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Abstract
Developing genomic insights is challenging in nonmodel species for which resources 
are often scarce and prohibitively costly. Here, we explore the potential of a recently 
established approach using Pool‐seq data to generate a de novo genome assembly 
for mining exons, upon which Pool‐seq data are used to estimate population diver‐
gence and diversity. We do this for two pairs of sympatric populations of brown trout 
(Salmo trutta): one naturally sympatric set of populations and another pair of popula‐
tions introduced to a common environment. We validate our approach by compar‐
ing the results to those from markers previously used to describe the populations 
(allozymes and individual‐based single nucleotide polymorphisms [SNPs]) and from 
mapping the Pool‐seq data to a reference genome of the closely related Atlantic 
salmon (Salmo salar). We find that genomic differentiation (FST) between the two in‐
troduced populations exceeds that of the naturally sympatric populations (FST = 0.13 
and 0.03 between the introduced and the naturally sympatric populations, respec‐
tively), in concordance with estimates from the previously used SNPs. The same level 
of population divergence is found for the two genome assemblies, but estimates of 
average nucleotide diversity differ (𝜋̄ ≈ 0.002 and 𝜋̄ ≈ 0.001 when mapping to S. trutta 
and S. salar, respectively), although the relationships between population values are 
largely consistent. This discrepancy might be attributed to biases when mapping to 
a haploid condensed assembly made of highly fragmented read data compared to 
using a high‐quality reference assembly from a divergent species. We conclude that 
the Pool‐seq‐only approach can be suitable for detecting and quantifying genome‐
wide population differentiation, and for comparing genomic diversity in populations 
of nonmodel species where reference genomes are lacking.
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1  | INTRODUC TION

Understanding the importance of genetic variation for species' per‐
sistence continues to be a major research goal in population genetic 
and evolutionary studies (Allendorf & Ryman, 2002; Bernatchez, 
2016; Soulé & Wilcox, 1980). Quantifying genetic variation within 
and among populations is important for conservation and manage‐
ment (Fuentes‐Pardo & Ruzzante, 2017; Ovenden, Berry, Welch, 
Buckworth, & Dichmont, 2015; Volckaert, 2015), and for under‐
standing mechanisms of local adaptation, hybridization, and intro‐
gression (Allendorf & Hard, 2009; Waples, Punt, & Cope, 2008).

Developing population genetic insights from enough markers 
to represent whole genomes quickly and cost‐effectively is chal‐
lenging in nonmodel species (Schlötterer, Tobler, Kofler, & Nolte, 
2014). An alternative to whole‐genome sequencing (WGS) for such 
species is subsampling of the genome, which provides insights into 
genome‐level variation at comparably lower cost per individual, 
thereby enabling assessment across more individuals (Davey et al., 
2011; Gagnaire, Pavey, Normandeau, & Bernatchez, 2013; Martinez, 
Buonaccorsi, Hyde, & Aguilar, 2017; Wang, Shashikant, Jensen, 
Altman, & Girirajan, 2017). Another alternative, while staying at the 
genome‐wide scale, is the pooling of individuals for WGS. This en‐
ables the sampling of many chromosomes per base pair and thereby 
accurate estimates of the site frequency spectrum, at a low individ‐
ual cost (Kofler, Langmüller, Nouhaud, Otte, & Schlötterer, 2016).

Reference genomes provide crucial information needed for or‐
ganizing, orienting, and annotating WGS reads. When there is none 
available, as is the case for many nonmodel organisms, the assem‐
bly of a closely related species is often used. Relatedness between 
focal and reference species has implications for the representation 
of markers found (Recknagel, Jacobs, Herzyk, & Elmer, 2015). As an 
alternative to using reference genomes of closely related species or 
for situations when no such reference is available, we here apply a 
newly developed exon mining via Pool‐seq approach to acquire a 
draft genome assembly both for the focal species and for single nu‐
cleotide polymorphism (SNP) frequency estimation. The approach 
leverages the power of Pool‐seq to subsample the genome to obtain 
high‐resolution genomic insights quickly and at a reasonable cost 
(Neethiraj, Hornett, Hill, & Wheat, 2017). This pipeline has been 
utilized for elucidating the genomics underlying phenotypic differ‐
ences between populations of several butterfly species (Keehnen, 
Hill, Nylin, & Wheat, 2018; Pruisscher, Nylin, Gotthard, & Wheat, 
2018; Woronik & Wheat, 2017).

Pool‐seq data generate highly fragmented assemblies, and in 
order to reduce fragmentation, the method explored here uses 
transcriptome data from the same species to scaffold contigs that 
are annotated to nonoverlapping regions of the same protein. The 
genome assembly is subsequently reduced to only contain scaf‐
folds with identified and unique gene models (including introns and 
untranslated regions). Pool‐seq data from populations are mapped 
against the final gene‐models‐only genome assembly which con‐
tains both protein‐coding and noncoding sequences, for estimation 
of population diversity and differentiation (akin to mapping RNA‐seq 

data against a de novo transcriptome of the same data). This method 
(Neethiraj et al., 2017) has similarities with that of Therkildsen and 
Palumbi (2017) who mapped Pool‐seq reads to a reference tran‐
scriptome. In our case, we generate a transcriptome from published 
RNA‐seq data and use it to scaffold and annotate a draft genome 
assembly from Pool‐seq data.

We explore the Pool‐seq‐only approach of Neethiraj et al. (2017) 
using the brown trout (Salmo trutta) which belongs to the family 
Salmonidae that is characterized by large genomes (c. 3 Gbp) with 
the added complexity of a whole‐genome duplication event that 
occurred roughly 90 million years ago (MYA) followed by subse‐
quent, and ongoing, rediploidization (Berthelot et al., 2014; Lien et 
al., 2016; Nugent, Easton, Norman, Ferguson, & Danzmann, 2017). 
Currently, there are genome assemblies available for Atlantic salmon 
(Salmo salar; Davidsson et al., 2010; Lien et al., 2016), rainbow 
trout (Oncorhynchus mykiss; Berthelot et al., 2014), chinook salmon 
(Oncorhynchus tshawytscha; Christensen, Leong, et al., 2018; Narum, 
Genova, Micheletti, & Maass, 2018), Arctic charr (Salvelinus alpinus; 
Christensen, Rondeau, et al., 2018), coho salmon (Oncorhynchus 
kisutch; GenBank assembly accession: GCA_002021735.1), and 
grayling (Thymallus thymallus; Sävilammi et al., 2019). The separation 
of brown trout and its closest relative the Atlantic salmon occurred c. 
6–7 MYA (Pustovrh, Snoj, & Bajec, 2014), and nucleotide divergence 
between the two is below 2% (Leitwein et al., 2017). However, chro‐
mosomal rearrangements (Leitwein et al., 2017), number of chromo‐
somes (S. trutta 2n = 80, Phillips & Ráb, 2001; S. salar 2n = 54–58, 
Brenna‐Hansen et al., 2012), and degrees of residual tetrasomy (Lien 
et al., 2016) differ significantly between the two species.

Similar to other species of Salmonidae, the brown trout is highly 
substructured (Laikre, 1999; Lerceteau‐Köhler, Schliewen, Kopun, 
& Weiss, 2013; Ryman, 1981; Ryman, Allendorf, & Ståhl, 1979; 
Vøllestad, 2018). Genetically distinct populations maintain separa‐
tion across limited geographic areas (Palmé, Laikre, & Ryman, 2013; 
Stelkens, Pompini, & Wedekind, 2012), and the disparity of habitats 
occupied by brown trout has enabled population differentiation 
along a variety of phenotypic axes (Hansen, 2002; Hindar, Ryman, & 
Utter, 1991; Meier, Hansen, Bekkevold, Skaala, & Mensberg, 2011; 
Meier et al., 2014; Palm & Ryman, 1999). Understanding the role 
of genetic variation for sustainable management and conservation 
monitoring is crucial for this socioeconomically important species 
(Charlier, Laikre, & Ryman, 2012; Hansen, Ruzzante, Nielsen, & 
Mensberg, 2000; Leitwein, Gagnaire, Desmares, Berrebi, & Guinand, 
2018; Petereit et al., 2018).

Our aim is to explore the potential of an exon mining through 
Pool‐seq approach to characterize the genomic variation and dif‐
ferentiation among brown trout populations. We ask whether this 
approach is suitable for answering population genomics questions 
by studying two pairs of sympatric populations for which we can 
make well informed hypotheses based on previous work (Andersson, 
Jansson, et al., 2017; Andersson, Johansson, Sundbom, Ryman, & 
Laikre, 2017; Palm & Ryman, 1999; Palmé et al., 2013). One pair of 
populations is naturally and cryptically sympatric while the other 
consists of two experimentally released populations, and we expect 

info:ddbj-embl-genbank/GCA_002021735.1


11450  |     KURLAND et al.

differentiation to be greater among the latter. We use Pool‐seq data 
from one of these populations to generate a de novo brown trout as‐
sembly, and then map the Pool‐seq data to this reference to estimate 
pool‐specific diversity and pairwise differentiation. These results are 
compared to the differentiation found from previous analyses of the 
same populations using allozymes and SNPs (Andersson, Jansson, et 
al., 2017; Andersson, Johansson, et al., 2017; Palm & Ryman, 1999; 
Palmé et al., 2013). We further contrast the outcome from mapping 
the Pool‐seq data to our draft assembly to mapping against the ref‐
erence genome of a related species by repeating the analyses for 
Pool‐seq data mapped to an available Atlantic salmon genome (Lien 
et al., 2016).

2  | MATERIAL S AND METHODS

2.1 | Populations studied

Two pairs of sympatric brown trout (Figure 1) populations inhabiting 
small freshwater lakes in the mountainous regions of the County of 
Jämtland, central Sweden, were studied. One pair consists of two 
populations that co‐occur in a natural setting due to an artificial 
release to this environment whereas the other pair is comprised of 
naturally sympatric populations. The first pair of populations was 
collected from the lake system Bävervattnen (Figure 2, Appendix 
S1, Figure S1) into which fish had been introduced as fry in 1979 
for experimental purposes. The released individuals were from two 
separate populations that had been isolated from each other since 
the last glaciation (c. 5,000–9,000 years ago) and were ecologically 
diverged and genetically marked by contrasting homozygosity at 
the allozyme locus AGP‐2 (Palm & Ryman, 1999). This pair will be 
referred to as the introduced populations I and II. The second pair 
of populations comes from the lake system Trollsvattnen (Figure 2, 
Appendix S1) where the two main lakes are inhabited by a popula‐
tion pair that has previously been described as cryptically sympatric 
because no phenotypical or ecological difference between them has 
been possible to detect in spite of extensive screenings (Andersson, 
Jansson, et al., 2017; Andersson, Johansson, et al., 2017; Palmé et 
al., 2013). Their existence was initially detected through a consistent 

heterozygote deficiency at multiple allozyme loci (Jorde & Ryman, 
1996), later validated by extensive allozyme monitoring showing 
consistent population divergence as measured by the fixation index 
(FST) over several decades (Palmé et al., 2013) and by a 3  K SNP 
panel (Andersson, Jansson, et al., 2017). This pair of populations will 
henceforth be referred to as the natural populations A and B.

2.2 | Samples

We used n = 50 individuals from each of the two introduced popula‐
tions (Palm & Ryman, 1999) caught during 1988–1995; frozen tissue 
had been stored since collection. The fish were assigned to either of 
the introduced populations based on their allozyme genotype at the 
marker locus AGP‐2 and their age based on otolith readings. Only 
individuals representing the parental generation (P) or the F1 gen‐
eration for which population assignment (no hybrids) was possible 
using the AGP‐2 genotype were considered. A total of 41 individuals 
representing the P generation were available, and 59 F1 fish were 
randomly selected out of c. 700 available fish to provide n = 50 per 
population.

The natural populations have been monitored for many years 
with access to thousands of fish. We used n  =  50 individuals per 
natural population collected during 2002–2007 and assigned to their 
respective population by Andersson, Jansson, et al. (2017) based 
on a STRUCTURE (Falush, Stephens, & Pritchard, 2003; Pritchard, 
Stephens, & Donnelly, 2000) analysis from 14 polymorphic allo‐
zyme loci and an assignment score above 0.8 (for more details, see 
Appendix S1).

2.3 | DNA extraction, library preparation, and  
sequencing

DNA was isolated from muscle tissue that had been stored at −80°C 
since sampling 1–3 decades ago using Qiagen's DNeasy Blood and 
Tissue Kit according to the manufacturer's protocol (Qiagen) with an 
additional RNase A treatment. DNA quality was assessed by visual 
inspection of DNA fragmentation on agarose gels and absorbance 
at 260/280. DNA with high molecular weight from each of 50 in‐
dividuals per population was quantified using fluorometry (Qubit; 
Thermo Scientific) and pooled at equal concentrations to achieve 
3 μg pooled genomic DNA in a volume in the range of 65–120 μl. The 
National Genomics Infrastructure (NGI), Uppsala, Sweden (Science 
for Life Laboratory), conducted the construction of PCR‐free paired‐
end libraries with an average insert size of 350 bp (TruSeq) followed 
by sequencing using read length 150 bp on an Illumina HiSeq 2000 
machine.

2.4 | Short‐read data preparation and de novo  
assembly

Illumina short reads from the four population pools were cleaned 
for adapters and low‐quality bases using BBDuk implemented in 
BBTools version 37.31 (http://sourc​eforge.net/proje​cts/bbmap/​). 

F I G U R E  1   The brown trout (Salmo trutta) from Swedish 
mountain lakes was used as a case study to explore the potential of 
a recently presented Pool‐seq‐only approach for gaining genomic 
insights in nonmodel species. Photograph by Anastasia Andersson

http://sourceforge.net/projects/bbmap/
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Pool‐seq short‐read data from natural population A were used to 
generate a draft de novo genome assembly using CLC Genomics ver‐
sion 5.5.1 with default settings: k‐mer size 20, bubble size 50, and 
minimum contig length 200.

2.5 | Transcriptome assembly

We used publicly available RNA‐seq data (Carruthers et al., 2018; 
https​://www.ncbi.nlm.nih.gov/sra/SRX34​21649​[accn]) from whole 
organism tissue of hatchery strain juveniles of undetermined sex 
(Table S1) to generate a S. trutta transcriptome. The paired‐end reads, 
from 8 accessions available at the time of study prior to the official 
release of the S.  trutta transcriptome, were cleaned for adapters in 
BBMap's implementation version 37.31 (http://sourc​eforge.net/proje​
cts/bbmap/​) following default recommendations. Rcorrector version 
2 (Song & Florea, 2015) was used at default settings to further filter 
the data for singleton kmers and ribosomal RNA filtered by BBDuk 
in the BBTools suite version 37.53 (http://sourc​eforge.net/proje​cts/
bbmap/​). The resulting data were used as input for a transcriptome 
assembly using Trinity version 2.5.1 (Grabherr et al., 2011) with de‐
fault parameters. The transcriptome assembly was then collapsed into 
unique protein sequences using the Evigene software (Gilbert, 2013). 
In order to assess its quality, we compared this unique protein set from 
S.  trutta to the Atlantic salmon protein sequence predictions from 
the available genome assembly (Lien et al., 2016; accession number 
GCF_000233375.1). Before analysis, salmon protein sequences were 

collapsed using CD‐hit into clusters of 90% identity, keeping only the 
longest member of each cluster for subsequent analysis; this is hereaf‐
ter referred to as the salar90 protein dataset. This approach is identi‐
cal to the clustering of UniRef (Suzek, Huang, McGarvey, Mazumder, 
& Wu, 2007) database to make the UniRef90 dataset, and in this case, 
it allows us to keep only the longest isoforms and only single mem‐
bers of recent gene duplications. By comparing the S. trutta protein 
sequences against this salar90 protein dataset, we quantitatively as‐
sessed how many genes we assembled compared to expected num‐
bers. We determined whether each gene was assembled at partial or 
full length by dividing the length of the assembled S. trutta protein by 
the length of the salmon homolog identified using BLASTP (e‐value 
cutoff 10e‐5; protein–protein BLAST; version 2.2.28+).

2.6 | Scaffolding, annotation, and quality 
assessment of the Pool‐seq de novo genome assembly

Scaffolding involves joining contigs that belong to nonoverlapping 
regions of the same protein and thus reduces assembly fragmen‐
tation. The Pool‐seq de novo assembly was scaffolded using the 
S.  trutta protein sequences via the MESPA pipeline (Neethiraj et 
al., 2017). MESPA uses the software SPALN version 2.1.4 (http://
www.genome.ist.i.kyoto-u.ac.jp/~aln_user/spaln/​; Gotoh, 2008) for 
protein to genome alignment, and then uses this output to guide 
further scaffolding per protein based on exons from a single pro‐
tein that are located on different scaffolds. Gene models for the 

F I G U R E  2   Map of study sites located in Hotagen Nature Reserve, Sweden. Circles indicate sampled lakes inhabited by introduced and 
naturally sympatric populations, respectively. Both waters are connected to the River Indalsälven which drains into the Baltic Sea c. 400 km 
from the study site

https://www.ncbi.nlm.nih.gov/sra/SRX3421649%5Baccn%5D
http://sourceforge.net/projects/bbmap/
http://sourceforge.net/projects/bbmap/
http://sourceforge.net/projects/bbmap/
http://sourceforge.net/projects/bbmap/
info:ddbj-embl-genbank/GCF_000233375.1
http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/spaln/
http://www.genome.ist.i.kyoto-u.ac.jp/~aln_user/spaln/
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resulting superscaffolded assembly are thus based on the S. trutta 
protein dataset. To avoid complications in mapping and variant call‐
ing caused by the partially tetraploid characteristics of the S. trutta 
genome, we used a collapsed version of the full Pool‐seq de novo as‐
sembly containing only scaffolds with identified gene models, and of 
those only retained regions with unique gene models. We used this 
haploid assembly for subsequent analyses of SNPs within or near our 
gene model annotations. The completeness of this draft S. trutta as‐
sembly was assessed based on gene content from near‐universal sin‐
gle‐copy orthologs using BUSCO version 1.22 (Simão, Waterhouse, 
Ioannidis, Kriventseva, & Zdobnov, 2015), with the library of ray 
finned fish proteins (Actinopterygii; Danio rerio) and default settings.

2.7 | Read mapping and quality filtering

Paired‐end short reads from each pool filtered for adapters and mini‐
mum base quality 20 were mapped to the draft S.  trutta assembly 
and the Atlantic salmon genome (Lien et al., 2016; accession number 
GCF_000233375.1). We tested three different mapping algorithms: 
BBMap version 37.31 (http://sourc​eforge.net/proje​cts/bbmap​), bwa 
mem available in bwa version 0.7.17 (Li & Durbin, 2009), and NextGenMap 
(NGM) version 0.5.4 (Sedlazeck, Rescheneder, & Von Haeseler, 2013). 
The mapping success for each algorithm was assessed in Qualimap ver‐
sion 2.2.1 (García‐Alcalde et al., 2012) before and after filtering the bam 
files at varying levels of mapping quality. Based on these comparisons 
(Table S2) and visual inspection of bam files in the Integrative Genomics 
Viewer (IGV; Robinson et al., 2011), bwa mem and filtering for mapping 
quality 20 were chosen for all subsequent analyses, trading off evenly 
distributed read coverage across the assembly with mapping accuracy.

Bam files with short‐read data mapped to the two genome assem‐
blies were filtered to keep only properly paired reads. Mpileup files 
were generated from these bam files using samtools version 1.6 (Li et 
al., 2009), filtering for mapping quality 20 and base quality 20, as well as 
invoking the parameter “‐B” to reduce false SNPs from misalignments. 
The mpileup files obtained from mapping to the S. trutta assembly were 
inspected for insertions or deletions (indels) using the identify‐genomic‐
indel‐regions.pl script in POPOOLATION2 version 1201 (Kofler, Pandey, 
& Schlötterer, 2011). Indels and 5 bp downstream and upstream every 
indel were subsequently removed using the filter‐pileup‐by‐gtf.pl tool 
from POPOOLATION2. Coverage with reads mapped to the S. salar ref‐
erence genome was highly uneven. Therefore, indels ≥32,766 bp had to 
be removed from the mpileup file using a custom script before running 
the scripts implemented in POPOOLATION2 which cannot handle in‐
dels of this size and larger. Read depth histograms were assessed for 
each bam file to define minimum and maximum depth thresholds for 
subsequent population genetic calculations (Appendix S2).

2.8 | Population genomic analyses

Population genomic variation was assessed for each pool using 
POPOOLATION version 1.2.2 (Kofler, Orozco‐ter Wengel, et al., 2011), 
including estimates of nucleotide diversity (π; Tajima, 1983) which 
quantifies the degree of polymorphisms at a locus within a population 

and Tajima's D (TD), which measures deviations from mutation–drift 
equilibrium at segregating sites due to selection or demographic events 
(Tajima, 1989). Since estimates of π and TD are sensitive to sequencing 
errors (Kofler, Orozco‐ter Wengel, et al., 2011), we subsampled each 
mpileup file to uniform coverage based on depth histograms (target‐
ing the mode of each pools' coverage distribution and omitting sites 
with coverage exceeding the mode +½ of the mode; Appendix S2) by 
running the subsample‐pileup.pl script without replacement (Kofler, 
Orozco‐ter Wengel, et al., 2011). The script Variance‐sliding.pl imple‐
mented in POPOOLATION was used to detect SNPs from subsampled 
mpileup files and to simultaneously calculate π (including invariant sites) 
and TD. Calculations were made for nonoverlapping 500‐bp windows 
across each of the assemblies, using a minor allele count of 2 for a 
SNP to be called and stringent depth filters for variant and invariant 
sites to be included (the mode of each pools' depth distribution ±½ of 
the mode; Appendix S2, Figures S2 and S3). Only windows of >90% 
coverage with data after applying depth and minor allele frequency 
filters were included in the analyses. All summary statistics were cal‐
culated and statistical tests were performed in R (R Core Team, 2017). 
A Kruskal–Wallis rank‐sum test for independence of π and TD with re‐
spect to populations was performed. If the null‐hypothesis of samples 
coming from the same distribution was rejected, Wilcoxon rank‐sum 
tests were performed between all pairs of populations with p‐values 
adjusted using Bonferroni correction. The scripts used for the popula‐
tion genomic analyses are available in Appendix S3.

The fixation index (FST; Nei, 1973) was estimated for each popula‐
tion pair in POPOOLATION2 version 1201 (Kofler, Pandey, et al., 2011). 
First, indel‐filtered mpileup files (not subsampled) were converted to 
the POPOOLATION2‐specific sync format using the script mpile‐
up2sync.jar. FST was calculated using the script fst‐sliding.pl with the 
following parameters, while simultaneously detecting SNPs. Variant 
and invariant sites with a read depth lower or higher than the thresholds 
identified from read depth histograms (the mode of the coverage distri‐
bution ±½ of the mode; Appendix S2) were excluded from the analyses, 
and a minor allele count of 3 was used as cutoff for a SNP to be called. 
FST was estimated for nonoverlapping windows to avoid increased sto‐
chastic error rates associated with small window size (Kofler, Pandey, et 
al., 2011). A range of window sizes (1 bp–5 kb) and window coverages 
with data after applying all quality filters (0.5–1.0) were tested before 
choosing a window size of 500 bp and restricting the analysis to win‐
dows of >90% coverage with data after applying depth and minor allele 
frequency filters (Appendix S2, Table S3). Using the same parameters 
as described above, FST was also obtained for noncoding and coding 
regions, the latter of which to enable a fairer comparison to results 
obtained from previously published allozyme data. A Kruskal–Wallis 
rank‐sum test for independence of pairwise FST values from the full as‐
sembly, coding regions, and noncoding regions was performed.

2.9 | Comparison to FST estimates from previously 
used markers

We compared FST values from Pool‐seq data mapped to the S. trutta 
assembly to previous divergence estimates using SNP genotyping of 

info:ddbj-embl-genbank/GCF_000233375.1
http://sourceforge.net/projects/bbmap
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individuals from the same populations (n  =  2,832 SNPs genotyped 
for 18 individuals and n = 2,852 SNPs genotyped for 30 individuals 
from each of the introduced and natural populations respectively; 
Andersson, Jansson, et al., 2017; L. Laikre & N. Ryman, unpublished 
data). All n = 18 individuals from each of the introduced populations 
were also included in the Pool‐seq samples from those populations. 
Similarly, the majority of the n = 30 individuals genotyped previously 
for the natural populations were included in the pools for those popu‐
lations (overlap of n = 27 and n = 28 for natural populations A and B, 
respectively). We identified the putative locations of these SNPs in 
the S. trutta assembly by blasting the sequence surrounding each SNP 
to the S. trutta assembly and retaining the best hits (BLASTN; version 
2.2.28+). For each location, we retrieved the corresponding FST value 
estimated in POPOOLATION2 per base pair for Pool‐seq data using 
BEDTools intersect version 2.25.0 (Quinlan & Hall, 2010). FST per 
locus for already available SNP data from individual genotyping had 
previously been calculated in GENEPOP version 4.0.7 (Rousset, 2008) 
but was recalculated here using Nei's (1973) FST = 1−HS/HT since this 
FST was used by POPOOLATION2 for the Pool‐seq data according to 
the manual. We also compared global FST estimates from allozymes 
and SNPs to our assembly‐wide and window‐based averages.

3  | RESULTS

3.1 | Transcriptome assembly

RNA‐seq data from whole organism tissue of hatchery strain juveniles 
were used (Carruthers et al., 2018) and removal of singleton kmers 
and rRNA from these raw data reduced the total number of paired‐
end reads by c. 6%, resulting in a total of 188 million (M) paired‐end 
reads (on average 47  M paired‐end reads per accession). The initial 
transcriptome assembly (254,432 contigs with an N50 of 1,779  bp 
and an average contig length of 963 bp) was reduced to 82,052 pro‐
tein‐coding contigs with an N50 of 1,077 bp, average contig length of 
600 bp, and total length of 49 Mbp in the final S. trutta protein dataset. 
Seventy‐eight percent of complete Actinopterygian core genes were 
recovered in our S. trutta transcriptome assembly. A total of 12,711 

(35%) of the proteins in the salar90 protein dataset were represented 
by nearly full‐length (>90%) sequences in our S. trutta protein dataset.

3.2 | De novo assembly of Pool‐seq data

Protein‐based superscaffolding of the S.  trutta assembly reduced 
fragmentation, as reflected in a reduced number of contigs and 
increased N50 (Table 1). Before scaffolding, we recovered 63,636 
S. trutta protein‐coding gene predictions including isoforms at near 
full length (>90%), and this number increased to 70,376 postscaf‐
folding. A total of 87,191 unique, that is, single‐copy, gene models 
were identified in the final, collapsed S. trutta assembly. These gene 
models were located on in total 38,888 scaffolds with an N50 of 
17,722 bp, and a total length of 446,412,000 bp (Table 1).

Of the 4,584 Actinopterygian single‐copy orthologs, the initial 
S.  trutta assembly had 58% complete (45% single‐copy and 14% 
duplicated), 20% fragmented, and 22% missing orthologs. After su‐
perscaffolding, 71% of matches were complete (59% single, 12% du‐
plicated), 12% fragmented, and 17% missing.

3.3 | Processing of short‐read data for population 
genomic analyses

On average, 69 giga base pairs (Gbp) of raw data were generated per 
population pool, corresponding to c. 9 M reads. After cleaning, 30% 
of reads (on average 2.8 M read pairs) mapped to the S. trutta gene 
models as proper pairs and c. 50% of reads mapped as pairs against 
the S. salar reference (on average 5.0 M read pairs; Table 2). Coverage 
of depth was lower for reads mapped to the S. salar reference (mode 
of depth distribution: ~50× to S. trutta, and ~45× to S. salar), which 
is nearly 6 times the size of the S. trutta assembly, and its annotation 
contains 97,918 gene model predictions. Although reads had been 
filtered for mapping quality 20, average mapping quality was 11 for 
reads mapped to S. salar due to the large proportion of reads that did 
not map (Table 2; mapping quality histograms in Figure S4). The edit 
distance between the reads and the reference was similar for both 
reference genomes (2.6%–2.7% and 2.9%, respectively; Table 2).

Metric

Prescaffolding 
genome assembly Postscaffolding MESPA genome assemblies

CLC assembly Full assembly Gene‐models‐only assembly

n (contigs) 1,096,446 1,085,382 38,888

N50 (bp) 5,944 6,194 17,722

Total contigs 
length (bp)

1,847,698,765 1,848,805,165 446,412,000

Percentage (%) 
of non‐ATGC 
charactersa

0.77 0.83 0.57

Note: The number (n) of contigs is specified but refers to the number of scaffolds in the annotated 
MESPA genome assemblies where contigs have been joined to form scaffolds. The gene‐models‐
only assembly is the S. trutta genome assembly used for population genomics in the present study.
aNon‐ATGC characters: for example, ambiguous nucleotides or unknown nucleotides (N). 

TA B L E  1   Genome assembly statistics 
for the de novo assembly of natural pool 
A from CLC Genomics version 5.5.1 and 
for the superscaffolded assemblies from 
MESPA (Neethiraj et al., 2017)
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3.4 | Population genomic analyses

On average, 53,538 SNPs were called in POPOOLATION from qual‐
ity‐filtered and subsampled mpileup files for each pool mapped 
against our constructed S.  trutta assembly (Table 3), and 231,548 
SNPs on average when mapping to the S. salar reference genome, 
taking depth (Appendix S2) and minor allele frequency filters into 
account for each site. Average nucleotide diversity, 𝜋̄, ranged be‐
tween 1.65 and 1.95 with the S.  trutta reference (Table 3; Figure 
S5). Although several confidence intervals overlap, the distributions 
differ significantly among populations (Kruskal–Wallis H =  145.26, 
df =  3, p  <  2.2e‐16) with the lowest value observed in introduced 
population II. Pairwise comparisons from Wilcoxon signed‐rank tests 
showed that all population pairs except that of introduced popula‐
tion I versus natural population A differed, to a degree that results in 
statistical significance. With the S. salar reference genome, average 𝜋̄ 
were considerably lower—between 0.97 and 1.14 (Table 3)—but here 
too the lowest variability is noted in introduced population II and the 
population distributions differ (H = 2,916.7, df= 3, p < 2.2e‐16); all 
pairwise comparisons provided statistically significant differences 
among all population pairs.

Tajima's D values (TD) were all below 0 ranging from −0.202 to 
−0.065 when mapping to S. trutta with the largest value observed 
in introduced population I (Table 3, Figure S6); several confidence 
intervals overlap, but we do find differences between distributions 
(H = 228.3, df = 3, p < 2.2e‐16). Pairwise comparisons indicate sta‐
tistically significant differences between the populations except for 
between introduced population II and each of the natural popula‐
tions. When mapping to S. salar, TD increases substantially, but the 

relationship with the largest value observed for introduced I remains 
(Table 3). Here too, the distributions of TD among the three popula‐
tions with lower TD overlap, but with significant differences among 
all four distributions (H = 2,818.6, df = 3, p < 2.2e16) and statistically 
significant differences in TD distributions between both population 
pairs.

We used POPOOLATION2 for FST estimation, and an average of c. 
1,500,000 SNPs were called assembly‐wide and per population com‐
parison from quality‐filtered sync files for pools mapped to the S. trutta 
assembly (Table 4), taking depth (Appendix S2) and minor allele fre‐
quency filters into account per site. We compared all possible popu‐
lation pairs (six in total) and found average FST ≈ 0.10 for 5 of these 
comparisons, while one population pair—the two natural populations—
showed FST = 0.03 (Figure 3, Table 4). The distribution of FST for the 
two main pairs of interest—the introduced versus the naturally sym‐
patric populations—illustrates the considerably higher divergence for 
the introduced as compared to the natural pair (Figure 4a,b). Average 
FST was higher across coding (c. 11,000 SNPs) than noncoding (c. 
1,000,000 SNPs) regions (introduced pair: W = 260 × 106; p ≪ .001; 
natural pair: W = 263 × 106; p ≪ .001), although the mean values dif‐
fered only slightly for each pair (Table 4).

FST estimates when mapping the Pool‐seq data to the S. salar refer‐
ence were similar to those observed using the S. trutta assembly (using 
on average 2,400,000 SNPS; Table 4), and the distribution of FST re‐
mained higher for the introduced than the natural pair (Figure 3c,d). 
For both references, FST for the naturally sympatric population pair was 
close to 0.03, and for the introduced pair, FST was around 0.13 and 
0.15 when mapping to the S. trutta and S. salar assembly, respectively. 
With the sort of “pseudochromosomal” context that FST windows were 

TA B L E  2   BAM file statistics from Qualimap version 2.2.1 (García‐Alcalde et al., 2012) for Pool‐seq data from each of the four S. trutta 
population pools filtered for minimum base quality 20 and mapped to the generated S. trutta assembly and the previously available S. salar 
assembly, respectively, using bwa mem and mapping quality 20

Population pool

Introduced I Introduced II Natural A Natural B

S. trutta

Reference size (bp) 446,412,000 446,412,000 446,412,000 446,412,000

Number of reads mapped as pairs 259,292,315 254,225,047 280,138,464 325,530,950

Percentage of reads mapped as pairs 29.8% 29.7% 30.3% 30.5%

Mode of depth of coverage 47 46 50 57

Mean mapping quality 55 56 56 55

General error ratea 2.6% 2.6% 2.6% 2.7%

  S. salar

Reference size (bp) 2,966,890,203 2,966,890,203 2,966,890,203 2,966,890,203

Number of reads mapped as pairs 468,965,008 457,736,395 497,860,918 573,473,218

Percentage of reads mapped as pairs 54.3% 53.8% 54.2% 54.0%

Mode of depth of coverage 40 41 45 50

Mean mapping quality 11 11 11 11

General error ratea 2.9% 2.9% 2.9% 2.9%

Note: The mode of depth of coverage was obtained from BEDTools version 2.25.0 (Quinlan & Hall, 2010).
aGeneral error rate is estimated from the ratio of total collected edit distance to the number of mapped bases. 
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placed in from the transitory structures formed when using the S. salar 
reference, outlier regions appear more evident than when using the 
S. trutta assembly (cf. Figure 4a,b,c,d).

3.5 | Comparison to FST estimates from previously 
used markers

Estimates of FST from the previously used allozymes exceeded 
Pool‐seq averages calculated across assemblies, coding regions, and 
noncoding regions for both population pairs (Table 4). Average FST 
calculated across the previously used SNPs exceeded Pool‐seq FST 
for the introduced pair, while for the natural pair, the two estimates 
were concordant (Table 4). For our comparison of previously used 
SNPs with Pool‐seq SNPs, 1,974 and 1,985 of the 2,832 and 2,852 
SNPs previously genotyped in the introduced and natural popula‐
tion pair, respectively (Andersson, Jansson, et al., 2017), were suc‐
cessfully located in our S.  trutta assembly. Of these, FST estimates 
were available from the Pool‐seq data for 1,415 and 1,378 individual 
SNPs per population pair for the introduced and natural populations, 
respectively. FST values obtained from previous individual SNP geno‐
typing and from Pool‐seq data were correlated for both population 
pairs (introduced: linear regression coefficient b  =  0.81, r2  =  0.76; 
t  =  68; p  <  .001; natural: linear regression coefficient b  =  0.66, 
r2 = 0.21; t = 19; p < .001; Figure 5).

4  | DISCUSSION

4.1 | Pool‐seq draft assembly and S. trutta 
transcriptome assembly

The S. trutta genome was assembled by superscaffolding a highly 
fragmented de novo assembly of Pool‐seq short‐read data, and 
simultaneously annotated using publicly available transcriptome 
data from the same species, using a newly established method for 
nonmodel organisms with limited genomic resources (Neethiraj et 
al., 2017). This assembly was used as a reference to map the Pool‐
seq data and estimate population genomic metrics, both within 

and nearby protein‐coding regions. We used publicly available 
RNA‐seq data recently published in Carruthers et al. (2018) to as‐
semble a draft S. trutta transcriptome. The validation of complete‐
ness of our S.  trutta transcriptome, wherein 78% of single‐copy 
Actinopterygian orthologs were found, is comparable to recovery 
ranges of Carruthers et al. (2018), implying that the S. trutta tran‐
scriptome is suitable to annotate and identify coding regions in our 
final S.  trutta assembly. We found nearly 13,000 S. salar proteins 
represented by nearly full‐length transcripts having >90% coverage 
in the final S. trutta transcriptome. This corresponds to c. 35% of 
all S. salar proteins. In their brown trout transcriptome, Carruthers 
et al. (2018) achieved c. 40% recovery of transcripts at near to full 
length from the same NCBI protein database for Atlantic salmon. 
This affirms good coverage and quality of our transcriptome 
assembly.

To improve mapping and subsequent variant calling, we used a 
haploid subset of the full S. trutta assembly, comprised only of con‐
tigs with gene model predictions. This reduced fragmentation com‐
pared to the full assembly is reflected in increased N50 (Table 1) and 
the representation of over 70 percent complete Actinopterygian 
core genes which is furthermore comparable to reports for the 
S. salar reference (Carruthers et al., 2018).

The study species used to explore the present Pool‐seq ap‐
proach is a salmonid and thus has a genome duplication background. 
Although the duplication event is old—c. 90 million years—full redip‐
loidization has not occurred (Lien et al., 2016), but we consider the 
MESPA approach to be careful in this respect since the method im‐
plies that only one copy of each contig with a gene model prediction 
of the original genome assembly remains in the final assembly and 
related contigs are grouped together (Neethiraj et al., 2017). Also, 
we were careful to apply stringent quality filters to the short‐read 
data mapped to the S. trutta draft assembly to avoid potential prob‐
lems. Such problems could, for example, arise in duplicated regions 
that are only present as one copy in the S.  trutta draft assembly. 
In such a region, short reads from both duplicates would map, in‐
cluding reads from the paralog region, which can be reduced with 
stringent mapping quality and read depth filters.

TA B L E  3   Average nucleotide diversity (𝜋̄) and Tajima's D (TD) with 95% confidence intervals in brackets estimated from Pool‐seq data 
mapped to the S. trutta and S. salar assemblies, respectively

Reference Pool n (windows) n (SNPs) 𝝅̄ (10–3) TD

S. trutta Introduced I 16,346 52,473 1.86 (1.81–1.92) −0.065 (−0.081 to −0.048)

Introduced II 15,564 45,783 1.65 (1.60–1.70) −0.180 (−0.200 to −0.163)

Natural A 17,250 55,707 1.80 (1.74–1.84) −0.160 (−0.174 to −0.141)

Natural B 16,212 60,188 1.95 (1.90–2.01) −0.202 (−0.220 to −0.184)

S. salar Introduced I 125,934 204,956 1.07 (1.06–1.08) 0.103 (0.098–0.108)

Introduced II 127,524 200,006 0.97 (0.96–0.98) −0.038 (−0.043 to −0.033)

Natural A 155,326 289,247 1.14 (1.13–1.15) −0.004 (−0.009 to 0.001)

Natural B 120,600 231,984 1.09 (1.08–1.10) −0.030 (−0.036 to −0.024)

Note: Average values were obtained from estimates of nonoverlapping, 500‐bp windows with >90% coverage after subsampling and quality and 
depth filtering. n (windows): total number of windows; n (SNPs): total number of SNPs.
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4.2 | Population genomics analyses for pools 
mapped to the S. trutta assembly

We found no strong indications of demographic perturbations or 
selection in the sampled populations, which agrees with our gen‐
eral knowledge of these populations. Average nucleotide diversity 

estimated from data mapped to the S.  trutta assembly was about 
0.16%–0.20% across the four populations (Table 3, Figure S5). This 
estimate is lower than previous reports for brown trout (𝜋̄ ≈ 0.5%; 
Leitwein et al., 2016). Estimates of Tajima's D fell slightly below 
zero for all populations. Positive TD indicates a greater degree of 
heterozygosity given the number of segregating sites, as expected 
after population contraction, while negative values of TD may indi‐
cate population expansion after a recent bottleneck, though slightly 
negative values of TD are expected for natural populations (Gillespie, 
2004). We did find differences in both nucleotide diversity and TD 
among populations, but differences are relatively small. Most pro‐
nounced is the lower level of nucleotide diversity of introduced 
population II which originates from a small mountain lake (0.14 km2) 
at the uppermost part of a water system, and where introduced fish 
originated from few parent fish caught in the wild and taken to a 
hatchery for production of fish for release.

Average FST between the two natural populations was the low‐
est of all pairwise comparisons, while the highest FST was found be‐
tween the two introduced populations (Table 4, Figure 4). Genomic 
comparisons of sympatric populations where gene flow may occur 
are often distinguished by low diversity with condensed regions of 
divergent outliers (Jacobs et al., 2018), which may be indicated for 
the naturally sympatric pair (Figure 4), although we did not perform 
an outlier analysis in the present study. The comparably high diver‐
gence between the introduced populations was expected based 

TA B L E  4   Average pairwise FST between introduced and natural populations, respectively

Marker n
Pairwise FST between introduced 
populations

Pairwise FST between 
natural populations

Allozymes 14 0.41a 0.30b

SNP genotyping n (introduced) = 2,832 0.34a 0.03b

n (natural) = 2,852

Pool‐seq mapped against S. trutta      

Assembly‐wide n (introduced) = 1,466,801 0.1280 (0.1274–0.1285) 0.0276 (0.0275–0.0278)

n (natural) = 1,525,838

Coding regions n (introduced) = 10,667 0.1491 (0.1436–0.1547) 0.0317 (0.0304–0.0330)

n (natural) = 10,637

Noncoding regions n (introduced) = 1,083,064 0.1270 (0.1264–0.1277) 0.0274 (0.0273–0.0276)

n (natural) = 1,126,527

Pool‐seq mapped against S. salar      

Assembly‐wide n (introduced) = 2,206,076 0.1548 (0.1544–0.1552) 0.0320 (0.0319–0.0321)

n (natural) = 2,510,827

Coding regions n (introduced) = 24,936 0.1499 (0.1466–0.1533) 0.0326 (0.0318–0.0334)

n (natural) = 25,676

Noncoding regions n (introduced) = 1,967,836 0.1544 (0.1540–0.1548) 0.0318 (0.0317–0.0319)

n (natural) = 2,250,772

Note: Estimates from previous studies using allozymes and SNP genotyping are given, as well as estimates from Pool‐seq data mapped to each of the 
S. trutta assembly and S. salar genome using nonoverlapping, 500‐bp windows with >90% coverage after subsampling, quality and depth filtering. The 
number (n) of allozyme markers, previously used SNPs, and Pool‐seq SNPs used in each pairwise comparison is specified. 95% confidence intervals 
for Pool‐seq estimates are given in brackets.
aL. Laikre and N. Ryman (unpublished data) using Weir and Cockerham's (1984) FST. 
bFST estimates between natural populations originally published in Andersson, Jansson, et al. (2017) and Weir and Cockerham's (1984) FST. 

F I G U R E  3   Boxplot of FST values within 500‐bp windows 
along the S. trutta assembly for all pairwise comparisons between 
population pools. The horizontal line at the center of the box is 
median FST, and the top and bottom of the box show 25th and 75th 
percentiles, respectively. Vertical black lines show the boundaries 
of the interquartile range and red markings show outliers
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on the source populations' geographic separation. Introduced pop‐
ulation I stems from a hatchery population characterized by large 
piscivorous individuals with potential for long‐distance migration, 

whereas the source of the introduced population II is character‐
ized by small, lake‐resident fish. One generation after introduction, 
descendants of introduced I migrated further downstream than 

F I G U R E  4   Pairwise FST values within 500‐bp windows along the (a, b) S. trutta and (c, d) S. salar assemblies for (a, c) introduced and (b, d) 
naturally sympatric populations. Histograms in the margins represent frequency distributions of FST values

F I G U R E  5   FST values from Pool‐seq 
analyses (y‐axes) compared to those from 
previous individual SNP genotyping of 
the same SNP loci (x‐axes; data from 
Andersson, Jansson, et al., 2017 and L. 
Laikre & N. Ryman, unpublished data). 
Nei's FST computed as FST = 1−HS/HT was 
used for the previous SNP data, while for 
Pool‐seq, Nei's FST was computed using 
POPOOLATION v. 1.2.2. (a) Pairwise FST 
for 1,415 SNP loci for the introduced 
population (linear regression coefficient 
b = 0.81, r 2= 0.76, t = 68, p < 0.001). (b) 
Pairwise FST for 1,378 SNP loci for the 
naturally sympatric populations (linear 
regression coefficient b = 0.66, r2 = 0.21, 
t = 19, p < 0.001). The blue lines are 
linear regression trend lines, and the 
orange ones represent expected values 
with r2 = 1. Histograms in the margins 
represent frequency distributions of FST 
values
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descendants of introduced II (Palm & Ryman, 1999), indicating main‐
tenance of the source populations' local adaptations. This, along with 
slightly higher values of TD, which was positive for introduced I when 
mapping pools to the S. salar reference, could again be indicative of 
the disparate genetic background and history of the introduced pop‐
ulations. A deeper understanding of the demographic and selective 
forces that have shaped the genomic variation of these populations 
requires further investigation.

4.3 | Comparison to FST from SNP genotyping

One of the main benefits of Pool‐seq is the generation of vast 
amounts of SNPs per genome for entire populations, with the pros‐
pect of improving power of population detection and delineation 
(Anand et al., 2016). However, average differentiation based on the 
previously identified SNPs was inflated compared to average esti‐
mates based on all Pool‐seq SNPs in the introduced population pair, 
but not in the natural population pair (Table 4). Such a discrepancy 
has been found in other studies, for example, in pooled versus indi‐
vidually genotyped SNPs using RAD‐seq (Gaughran et al., 2018) and 
has multiple possible explanations. Importantly, the previously used 
SNPs have been selected based on high degree of polymorphisms, 
while our Pool‐seq includes loci with low minor allele frequencies. 
Secondly, individually genotyped SNPs are associated with ascer‐
tainment biases (Albrechtsen, Nielsen, & Nielsen, 2010; Lachance & 
Tishkoff, 2013) and the previously used SNPs were developed based 
on polymorphisms in brown trout of Danish breeding programs and 
Norwegian rivers (Andersson, Jansson, et al., 2017).

In contrast to assembly‐wide average comparisons of FST, the 
correlation of FST values from previously genotyped SNPs in indi‐
viduals and the same SNPs in our present Pool‐seq data identified 
using BLAST showed high consistency between the two methods 
for the introduced pair, but a weaker correlation for the natural pair 
where variance in FST is low. For both pairs, we observe on aver‐
age somewhat higher FST values with the individual genotyped SNPs 
(x‐axes; Figure 5) than from Pool‐seq FST values (y‐axes; Figure 5). 
Previous work has used allele frequencies directly to compare Pool‐
seq approaches to conventional individual genotyping (Dorant et al., 
2019; Hivert, Leblois, Petit, Gautier, & Vitalis, 2018; Zhu, Bergland, 
González, & Petrov, 2012), and when we compare frequency of the 
most common allele in each of the SNP loci from the previous indi‐
vidually based genotyping versus those from the pools, we find very 
strong correlation in all four populations (Figure 6a–d); coefficients 
of determination (r2) are over 0.7 in all four populations and linear 
regression coefficients are well over 0.8 and close to 0.9 for each 
of the naturally sympatric populations. We suggest that observed 
differences (Figure 6) are largely due to the small sample sizes of the 
previous individually genotyped dataset of only n = 18 individuals for 
each of the introduced populations and n = 30 for each of the natu‐
ral, sympatric pair. Although the same individuals are predominantly 
included in the pools, the additional individuals in the pools are likely 
to affect allele frequency estimates. The consistent observation of 
on average higher frequencies of the most common allele in the 

individually based dataset when allele frequencies approach 1, but 
lower allele frequencies than for the pools when allele frequencies 
are close to 0.5 is consistent with expectations from smaller sample 
sizes. Small sample sizes are expected to result in larger allele fre‐
quency estimates when the frequency of the most common allele is 
close to 1, and a contrasting discrepancy at lower allele frequencies. 
Our observations are in line with this expectation with the smaller 
sample sizes from the previously genotyped SNPs showing smaller 
values (Figure 6, x‐axes) of frequency of the most common allele 
than the allele frequency estimates from Pool‐seq (Figure 6, y‐axes) 
when close to 0.5 but the opposite when the frequency of the most 
common allele is close to 1 (compare blue regression lines to orange 
expected lines in Figure 6). Dorant et al. (2019) observe somewhat 
better correlations of allele frequencies from Pool‐seq versus con‐
ventional genotyping by sequencing than we do. However, they have 
larger sample sizes (n = 48) in both pools and individual sequencing 
and use the same individuals in both.

Average assembly‐wide FST from Pool‐seq data for both pairs of 
populations were much smaller than the estimates obtained from 
allozymes (Table 4). Our present data indicate that the previously 
used allozymes and SNPs do not reflect genome‐wide estimates 
of average divergence for the introduced populations. Further, our 
data support expectations and previous findings using SNP markers 
for the present naturally sympatric populations, namely that rela‐
tively few loci appear to be involved in this cryptic substructuring 
(Andersson, Jansson, et al., 2017). The genomic characteristics of 
partly reproductively isolated populations are expected to be pri‐
marily determined by drift and migration (Jacobs et al., 2018), prob‐
ably reflected by the previously used SNPs and the assembly‐wide 
average FST from Pool‐seq data for the natural pair, and by diversi‐
fying selection in limited regions as represented by the allozymes 
(Andersson, Jansson, et al., 2017). The contention that only a few re‐
gions are under selection is further supported by the assembly‐wide 
patterns of divergence estimated from Pool‐seq data for the natural 
populations, which showed few sparsely placed peaks of limited dif‐
ferentiation (Figure 4b,d). The loci and genes involved in differentia‐
tion of both population pairs remain to be explored, and the present 
study has provided a tool with which a multitude of SNPs can be 
detected across the genome.

4.4 | Comparison of S. trutta and S. salar references

To validate results obtained based on the S.  trutta assembly, we 
mapped the Pool‐seq data to the Atlantic salmon reference genome 
(Davidsson et al., 2010; Lien et al., 2016). The relatedness between 
a resequenced species and the species for which a reference ge‐
nome is available for mapping has implications for the representa‐
tion of the resequenced genome (Recknagel et al., 2015). Nucleotide 
divergence between the Atlantic salmon and brown trout is below 
2% (Leitwein et al., 2017). However, since the two Salmo species 
differ in chromosomal number and structure, as well as degree of 
tetrasomy, limited mapping success may be expected, for example, 
due to structural differences (Brenna‐Hansen et al., 2012; Lien et 
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al., 2016). Thus, greater divergence between reads and reference is 
expected when mapping to the S. salar genome than to the S. trutta 
assembly, especially since the S. trutta assembly was made from one 
of the populations analyzed here – the naturally sympatric popula‐
tion A. Indeed, we find differences in mapping success when com‐
paring the two reference genomes (Table 2). In spite of the larger 
sequence divergence, a higher percentage of reads mapped to the 
S. salar genome than to the S. trutta assembly. This may be explained 
by the level of completeness of the two genome assemblies. While 
the S. salar genome is a highly contiguous assembly at chromosome 
level (Lien et al., 2016), the S. trutta assembly is reduced to scaffolds 
harboring gene models that occurred in only one copy, representing 
c. 20% of the expected size of the S. trutta genome. Reads from ge‐
nome regions not present in the S. trutta assembly may not map at all 
or map to the wrong region in the assembly, the latter of which will 
inflate coverage when mapping to the S. trutta reference.

There are also implications of relatedness between resequencing 
data and reference assembly for estimates of population genomic 
variation. Average nucleotide diversity (π) estimates were lower 
when using the S. salar reference than when mapping pools to the 
S. trutta assembly (Table 3). This might be attributed to the fact that 

we are expected to map reads to highly conserved regions between 
the two species (S. trutta vs. S. salar) and the conserved regions are 
likely to be less variable. The regions with most sequence diversity, 
on the other hand, are likely to be those in the process of divergence 
between the species. Reads mapped to the S. trutta draft assembly 
are expected to align with higher probability to those regions and 
may thus be better at reflecting nucleotide diversity. Similarly, the 
TD values were larger when mapping to the S. salar reference com‐
pared to our S. trutta assembly. However, the relative estimates of 
both π and TD among pools are largely consistent for both references 
(Table 3).

Divergence estimates were highly concordant when comparing 
pools mapped to the two references (introduced populations as‐
sembly‐wide FST = 0.13 and 0.15 for S. trutta and S. salar references, 
respectively, and natural populations assembly‐wide FST  =  0.03 in 
both cases; Table 4). We were also able to place the FST results into 
a “pseudochromosomal” context when using the S.  salar genome, 
which revealed clustered outlier SNPs in the Manhattan plots that 
were not as apparent when using the S. trutta assembly (Figure 4). 
We have not pursued outlier analyses here, but plan to return to this 
issue in forthcoming work. Finally, it is important to note that the 

F I G U R E  6   Comparison of frequency of most common alleles of individual SNP loci estimated using Pool‐seq data (y‐axes) versus 
previously genotyped individuals (x‐axes). (a) Frequency of the most common allele at each of 1,415 individual SNP loci for the introduced 
population I (linear regression coefficient b = 0.85, r2 = 0.71, t = 60, p < 0.001), and (b) introduced population II (linear regression coefficient 
b = 0.84, r2 = 0.76, t = 66, p < 0.001). (c) Frequency of the most common allele for each of the 1,378 individual SNP loci for the naturally 
sympatric populations A (linear regression coefficient b = 0.88, r2 = 0.73, t = 60, p < 0.001) and (d) B (linear coefficient b = 0.88, r2 = 0.74, 
t = 63, p < 0.001). Blue lines are linear regression lines, and orange lines represent expected values. The number of individuals was n = 50 for 
each of the pools and n = 18 for previous data from individual genotyping of the SNP loci for each of the introduced populations, and n = 30 
for each of the naturally sympatric populations. Historgrams in the margins represent distributions of allele frequencies
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genomes we studied here are large and complex and further popula‐
tion genomic studies using the Pool‐seq‐only approach applied here 
are warranted.

5  | CONCLUSIONS

We explored a recently presented Pool‐seq‐only approach to gen‐
erate a draft genome assembly for a nonmodel species. We then 
mapped Pool‐seq data to this assembly to estimate population 
genomic parameters. We used the brown trout (S.  trutta) and two 
pairs of populations from which we had previous population genetic 
information from allozymes and individually genotyped SNPs. We 
also mapped our pools to a high‐quality reference genome from 
Atlantic salmon (S. salar), a closely related species, to compare to our 
Pool‐seq‐only results. We find high consistency in genome‐wide FST 
values between the two population pairs using the Pool‐seq‐only 
approach versus the S.  salar reference. We find less consistency 
when comparing the genome‐wide Pool‐seq FST values to those 
obtained from 14 allozymes and those from c. 3,000 SNPs. In con‐
trast, a high correlation in FST values and allele frequencies is ob‐
served when comparing the exact same SNPs in the pools versus 
those from previous individual genotyping. Estimates of nucleotide 
diversity and Tajima's D are higher when mapping to the Pool‐seq as‐
sembly versus when mapping to the S. salar reference. However, the 
relationships between values are largely consistent. We conclude 
that the Pool‐seq approach explored here is a cost‐effective way to 
gain basic population genomic insights in nonmodel species where a 
reference genome is lacking. The method is particularly suitable for 
exploring population divergence but might also be used to compare 
relative levels of genome‐wide diversity among populations.
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