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Concentration cycles are important for bonding of basic molecular building
components at the emergence of life. We demonstrate that oscillations occur
intrinsically in precipitation reactions when coupled with fluid mechanics in
self-assembled precipitate membranes, such as at submarine hydrothermal
vents. We show that, moreover, the flow of ions across one pore in such a
prebiotic membrane is larger than that across one ion channel in a modern
biological cell membrane, suggesting that proto-biological processes could
be sustained by osmotic flow in a less efficient prebiotic environment. Oscil-
lations in nanoreactors at hydrothermal vents may be just right for these
warm little pores to be the cradle of life.
1. Introduction
Where did life begin? Darwin famously speculated about a ‘warm little pond’
[1]. Indeed that is one theory today [2]. A rival theory holds that the oceans,
rather than ponds, were the cradle of life [3]. Of course, Darwin knew nothing
of hydrothermal vents on the ocean floors, discovered only in the late 1970s
[4,5]. A particular class of vent emitting warm, rather than hot, mineral-laden
water at alkaline pH [6] has been highlighted as of particular significance in
terms of a possible birthplace of life [7–9]. We demonstrate here that hydrother-
mal vents can function just as well as, or better than warm little ponds in terms
of providing an environment in which complex chemistry can occur via cycles
of condensation reactions, and so-called wet–dry cycles of warm little ponds
would not be necessary. Moreover, the ubiquity of suitable vents on the
Hadean ocean floors, allied to the endogenous supply of the necessary raw
materials to them, compared to the scarcity of suitable ponds and the need to
postulate for ponds a supply of organic raw materials through the external
agent of meteorite bombardment, argues in favour of the oceanic and against
the lacustrine hypothesis.

1.1. The origin of life: ponds versus vents
The modern lacustrine hypothesis puts forward the idea of life emerging from
hydrothermal ponds. The claim is that life evolved from organic compounds
being dumped into these ponds from meteorite impacts, then being concen-
trated and reacting during wet and dry periods [2,10]. A key point for both
ponds and vents is the need for a condensation mechanism [11] by which
ester and peptide bonds could have been synthesized in the absence of
enzymatic catalysis and the possibility, or not, for it to occur [12]. It has recently
been argued that wet and dry cycles are necessary and are only available at
ponds that dry out and not at vents under the sea [10]. But is that really the
case? In fact not: cells today use molecular crowding and excluded volume
effects to stabilize such reactions [13–18]. The thermodynamic challenge to
bond formation is overcome in highly concentrated solutions [12,19] such as
in a confined environment [20].
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Figure 1. (a) Poseidon vent in the Lost City hydrothermal field (from Kelley
et al. [43]), with typical porous structure (from Kelley et al. [6]) reprinted
with permission from AAAS and an illustration of the concentration gradients
within it. The laboratory analogue of a horizontal cross-section of a growing
vent structure: (b) photograph of the cobalt chloride pellet surrounded by the
precipitate membrane, and (c) measured trajectories of two seed particles
near the membrane surface, at a silicate concentration of 0.28 M. The outside
silicate solution flows towards the membrane with speed uin driven by the
osmotic pressure. Accumulation of water inside the cell builds up the internal
pressure, which forces cobalt solution out of the membrane at speed uout.
(Online version in colour.)
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1.2. Chemical garden membranes at hydrothermal
vents

The precipitation reactions that occur as mineral-laden water
emerges at an alkaline vent into the ocean give rise to an
extremely complex ever-growing and changing network
of tiny compartments in the form of tubes and vesicles [6]
separated by thin gel-like membranes semipermeable to
some chemical species [21], providing an out-of-equilibrium,
not-well-mixed environment with strong concentration
gradients [22,23].

Hydrothermal vents are natural, geological versions of
chemical gardens [24–27], studied since the seventeenth cen-
tury. Modern work on chemical gardens has led to increased
understanding of the complex interaction of fluid mechanics
and chemistry called chemobrionics that produces these self-
assembled membrane systems [28]. This body of work has
more recently built upon knowledge of liquid-phase chemical
hydrodynamics [29–32], with the added complexity of a
growing solid interface. Chemical gardens refer to hollow
structures that form when a metal salt seed is submerged
into an alkaline solution, i.e. sodium silicate, which have
been produced in three- [33–37], two- [38,39] and even one-
dimensional [21,40] configurations. The two-dimensional
systems mimic the confinement that may be found when
the mineral-bearing fluid is trapped between delimiting struc-
tures. These numerous experimental studies have revealed a
wide variety of spatial structures, depending on the chemical
system, the ion concentrations and the forced or natural
nature of the convective flow. However, this work has been
either qualitative or specific to a given fluid flow regime.
Most studies have focused on relatively fast convection,
driven by either buoyancy forces resulting from concentration
gradients ensuing during precipitation, or by an imposed
external pressure. Despite the controlled flow conditions,
specifically designed to neglect intrinsic osmotic forces
across the solid membrane, developing theoretical models
that explain the multitude of growth regimes of chemical
gardens, and the transitions between them, has remained
a challenge. In this work, we focus on the coupling of
the slow osmosis-driven fluid dynamics and chemical
precipitation during the growth of a semipermeable two-
dimensional membrane. We show experimentally and
theoretically that such a system can exhibit different dynami-
cal regimes, ranging from stable, to oscillatory and explosive.
We demonstrate the existence of temporal cycles of concen-
tration and pressure in growing precipitate membranes
and quantify these. We explore the implications of our find-
ings for the micro- and nano-scale behaviour at alkaline
submarine hydrothermal vents and the chemistry therein.
2. Experimental methods
The precipitation of minerals at hydrothermal vents involving,
for example, iron with silicates and phosphates are relatively
fast [41,42], so that the rate of the transport of ions to the reac-
tion site determines the growth of the membrane. This
transport of ions across the hydrothermal vent membrane is
controlled by its osmotic properties and the pressure of the
internal fluid. In the laboratory, we use an analogue chemical
system to mimic the dynamics of ion transport and mem-
brane growth in the hydrothermal vent. We have ensured
the same mechanisms of transport are present as those
in the real vent, so that the systems are dynamically similar.
The experiments are performed in a Hele-Shaw cell, i.e. a
two-dimensional geometry, which represents a horizontal
cross-section through the porous vent structure and the
transport of ions across it (figure 1b).

Experiments were performed using cobalt (II) chloride
hexahydrate (CoCl2 · 6H2O) as the metal salt to react with
an aqueous solution of sodium silicate (Na2SiO3) with
concentrations in the range 0.10–2.0M. In order to achieve
reproducibility and homogeneity, CoCl2 · 6H2O (Sigma-
Aldrich) crystals were initially pressed into pellets with a
diameter of 10mm and thickness 1mm by a KBR Port-A-
PressTM Kit (International Crystal Laboratories) under an
equivalent pressure of 110MPa. The experiments were
conducted in a horizontal Hele-Shaw cell, consisting of
two transparent acrylic plates (130 × 100 × 6mm) separated
by a gap of 1.0 mm. The cell was fitted to stainless steel
back frames by a PTFE front frame with the dimension of
160 × 115mm, with underlying uniform lighting from an
LED lightbox. The experiment started by placing a pellet
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Figure 2. (a–d) Sequence of photographs showing the growth of the cobalt chloride membrane with 0.275 M Na2SiO3 and a saturated solution of CoCl2. Field of
view: 17 × 26 mm2. (Online version in colour.)
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at the centre of the Hele-Shaw cell and injecting Na2SiO3

solution into cell using a syringe. The dynamics of each
experiment was recorded by a Nikon D300s digital single-
lens reflex (DSLR) camera (4288 × 2848 pixels) with a Hoya
circular polarizing lens filter, located above the cell. The
flow in the vicinity of the membrane formed by reaction of
the two aqueous solutions is depicted in figure 1b.

In order to visualize the motion in the liquid surrounding
the pellet, the silicate solution was seeded with 20 μm
polyamide particles (Dantec Dynamics). The suspension
was left to stand for 4 h to achieve neutral buoyancy at a
low seeding density, to avoid both particle–particle and
particle–plate interactions. An area of the cell of approxi-
mately 30mm2 was photographed at a frame rate of
1/3Hz. The speed of the particles was calculated from the
time derivative of the measured particle trajectories.

To follow the pressure dynamics inside the membrane, a
hole of diameter 8 mm at the centre of the upper Hele-Shaw
cell plate was connected to a relative pressure sensor
(PS-2114, PASCO Scientific) by a silicone tube of inner
diameter 3.0 mm. The pressure was measured at a sampling
rate of 20 Hz and a resolution of 1 Pa. The pressure and
speed measurements were used to estimate the membrane
permeabilities in the inow and outow regions.

The osmotic pressure po across the semipermeable mem-
brane was calculated based on the relation [44–46] po = ϕCo
cCoRT− ϕSi cSiRT, where ϕCo and ϕSi are the activity coeffi-
cients for CoCl2 and Na2SiO3 solutions, respectively
[47,48], R is the ideal gas constant and T is the absolute temp-
erature. A sample of the solution of cobalt within the pellet
region was collected and its concentration was measured
as 3.4 M using an Agilent Cary 60 ultraviolet–visible
spectrophotometer.
3. Results
3.1. Osmotic advection and chemical precipitation
The precipitation of minerals at hydrothermal vents in the
early ocean formed porous membranes with osmotic proper-
ties, such as those seen today in the Lost City field (figure 1a).
Osmosis drives water with small ions inwards across the vent
walls, while internal fluid pressure expels water with small
and large ions through larger pores and channels. A balance
of internal and osmotic pressures determines the in/out cir-
culation and the vent membrane growth. In the laboratory
and theoretical model, we consider a two-dimensional
geometry, which represents a horizontal cross-section
through the porous vent structure and the transport of ions
across it (figure 1b).

The flow in the vicinity of the membrane formed by
reaction of two aqueous solutions, an inner solution contain-
ing cation Co2+ and an outer solution of anion SiO2�

3 at
concentration cSi is depicted in figure 1b,c. The membrane is
permeable to the cobalt ion but impermeable to the silicate
one, so that an osmotic pressure po develops across it. The
gradient of pressure po/Lm drives water from the exterior
environment into the cell enclosed by the membrane, thereby
increasing the internal pressure p; here, Lm is the membrane
thickness. This increase in pressure, in turn, opens small
cracks in the membrane and drives the saturated aqueous sol-
ution of cobalt outwards through these. A dual permeability
membrane is therefore formed: the chemistry controls the low
permeability of the inflow regions, while the internal pressure
and solid mechanics of the membrane determine the higher
permeability in the outflow regions. At the outer surface of
the membrane, the reaction

Co2þ(aq)þ SiO2�
3 (aq) ! CoSiO3(s) (3:1)

occurs at the interface between the two fluids, to form a
precipitate layer of product, whose thickness grows with
time. This nucleation and precipitation process is rapid
[49,50], so that the formation of the product is limited by the
supply of silicate ion when cCo≫ cSi.

The growth of the cobalt chloride membrane is shown in
figure 2. Three zones can be distinguished: a central zone with
a dark pink colour is the cobalt chloride pellet, an intermediate
liquid zonewith colour gradient from pink to clear contains the
dissolved cobalt ion, Co2+(aq); and the external zone with a
purple colour is the membrane, which contains precipitated
cobalt silicate, CoSiO3(s). The motion of polyamide seed par-
ticles is tracked in figure 3. The particles are seen to first
approach the membrane surface and then move outward.

Imaging and speed measurements show that the inflow
and outflow regions of the membrane are distinct, and the
permeability for the inflow is much smaller than that for
the outflow, kin≪ kout this complex structure enables the
membrane to self-regulate both flows.

3.2. Pressure and concentration of solid: nonlinear
evolution

In the laboratory, we have measured the pressure inside
the pellet, but we cannot measure directly the concentration
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Figure 3. (a–d) Sequence of photographs showing the movement of two seed particles in the sodium silicate solution near to the membrane with 0.275 M Na2SiO3
and a saturated solution of CoCl2. The particles are in the middle of the dashed circles. Field of view: 6.55 × 6.55 mm2. (Online version in colour.)
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Figure 4. Measured pressure (solid line) and rate of increase of surface area
of precipitate (dashed line) as a function of time with 0.275 M Na2SiO3 and a
saturated solution of CoCl2. (Online version in colour.)
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Figure 5. Measured inflow (a) and outflow (b) speeds near the membrane
surface with 0.275 M Na2SiO3 and a saturated solution of CoCl2.
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of solid at the reaction front on the outer surface of the
membrane. We can, however, measure the surface area of
the solid membrane S. We expect this surface area to grow
following dS/dt∼ dLm/dt∼ uout c∼−dc/dt + uin cSi/Lr.
The last term here is approximately constant, so that
any temporal oscillations in c will be reflected as
oscillations in S too [51]. Figure 4 depicts the evolution of
the measured rate of change of the surface area of the solid
membrane, as well as the pressure inside the pellet, for a
range of concentrations of the silicate solution. The mea-
surements show oscillations for both pressure and dS = dt,
which are initially in anti-phase but gradually slip into
phase at larger time. The oscillation period increases slowly
with time.

Figure 5 shows the measured inward and outward speeds
of the tracked particles as a function of time. The inward vel-
ocity is approximately uniform in the azimuthal direction,
over the inflow regions of the membrane. The outflow vel-
ocity is more localized in the azimuthal direction, with
outward jet-like flows interspaced by regions of much
slower flow.
4. Discussion
4.1. Ionic flux
We have demonstrated that the membrane has the ability to
self-regulate the inward and outward flows, so that they
are of similar magnitude. It does so by developing regions
with two very distinct permeabilities: the low permeability
drives osmotic flow of water inwards, while the larger per-
meability allows the outward flow of cobalt solution. This
quasi-balance of flows enables the in/out circulation of ions
through the membrane wall to be long-lived. In our exper-
iments, the flux of ions flowing out through the porous
membrane, driven by osmosis, can be readily estimated to
be F = uoutcCo∼ 1021 ions m−2 s−1. Across one pore of radius
R = 4.5 × 10−4 m [51], the flow is ∼1015 ions s−1. For smaller
solute concentrations, of the order of ∼10−3 M, as found
in today’s cells [52], the flow in one pore would be
∼109 ions s−1. This flow then decreases to zero as the mem-
brane becomes blocked. Our maximum pore flows are
much larger than those measured in one ion channel in a
living cell today, of ∼107 ions s−1 [52], thus suggesting that
proto-biological processes could be sustained by osmotic
flow in a less-efficient prebiotic cell. This is compatible with
the necessity for ‘leakiness’ in bioenergetic terms in protocells
before the last universal common ancestor, LUCA [21,53,54].

4.2. Warm little pores
The minimal physical model presented here is capable of
describing the emergent dynamical regimes observed in our
laboratory experiments. The focus has been on reducing the
multitude of physical and chemical processes in the self-
assembling precipitate to the interaction of osmotic flow
and chemical reaction in the membrane. This is a beautiful
example of active fluid dynamics, where the chemistry
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controls the flow, which in turn determines the membrane
formation pattern. This fluid mechanics can now be applied
to give us insight into the dynamics at hydrothermal vents,
since any prebiotic chemistry involving the formation of such
osmotic membranes would potentially have those regimes.

In a hydrothermal vent, similar processes are taking
place, but in a less constrained, more complicated system.
A glance at a microscopic slice through a Lost City vent
(e.g. fig. 1b of [21]), one of the alkaline classes particularly
highlighted in terms of origin-of-life studies, shows a
series of tiny compartments linked together with membranes
of different thicknesses. Across these membranes, there
is exchange with the environment [55]. Each compartment
delimited by membranes may be considered a natural version
of our Hele-Shaw cell, a reactor within which new mem-
branes may form, grow and explode, so giving a complex
spatio-temporal dynamics.

Thus, within this series of compartments, one may find
environments where, in a given place at a given time, as for
Goldilocks [56], things are just right: the right temperature,
pH, reactant concentrations and so on, for complex chemistry
to begin and be sustained. (It is possibly this sort of
Goldilocks idea of a warm little pond that is ‘just right’ that
Darwin may have had in mind when he wrote his famous
phrase.) Recent simulations likewise highlight the importance
of a long series of interconnected porous structures in
enabling synthesis of biopolymers [57].

Within such a compartment, chaotic advection [58] is
necessarily acting [59], and such advective processes can
drive the accumulation of reactants within a pore [60]. Such
an environment offers the possibility of good mixing by advec-
tion and diffusion on the small scale, coupled with inflow of
new reactants and outflow of intermediate products, this ran-
ging from well-mixed to plug flow reactors [61]. Furthermore,
as we have shown here, the dynamics of these natural reactors
is astonishingly versatile. Once the gel-like membrane blocks
at the surface, osmosis continues. This draws water from the
pores to the central region, i.e. it reduces water in the pores,
which may be replaced by a gas phase emanating from chemi-
cal reaction to maintain the pressure and the integrity of the
solid structure. Given that the membrane is semipermeable,
the solutes in some blocked pores can thus become concen-
trated. In other words, the blocking of the membrane causes
a redistribution of the water within the semipermeable struc-
ture driven by osmosis, whereby localized large increases in
solute concentration can develop within the blocked pores.

An important aspect of arguments on the origin of life,
from either the lacustrine point of view, or from our oceanic
vent viewpoint, is the repeated cycling or oscillation, where
each cycle enables some reaction and over many cycles, one
can obtain a significant yield of the product. In the explosive
regime, we see only one explosion, but that is a result of
our simple geometry with a single pellet. In a vent with a con-
tinuous flow of reactants, there would be multiple such events.
Such multiple de- and re-hydration cycles favour the formation
of long and biologically relevant peptides [62]. The lacustrine
model evaporates ponds to concentrate material, but our alka-
line hydrothermal vent vesicles are many orders of magnitude
smaller, so giving them an advantage as nanoreactors.

We should note that the timescales of the oscillations and
explosions in our experiments are of the order of 1–4 × 103 s.
This is clearly much shorter than the natural diurnal or seaso-
nal rhythms proposed in the lacustrine model as the origin of
the wet–dry cycles in early bioreactions [10]. A small pore
size in a hydrothermal vent precipitate favours longer
periods of concentration oscillations and explosion. Indeed
the flow is slower in a small pore, so it takes longer to get
material in and out by the osmotic flow. Nevertheless, pro-
vided the oscillatory timescale is larger than the reaction
timescale, the reaction can take place when the medium
becomes sufficiently dry and concentrated [63]. So a network
of pores in the gel-like membrane can provide many oscillatory
cycles and thus promote a more effective reaction site than a
larger pond. In this view, life began from intrinsic cycles of con-
centration in chemical nanoreactors; we may call them warm
little pores. In summary, we have demonstrated that the chemi-
cal energy associated with the concentration gradients across a
growing membrane, such as a hydrothermal vent structure,
can drive significant flows across it, and also lead to its
explosion. Such flows can carry multiple ions across the mem-
brane, particularly small ones, this favouring further reactions.
We have noted in particular the concentration oscillations,
which have been previously identified as a necessary condition
for the formation of peptides. We have therefore demonstrated
the use of one source of chemical energy, in particular gradi-
ents in concentration, to generate fluxes of kinetic and
chemical energy across the porous structure of a hydrothermal
vent, which in turn, could favour energetically the early
biochemical reactions taking place within its pores.

The membrane develops with two very different
permeabilities for the inflow and outflow. This is what
makes in/out circulation possible. In bio-membranes, ion
channels select chemically for the in/out flows. What biology
seems to have done is to add more and different ways
through the cell membrane. Some of these are very specific,
not just to a single chemical species but also in a single
direction. Here we have a self-assembled membrane demon-
strating similar capabilities to an ion channel: what we see in
this system is the very beginnings of such selectivity. Thus,
this chemical garden is really working like a possible proto-
cell: it is self-contained and controls the inflow and the outflow
chemically and volumetrically. Perhaps proto-life could have
learnt from this self-organized system by a take-over process
as complex organic chemistry got started within it.
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