163,164]. These channels exhibit the following properties: (i)
Fast activation/deactivation kinetics; (ii) strong voltage-dependent activation; (iii) high permeability
for sulphate, Cl−, and NO3

−; and (iv) modulation by extracellular anions. These properties are
typical of the rapid (R-type) anion channel conductances [165,166]. The ALuminium-Activated Malate
Transporter ALMT family encodes R-type anion channels in plants. The maize PM channel ZmALMT1
(selective to sulphate, Cl−, and NO3

−) is predominantly expressed in mature root tissues and has been
proposed to regulate mineral nutrition in plants [167]. The other type of depolarization-activated
anion channel, also strongly modulated by the external anion activity, is the slowly activating (S-type)
channel, which exhibits other kinetic properties: (i) Weakly voltage-dependent; (ii) does not inactivate;
and (iii) higher NO3

− selectivity [125,168,169]. S-type channels belong to the SLow-type Anion Channel
Associated/SLAC1 Homologues (SLAC/SLAH) protein family in plants [170,171]. No members of
either the ALMT or the SLAC/SLAH families have been clearly involved in the regulation of net Cl− or
NO3

− uptake in plants. However, Planes et al. [86] have reported a role of SLAH3 in ABA-induced Cl−

release from root epidermal cells. SLAH3 activation by ABA is part of a growth inhibition mechanism in
germinating seeds of A. thaliana. SLAH3-dependent Cl− currents were measured with microelectrodes
in root epidermal cells, indicating the possible implication of S-type channels in regulating net Cl−

uptake in plants. This finding could be related with the previous observation of Dauphin et al. [172],
who described large S-type anion currents strictly induced by severe water deficit in the PM of root
hairs from A. thaliana. These results are consistent with the ABA-dependent activation of SLAH3 in
guard cells [162], but not with the inhibition of anion channels involved in the xylem loading of anions
(Section 4.2), also dependent on ABA. This points towards a clear role of SLAC/SLAH (and possibly
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ALMT) anion channels in the regulation of Cl− nutrition in higher plants. However, identification of
the specific transporters involved in this process and how they are regulated by developmental or
environmental cues deserve more investigation.

Anion efflux activity can also be regulated by proteins of the NPF family (Section 4.1). Within
the NO3

− excretion transporter subfamily NPF2, the transporter NPF2.5 is involved in excretion of
Cl− out of root cells under conditions of salt stress [153], which is expected to enhance Cl− exclusion
and salinity resistance. The efflux of anions is also important to regulate root cell pH by electrically
counterbalancing the efflux of protons from the cytosol, as demonstrated for the Nitrate EXcretion
Transporter1 NAXT1/NPF2.7 protein [173]. Enhanced Cl− efflux during acidosis is thought to also play
a role in cytosolic pH homeostasis in plants [174].

4.2. Root-to-Shoot Cl− Translocation

Once transported into the root symplast, Cl− follows its chemical gradient from cell-to-cell
through plasmodesmata towards the PM of the xylem-pole pericycle, from where Cl− is loaded into
the xylem vessels and transported to the shoot by following the transpiration stream [11,175,176]. The
loading of Cl− into the root xylem is considered to be electrochemically passive, being thus likely
facilitated by PM anion channels or carriers [8,80,125,177]. The root-to-shoot xylem translocation
pathway is the key rate-limiting step for shoot Cl− accumulation under both moderate external Cl−

concentration (e.g., 5 mM Cl−) and salt stress conditions [18,121,136,178]. Several types of anion channel
conductances have been identified by patch clamp studies in protoplasts of root xylem parenchyma
cells of barley [179] and maize [175]: A Xylem Inward Rectifying Anion Channel conductance
(X-IRAC), which is activated by PM hyperpolarization; a Xylem SLowly activating Anion Channel
conductance (X-SLAC), with slow activating/deactivating kinetics; and a QUickly activating Anion
Channel conductance (X-QUAC), which has quick activating/deactivating kinetics. All of them were
shown to be permeable to Cl−, being also X-SLAC permeable to malate. These conductances may
thus represent the most important gates for anion release into the xylem [125]. Thus, the use of the
anion channel inhibitor 4,4′-diisothiocyanatostilbene-2,2′-disulfonic acid (DIDS) significantly reduced
xylem anion loading in barley seedlings [180,181]. A hallmark of ion channels involved in Cl− and K+

xylem loading is a negative regulation by water deficit. Both X-IRAC and X-QUAC conductances are
inhibited by Ca+ and ABA, which reduce passive NO3

− and Cl− release from root stelar protoplasts
under water deficit conditions [175,179].

Recently, Cubero-Font et al. [176] demonstrated the role of two S-type channels, AtSLAH1 and
AtSLAH3, in the regulation of xylem loading of Cl− in A. thaliana. Gene expression activity of both
AtSLAH1 and AtSLAH3 genes was found to co-localize in the root xylem-pole pericycle. AtSLAH3 is
not active per se, rather it requires extracellular NO3

− and phosphorylation by Ca2+-dependent kinases
CPKs [45,182,183], exhibiting high selectivity for NO3

− over Cl− [45]. Interestingly, AtSLAH1 is unable
to conduct anions when expressed in Xenopus oocytes. However, when coexpressed with AtSLAH3,
the resulting SLAH1/SLAH3 heteromer elicits macroscopic Cl− currents that override the kinase and
NO3

−-dependent activation of AtSLAH3. The interaction with AtSLAH1 alters the electrical properties
of SLAH3, enhancing the Cl− translocation from pericycle cells into the root xylem vessels. Thus,
plants lacking functional copies of any of the two S-type channel genes AtSLAH1 or AtSLAH3 genes
reduced up to 50% the Cl− content in the xylem sap secretion [176]. The AtSLAH1 membrane protein
functions like a molecular switch that regulates the degree of NO3

− versus Cl− conductance according
to environmental cues [176]. Under optimal growing conditions, the AtSLAH1 gene is highly expressed,
favoring the presence of the SLAH1/SLAH3 heteromer, which determines a significant increase of
the SLAH3 Cl− conductance. This ensures the simultaneous translocation of both NO3

− and Cl−

nutrients in actively growing plants. Under abiotic stress conditions, such as water deficit or salinity,
the expression of the AtSLAH1 gene is strongly repressed in an ABA-dependent manner [176,184],
significantly reducing the Cl− conductance of SLAH3, therefore diminishing xylem Cl− translocation
(Figure 5; [176]). Candidate gene(s) encoding the X-QUAC type channel, which is supposed to be the
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dominant conductance for Cl− xylem loading [175,179], is still missing. The PM AtALMT12 channel is
a good candidate because of its permeability to Cl− [8,185] and its presence in root stelar cells [186].
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Figure 5. Regulation of root xylem chloride (Cl−) translocation by the anion channels SLAH1 and SLAH3
according to environmental cues. Under favorable growing conditions (A), high transcriptional activity
of both SLAH1 and SLAH3 genes determines the formation of heteromeric SLAH1/SLAH3 complexes in
the xylem-pole pericycle. The SLAH1 channel does not transport anions itself, but modifies the kinetic
properties of SLAH3, which increases its Cl− conductance by 7 times and mediates xylem translocation
of both Cl− and nitrate (NO3

−) anions. However, under abiotic stress conditions like water deficit or
salinity (B), gene expression of AtSLAH1 is strongly inhibited by an abscisic acid (ABA)-dependent
regulatory pathway. This favors the formation of SLAH3/SLAH3 homomers, which significantly
reduces the Cl− conductance of SLAH3, decreasing xylem Cl− translocation but maintaining xylem
NO3

− translocation. The schematic representation describes the regulatory mechanism described by
Cubero-Font et al. [176].

The stelar-localized AtNPF2.4 PM protein has also been identified as a transporter that facilitates
the root-to-shoot transfer of Cl−, regulating its accumulation in the shoot in response to salt stress by the
rapid down-regulation of the AtNPF2.4 gene [152]. In addition, according to their electrophysiological
features, the NO3

− transporters AtNPF7.2 and AtNPF7.3 could also regulate xylem Cl− retrieval and
loading, respectively [8]. It should be noted that inward currents elicited by SLAH1/SLAH3, around
−10,000 nA [20,176], are significantly higher than those elicited by NPF transporters. When the Xenopus
oocyte PM was clamped at −100 mV, currents elicited by SLAH1/SLAH3 were 20 times greater than
those elicited by AtNPF2.4 (−500 nA; [152]) and 100 times greater than those elicited by the close
homolog AtNPF2.5 (−100 nA; Section 4.1; [153]). Taking into account that the resting membrane
potential of plant cells usually have values between −80 and −200 mV [187], S-type channels have a
prominent role in mobilizing large anion currents from plant cells in comparison with NPF transporters.
The function of NPF transporters in Cl− excretion from plant cells could be relevant under specific
physiological conditions, possibly complementing those of S- and R-type channels. However, this
hypothesis requires further testing.

It is worth mentioning the variability of the NO3
−/Cl− selectivity in the root-to-shoot Cl−

translocation process when different plant species or varieties are compared [20]. Based on the
concentration of anions in the xylem sap, the NO3

− translocation efficiency is similar in two ecotypes of
A. thaliana (WS and Col-0) and in tobacco (Nicotiana tabacum cv Petit Havana) plants. However, the Cl−
translocation efficiency is 5−7 times higher and the NO3

−/Cl− selectivity 5−8 times lower in tobacco
plants compared to the Arabidopsis ecotypes WS and Col-0, respectively, confirming the variability of
the Cl− inclusion/exclusion trait when different glycophyte species are compared [20].

Given the strong expression of AtCCC in the root vasculature, the cation Cl− cotransporter protein
has been proposed to mediate the electroneutral co-transport of Na+:K+:2Cl− between xylem-associated
cells and xylem vessels, possibly promoting Cl− retrieval from the xylem under salt stress conditions [56].
However, the AtCCC localization at the Golgi/trans-Golgi network [188], the possible difficulty of
removing Cl− from the xylem through the cation-coupled mechanism imposed by stoichiometric
restrictions [80], and its strong implication on plant developmental processes have questioned its
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direct involvement in xylem Cl− retrieval. Despite these uncertainties, other evidences still support
a role of CCC in regulating long-distance ion transport: (i) The rice OsCCC1 was mainly localized
to the plasma membrane [57]; (ii) complementation of the Arabidopsis ccc mutant with the grapevine
VviCCC gene reduced shoot Cl− and Na+ content to wild-type levels after growing plants in 50 mM
NaCl [188]; and (iii) pharmacological studies with bumetanide, the diuretic inhibitor of mammalian
and plant CCCs, showed a reduction in the Na+ and K+ efflux from the root stelar tissue in barley [189].
New experiments are required to allow the reconciliation of CCC membrane localization with protein
function in order to more clearly establish the biological role of plant CCCs [122]. Similar to the role
attributed to CCC in the Golgi/trans-Golgi network [188], other endomembrane transporters have been
proposed to somehow regulate long-distance ion transport. The Cl− channels AtALMT9, GmCLC1,
and GsCLC2, involved in vacuolar Cl− compartmentalization, and the GmSALT3/CHX1 cation/H+

exchanger from the endoplasmic reticulum have been proposed to regulate shoot Cl− accumulation
and salinity tolerance (see Section 4.3). In particular, the capacity of vacuolar Cl− loading in vascular
cells apparently plays a crucial role in controlling whole-plant ion movement rapidly after the onset of
salinity [70].

4.3. Cl− Compartmentalization and Subcellular Cl− Transport

4.3.1. Vacuolar Transporters

Since the vacuole is the organelle responsible for generating cell turgor, different transport
mechanisms that facilitate intracellular compartmentalization have been located in the tonoplast. The
vacuole storage capacity, higher than 40 mM Cl− in glycophyte plants [190], regulates intracellular
ion homeostasis and influences whole-plant ion accumulation and distribution [70]. Tonoplast
DeToXification efflux carrier (DTX)/Multidrug And Toxic Compound Extrusion (MATE) proteins
are widely known transporters of organic compounds. Recently, two MATE transporters, AtDTX33
and AtDTX35, have been shown to elicit large voltage-dependent inward Cl− currents across the
tonoplast [191]. These two channels are highly expressed in diverse Arabidopsis tissues, including root
hairs and guard cells, driving anion influx into the vacuole during cell expansion and pollen tube
elongation [191]. The characterization of these channels has enhanced the relevance of Cl− homeostasis
in the regulation of osmolarity, turgor, and cell elongation in plants.

Another protein family largely involved in intracellular anion (NO3
− or Cl−) transport is the

ChLoride Channel (CLC) family. Different CLC proteins function as anion-selective channels or
as anion/H+ exchangers. AtCLCa has been characterized as a two-anion/H+ exchanger that drives
the active uptake of anions into vacuoles of Arabidopsis mesophyll and guard cells, with higher
selectivity for NO3

− over Cl− [71]. CLCa plays an important role in the stomatal function, loading
anions into the vacuole of guard cells to open stomata in response to light and releasing them during
ABA-induced stomatal closure. Inward or outward direction of anion fluxes is regulated through
OST1-dependent phosphorylation of the channel [192]. Similarly to AtCLCa, AtCLCb functions as an
NO3

−/H+ antiporter in the vacuole, with higher selectivity for NO3
− over Cl− [193]. However, the

functional characterization of clcb mutant lines is still required to adequately define the biological
function of the CLCb transporter. A soybean homolog of the Arabidopsis AtCLCa/AtCLCb transporters,
GmCLC1, is a vacuolar pH-dependent Cl− transporter (probably a H+/Cl− antiporter) that controls
shoot Cl− accumulation and NaCl tolerance [194–196]. This is another interesting example where
the Cl− versus NO3

− selectivity of an anion transporter varies among species. AtCLCc also localizes
to the tonoplast and is possibly involved in vacuolar Cl− compartmentalization in accordance to its
selectivity motif [197]. Overexpression of the AtCLCc gene leads to increased Cl− accumulation and
higher salt stress tolerance in A. thaliana [198]. AtCLCc is mainly expressed in guard cells, pollen
grains, and roots, with clcc mutants unable to regulate the turgor changes in guard cells [199]. Vacuolar
GsCLC-c2 from wild soybean (Glycine soja) transports both Cl− and NO3

− with similar affinities,
being the affinity for Cl− independent of pH [200]. Similarly to GmCLC1, overexpression of GsCLC-c2
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increases Cl− accumulation in the root, improving Cl− exclusion from the shoot and increasing NaCl
resistance [200]. AtCLCg, the closest homolog of AtCLCc, also encodes a vacuolar transporter that is
strongly expressed in mesophyll cells, hydathodes, and phloem within the leaf [201]. As AtCLCc,
AtCLCg plays a physiological role in plants during salt stress and both genes act in the same pathway
through reciprocal control of their expression [201].

Regarding the ALMT family, AtALMT9 mediates Cl− influx into the vacuole of mesophyll cells,
guard cells, and roots [69,202]. Baetz et al. [70] have reported high expression of ALMT9 in both the
root and shoot vasculature and a possible role in the regulation of long-distance transport of Cl− and
Na+.

4.3.2. Golgi Transporters

In the Golgi apparatus, the putative H+/Cl− antiporters AtCLCd and AtCLCf are present in
the trans- and cis-Golgi, respectively, where they have been suggested to participate in luminal pH
regulation [203,204]. As explained in Section 3.7, the role of H+/Cl− in endosomal and lysosomal
membranes of animal cells goes apparently beyond the regulation of pH by counterbalancing H+

charges [101,102], but alternative functions still remain unknown in plant cells. The grapevine and
Arabidopsis CCC localize to the Golgi and Trans-Golgi Network, but the role played by this transporter
in this cell compartment is unknown (See Section 4.2).

4.3.3. Chloroplast Transporters

As an essential micronutrient, Cl− plays a necessary function in photosynthesis, stabilizing
the oxygen-evolving complex of photosystem-II (see Section 2). At macronutrient levels, Cl−

improves chloroplast performance through different mechanisms: (i) Improving the mesophyll
gm ([23]; Section 3.6); and (ii) as the major counteranion, regulating photosynthetic electron
transport [97–99,205,206]. It is therefore not surprising that the chloroplast envelope and the thylakoid
membrane exhibit a high permeability for Cl− [93,206]. The Arabidopsis AtCLCe channel is targeted
to the thylakoid membrane of chloroplasts [204,207]. Although AtCLCe was initially reported to be
important in maintaining normal cellular NO3

− levels [161,193], it has also been characterized as a Cl−

channel [97]. Considering the amino acid sequence in the anion selectivity filter, CLCe is expected to
function as a channel rather than a Cl−/H+ transporter [97,208]. After transition from light to dark,
AtClCe plays a major role in driving Cl− export into the thylakoid lumen [97]. After transition of
dark to light, the Voltage-dependent Cl− anion Channel AtVCCN1 (and probably AtVCCN2) [98]
fine-tunes the H+-motive force across the thylakoid. AtVCCN channels are important for adjusting
electron transport and photosynthesis to fluctuating light and environmental conditions [96,98–100].
Localization of AtCLCf in the chloroplast envelope has also been proposed [207]. This finding may be
compatible with the previously mentioned Golgi localization [100], since a synapse-like interaction
between the chloroplast and Golgi body has been reported [209].

4.3.4. Endoplasmic Reticulum Transporters

The soybean cation/H+ exchanger of the Cation/Proton Antiporter 2 (CPA2) family named
GmSALT3/CHX1 localizes to the endoplasmic reticulum of root vasculature-associated cells. The
characterized members of this family are considered to be K+/H+ exchangers [8]. While GmSALT3
affects Na+ exclusion and salt tolerance in soybean [210], it also promotes Cl− exclusion from the
shoot [211,212]. Given that GmSALT3/CHX1 are considered to be K+/H+ exchangers, the mechanism
by which they regulate Cl− (and Na+) homeostasis remains unknown.

4.4. Cl− Redistribution

During plant growth, Cl− is translocated from the root to the shoot via the xylem and, afterwards,
redistributed via the phloem. Long-distance transport in the phloem takes place in the sieve tubes, with
the sieve element/companion cell complex as the functional unit in angiosperms [213]. The phloem
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loading of Cl− mainly occurs in the stem and leaves, being transported along the phloem tubes to the
sink through an osmotic potential gradient [12,214]. Within the phloem, Cl− is relatively mobile [215]
and its recirculation in plants (defined as the ratio of phloem/xylem nutrient fluxes) is about 20%, with
the phloem Cl− concentration positively correlating with the Cl− of the nutrient solution [7]. In the
phloem sap, Cl− concentration seems to play a role in phloem loading and unloading of sugars [68,216].

Under salinity, ion movement across cellular membranes is tightly regulated, being the efficiency
of Cl− transport out of sensitive tissues an important factor that could contribute to salt tolerance [80].
Shoot Cl− unload through the phloem pathway may constitute a major regulatory mechanism
controlling leaf Cl− exclusion. However, the Cl− reallocation from shoot-to-root may have little effect in
Cl− exclusion since, in citrus, the rootstocks rather than the grafted variety determines the magnitude
of Cl− exclusion [18,217,218]. Furthermore, recirculation of ions to the roots via the phloem does not
significantly contribute to the reduction of Na+ and Cl− content in leaf tissue [177,219]. Nowadays,
although different NO3

− transporters involved in its redistribution within the plant have been identified
in Arabidopsis plants, the identification of membrane transport proteins involved in Cl− allocation
through the phloem remains unexplored so far.

As a synopsis of this section, a table summarising functional properties of Cl− transport proteins
potentially involved in Cl− nutrition and/or long-distance transport, is given in Table 3.

Table 3. Functional properties of Cl− transport proteins potentially involved in Cl− nutrition: net
uptake and/or long-distance transport.

Protein Name Localization Cell Function Biological Role References

ZmNPF6.4
• Plasma membrane of

root and shoot tissues

• High affinity Cl− selective
H+/Cl− symporter

• Cl− influx
• Undetermined [147]

ZmALMT1
• Plasma membrane of

mature root tissues

• R-type NO3
− > sulfate >

Cl− selective
anion channel

• Anion efflux

• Undetermined [167]

AtNPF2.5
• Plasma membrane of

root cortical cells
• Low magnitude Cl−

cell efflux

• Cl− exclusion
through excretion
to the rhizosphere

• Salinity tolerance?

[153]

AtSLAH3

• Plasma membrane of
guard cells

• Plasma membrane of
Xylem-pole
pericycle cells

• S-type NO3
− > Cl−

selective anion channel
• High magnitude NO3

−

and Cl− cell efflux

• Stomatal closure
• Root xylem

loading of NO3
−

and Cl−
[45,176]

AtSLAH1
• Plasma membrane of

Xylem-pole
pericycle cells

• Electrically silent S-type
anion channel

• Regulation of
SLAH3 activity

• Regulation of
root-to-shoot
Cl− conductance

[176,184]

AtNPF2.4
• Plasma membrane of

root stelar cells
• Low magnitude Cl−

cell efflux
• Root-to-shoot

Cl− translocation [152]
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Table 3. Cont.

Protein Name Localization Cell Function Biological Role References

AtALMT12

• Plasma membrane of
guard cells

• Root vasculature

• R-type malate-activated
NO3

− > Cl− selective
anion channel

• Outward NO3
− and Cl−

cell efflux

• Stomatal closure
• Undetermined

root function
[185,186]

AtCCC

• Golgi and
trans-Golgi network

• Plasma membrane?
• Root vasculature and

many other tissues

• Cl−-dependent
Na+/K+ Cotransporter

• Directly or
indirectly affects
root-to-shoot
Cl− distribution

• Developmental
and other
undetermined functions

[56,122]

OsCCC1
• Plasma membrane of

multiple root and shoot
cell types

• Cl−-dependent
Na+/K+ Cotransporter

• Regulation of Cl−,
Na+ and K+

homeostasis and
cell
osmotic potential

[57]

AtALMT9

• Tonoplast of guard cells
• Root and

shoot vasculature

• R-type malate-activated
vacuolar Cl− channel

• Cl− homeostasis during
early salinity stress

• Required for
stomatal opening

• Regulation of ion
xylem loading

[69,70]

AtCLCc
• Tonoplast of root, pollen

grain and guard cells
• vacuolar

Cl− compartmentalization

• Stomatal function
• Regulations of

shoot
Cl− accumulation?

• Salinity tolerance

[198,199]

AtCLCg

• Tonoplast of
mesophyll cells

• vascular tissue

• vacuolar
Cl− compartmentalization

• Regulations of
shoot
Cl− accumulation?

• Salinity tolerance

[201]

GmCLC1 • Tonoplast
• vacuolar pH-dependent

Cl− compartmentalization
• H+/Cl− Antiporter

• Root
Cl− sequestering

• Regulations of
shoot
Cl− accumulation

• Salinity tolerance

[194–196]

GsCLC-c2 • Tonoplast

• vacuolar channel with Cl−

> NO3
− affinity

• Cl− and
NO3

− compartmentalization

• Regulations of
shoot
Cl− accumulation?

• Salinity tolerance

[200]

GmSALT3/CHX1
• Endoplasmic reticulum

of root
vasculature-associated cells

• Unknown

• Regulations of
shoot
Cl− accumulation?

• Salinity tolerance

[210–212]

5. Hormonal Regulation and Signal Transduction of Cl− Nutrition

Very little is known about hormonal regulation and signal transduction processes that control Cl−

nutrition at the whole-plant level, including root Cl− uptake, long-distance transport, relocation, and
Cl− transport readjustment to improve plant acclimatization to changing environmental conditions.
Signaling processes that regulate Cl− homeostasis have been characterized more extensively in stomatal
guard cells and, to a lesser extent, in the growing pollen tube, with excellent reviews covering the
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transporters involved and how they are regulated [127,128,220]. We therefore present only a brief
summary according to the information present in the cited reviews. In guard cells, ABA perception by
ABA receptors PYrabactin Resistance/PYrabactin-Like or Regulatory Components of ABA Receptor
(PYR/PYL/RCAR) inhibits phosphatases from the PP2C and PP2A family. This, in turn, prevents the
deactivation of: (i) Ca2+-independent kinases (SnRK2.2, SnRK2.3, and OST1); (ii) the Ca2+-dependent
kinase CIPK23/CBL1; and (iii) anion channels (SLAC1, SLAH3, and ALMT12). ABA responses are
accompanied by a rise in cytosolic Ca2+ that activates CIPK23/CBL1 or Ca2+-dependent kinases, which
in turn results in activation of S-type anion channels SLAH3 and SLAC1. Anions efflux depolarizes
the PM, thereby activating voltage-gated outward rectifying K+ channels for K+ efflux. The loss of
osmolytes and water initiates turgor-driven stomatal closure. In parallel, stomatal opening is prevented
by the deactivation of inward rectifying K+ channels through direct interaction of the K+ channel with
SLAC1 or SLAH3. Pollen tube growth relies on the activity of an overlapping set of anion channels
(SLAH3, ALMT12, ALMT13, and ALMT14) controlled by similar Ca2+-dependent kinases. Binding of
LURE1 to its receptors (MDIS1/MIK1/MIK2 or PRK6/PRK3) probably changes anion channel activity.

ABA signaling has been also proposed to activate AtSLAH3 in the epidermal cells of A. thaliana
roots [86]. This mechanism that triggers growth inhibition of germinating seeds under abiotic
stress involves the core ABA signaling elements described in guard cells: PYR/PYL/RCAR ABA
receptors, ABA-inhibited protein-phosphatases from the PP2C family, and ABA-activated protein
kinases (SnRK2.2 and SnRK2.3). The kinases directly inhibit the C-terminal domain of the PM
H+-ATPase AHA2, although it is not clear whether they interact with AtSLAH3. This mechanism
is based on the inhibition of the PM H+-ATPase resulting in cytosolic pH acidification, and on the
decrease in cytosolic K+ and Cl− resulting in loss of turgor [86]. Conversely, in maize coleoptile, auxin
stimulates the PM H+-ATPase [51,221] resulting in pH alkalinization, and also stimulates K+ and Cl−

influx, probably through inwardly rectifying K+ channels and active H+/Cl− symport mechanisms,
respectively, allowing cell turgor adjustment and elongation [51]. This mechanism is similar to that
proposed for turgor recovery in osmotically-stressed Arabidopsis epidermal root cells [37,222]. From
this information, we can deduce that adequate Cl− nutrition requires an active PM ATPase that favors
Cl− uptake through secondary transport. This process would be stimulated by the phytohormone
auxin, and inhibited by ABA.

On the contrary, the activity of ion channels from xylem-pole pericycle cells involved in the
translocation of K+ and Cl− ions into xylem vessels is negatively regulated by ABA. To improve
drought and salt stress acclimatization, ABA increases solute accumulation within the root by
significantly inhibiting the release of ions into the xylem, but having little effect on ion influx into the
root [223–225]. In maize root stele, water deficit and ABA down-regulate the activity of ion channels
involved in xylem loading of inorganic ions, such as the Stelar K+ Outwardly-Rectifying channel
SKOR [226,227] and the xylem-associated X-QUAC involved in xylem loading of NO3

− and Cl− [175].
This inhibition is apparently mediated by an ABA-dependent rise in free cytosolic Ca2+. In addition,
transcription in xylem-pole root pericycle cells of the Arabidopsis AtSKOR and AtSLAH1 genes is
strongly down-regulated by water deficit and ABA ([176,228] and Figure 5).

6. Concluding Remarks and Future Prospects

The levels at which Cl− accumulates in plants, typical of a macronutrient, and the consequent
improvement of plant performance have led to its designation as beneficial macronutrient. Tobacco
plants with macronutrient Cl− levels display more efficient use of water, nitrogen, and carbon/energy.
Significant WUE improvement results from concurrent stimulation of growth and reduction of water
use. Despite the Cl−-dependent improvement of water balance and water relations, a specific effect of
Cl− on root hydraulic conductivity is an issue yet unresolved. WUE enhancement by macronutrient
Cl− nutrition probably increases the ability of plants to withstand water deficit, a hypothesis that must
be explored. Although increased dry biomass of Cl−-treated plants clearly points to a more efficient use
of N, direct evidence is still required to confirm whether Cl− improves NUE. It must be also clarified
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if NUE is favored by an efficient compartmentalization of NO3
− or as a result of NO3

− replacement
by Cl− in the vacuole. The positive effect of Cl− on chloroplast performance may be due to various
factors like the regulation of thylakoid swelling, improved photosynthetic electron transport, and
photoprotective mechanisms. More research is required to clarify these issues, as well as whether
Cl− stimulates chloroplast biogenesis. Chloride promotes cell elongation as a consequence of better
and "cheaper" osmoregulatory and turgor-generating ability. That is apparently the reason why auxin
stimulates the influx of Cl− into plant cells and why ABA may have the opposite effect. It is therefore
important to confirm these points and to accurately determine the signaling pathways that regulate
these processes, as well as the inhibition by ABA of ion xylem translocation. We expect that many
crops could benefit from Cl− fertilization to a higher extent than previously believed, resulting in the
improvement of crop performance, stress resilience, and yield. Further research is also required to
clarify the role of Cl− in vesicular trafficking and to confirm whether Cl− homeostasis regulates the
plant immunity response.

The recent identification of transporters involved in cell Cl− influx will give a decisive boost to
a better understanding of Cl− nutrition. For this reason, it will be very important to identify which
residues determine Cl− selectivity in the substrate-binding pocket of NPF proteins. Natural variability
of the Cl− inclusion/exclusion rates exhibited by different plant species and varieties suggests the
occurrence of an array of genes and alleles responsible for different NO3

− versus Cl− selectivities (as
observed for different members of the NPF and CLC families). Differential NO3

−/Cl− selectivities
are expected to occur at different levels: The root–soil, the symplast–xylem, and the cytosol–vacuole
interfaces. Characterization of Cl− channels implicated in releasing Cl− to the rhizosphere, which
fine-tunes net Cl− uptake in the root, is another issue that requires attention. Genes encoding these
channels, as well as R-type channels involved in root-to-shoot Cl− translocation and PM transport
proteins involved in Cl− allocation through the phloem, remain unexplored so far. The function of NPF
transporters from the NAXT subfamily involved in Cl− excretion from plant cells could be relevant
under specific physiological conditions, possibly complementing those of S− and R-type channels.
However, this hypothesis requires further research.

New experiments are also required to better understand the localization and biological function of
CCC transporters in order to clearly establish their biological functions. This and other endomembrane
Cl− transporters like AtALMT9, GmCLC1, GsCLC2, and possibly GmSALT3/CHX1 involved in
intracellular Cl− homeostasis have been proposed to regulate shoot Cl− accumulation and salinity
tolerance. In particular, intracellular Cl− compartmentalization in vascular cells apparently plays a
crucial, but still obscure, role in controlling whole-plant ion (e.g., Cl− and Na+) distribution. Finally,
more research on hormonal regulation and signal transduction processes that control Cl− nutrition at
the whole-plant level is urgently required.
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