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This paper proposes new avenues for origins research that apply modern
concepts from stochastic thermodynamics, information thermodynamics
and complexity science. Most approaches to the emergence of life prioritize
certain compounds, reaction pathways, environments or phenomena. What
they all have in common is the objective of reaching a state that is recogniz-
ably alive, usually positing the need for an evolutionary process. As with life
itself, this correlates with a growth in the complexity of the system over time.
Complexity often takes the form of an intuition or a proxy for a phenomenon
that defies complete understanding. However, recent progress in several
theoretical fields allows the rigorous computation of complexity. We thus
propose that measurement and control of the complexity and information
content of origins-relevant systems can provide novel insights that are
absent in other approaches. Since we have no guarantee that the earliest
forms of life (or alien life) used the same materials and processes as extant
life, an appeal to complexity and information processing provides a more
objective and agnostic approach to the search for life’s beginnings. This
paper gives an accessible overview of the three relevant branches of
modern thermodynamics. These frameworks are not commonly applied in
origins studies, but are ideally suited to the analysis of such non-equilibrium
systems. We present proposals for the application of these concepts in both
theoretical and experimental origins settings.
1. Introduction and state of the art

There remains one a priori fallacy or natural prejudice, the most deeply-rooted,
perhaps, of all which we have enumerated: one which not only reigned supreme
in the ancient world, but still possesses almost undisputed dominion over many of
the most cultivated minds: : : This is, that the conditions of a phenomenon must,
or at least probably will, resemble the phenomenon itself.

John Stewart Mill [1]
1.1. Contemporary origins research
The most common approach to abiogenesis is to seek ways that aspects of life as
we know it can be re-capitulated in abiotic systems, ideally within the ensem-
bles that are ‘representative’ of the early Earth. This philosophy has yielded
mixed results [2,3]. There are some who argue that synthesizing the most essen-
tial components of life may be understood in the coming years [4]. Critics
would point out that such experiments require contrived, overly clean and
unrealistic conditions (e.g. [5,6]). However, there is a deeper and potentially
more pressing concern of driving forces: how and why might a system of bio-
molecular pieces come together to form a living whole? This grand challenge
can be subdivided into a number of philosophical sticking points.
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Firstly, the debate concerning what constitutes life is as
contentious as at any point in the history of the field [7–12]. Sec-
ondly, there are equal volumes of debate concerning the
sequential ordering of the appearance and integration of differ-
ent facets of life. Some prioritize autocatalytic reaction cycles or
primitive metabolisms as essential to drive any prebiological
process [13–20]. Others argue that nothing life-like will arise
in the absence of a bounding, membrane-like structure
[21–24]. Still others contend that without any form of genetic
system or primitive replicator, evolution and hence life
cannot emerge [25–30]. Yet others are exploring alterna-
tive conceptual frameworks, including statistical chemistry
approaches [31], and more recently, ‘Messy Chemistries’
[32,33], among others. Origins research has also highlighted
several paradoxes related to initiating such a highly circular
and functionally interdependent process as life.

Given these significant unknowns, we should remain
open to the possibility that life did not take a linear, single,
minimal and direct path from non-living to living. Indeed,
there have been suggestions in this direction recently [34].
The glaring disadvantage of this approach is that it offers
much fewer constraints and intermediate objectives than the
traditional origins approaches. We therefore propose the con-
cepts of increasing complexity and information processing as
an alternative guiding principle for modelling or experimen-
tal studies of the emergence of life. Elaborating this proposal
will be the focus of the present work.

1.2. Recent progress in thermodynamics and complexity
science

Progress in stochastic thermodynamics, information thermo-
dynamics and computational mechanics now allows the
objective calculation of quantities that were all but intuitive
ideas until recent decades. Information itself has been a
well-defined quantity since the pioneering work of Shannon
[35]. However, it has been repeatedly noted that context
dependence, meaning and function are missing in Shannon’s
formalism, not to mention the fact that it essentially measures
randomness (degree of surprise). This led to the formulation
of other information metrics such as physical complexity
and functional information [36–40]. These will be discussed
further in the following section.

Although rigorous and universal definitions for function,
utility and meaningfulness are still elusive, great progress has
been made in unifying traditional thermodynamics with the-
ories of information and complexity. Complexity often serves
as a placeholder for ‘too difficult to comprehend’, and many
have attempted to formalize it mathematically. One approach,
borne out of nonlinear dynamical systems studies in the late
1970s and early 1980s, has been particularly successful at cap-
turing the notion of complexity in a general way. This field,
now known as computational mechanics, started with the
objective of deriving state information about a dynamical
system from limited observations (this problem is the essence
of probabilistic inference and appears in most sciences, albeit
under different guises). What eventually emerged, through
the efforts of Professor James Crutchfield, his student at the
time Cosma Shalizi and many other researchers over the inter-
vening years, was a method known as epsilon machine
reconstruction [41–45]. Once the epsilon machine for a given
input has been constructed, it is straightforward to calculate
a range of key metrics including the statistical complexity,
entropy production rate and others. This will be discussed
further in §2.

Another area that has experienced great strides in recent
decades is stochastic thermodynamics, also known as the
thermodynamics of small systems, or fluctuation theorems
[46–50]. This theoretical framework was able to generalize
concepts such as free energy to small systems arbitrarily far
from equilibrium, which is all but impossible using classical
thermodynamics. It is also now possible to calculate relative
probabilities of phase space trajectories to their reverse
counterparts, with the main finding that this quotient
depends purely upon the difference in entropy production
of the forward and reverse paths. This opened up a whole
new realm of statistical physics with wide-ranging appli-
cations, in particular, the study of dynamic macromolecules
such as genetic polymers and molecular machines [51–55].

Last but not least, researchers in the field of information
thermodynamics have constructed formal frameworks that
incorporate the role of information in the dynamics of physical
systems. Although entropy has existed as a construct for over
100 years, and Shannon formalized the concept of information
in the mid-twentieth century, there were still missing links
regarding the mechanisms by which information and energy
are related. This link now appears to have been largely forged
by the bellows of theoretical insight, and the fires of experi-
mental observation. Hence a comprehensive thermodynamic
theory of information is now available [56–59]. With this new
formalism, it is possible to place exact limits on the efficiency
with which information can be exploited to convert disordered
energy into ordered energy, or dissipate ordered energy towrite
information. The potential applications and insights from these
achievements are profound and far-reaching.

Note that the aforementioned three areas of progress are
deeply connected. Computational mechanics provides a
means of constructing minimal prediction machines. Those
prediction machines can be optimized to effectively intercon-
vert between information and energy. Changes in
information content in such systems can be quantified by
analysing relative probabilities of phase space trajectories
using fluctuation theorems.

1.3. Motivation for the application of thermodynamics
and complexity to the emergence of life

Asmentioned above, aspects of primitivemetabolism and syn-
thesismay be solved in the near future. But the larger enigma of
turning a set of prebiotic molecules into an evolving ecosystem
is not understood (note however the attempt that began
with the pioneering work of [60]). In order to make further
headway, we need to explore potential driving forces for the
self-organization of a non-equilibrium system containing
materials that could comprise prebiological systems. Note
that these materials may not be immediately recognizable as
biological. For example, they may be polymers other than
peptides, nucleic acids, etc. Such an exploration should also
be maximally free of preconceptions about the story of how
life emerged. The natural world is not obliged to be readily
comprehensible, nor align with human expectations.

In environments that experience variations (all environ-
ments of astrobiological focus), a prebiological system able
to adapt to such variations, or in fact make use of them,
would be more resilient than an equivalent system that only
persists in a confined region of environmental phase space.
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The non-adaptive system would at some point be wiped
out by fluctuations.

Fluctuations that are wholly stochastic cannot be mitigated
except by shear robustness. However, fluctuations that have
reproducible (learnable) features can be mitigated through
some form of internal modelling, prediction or learning
process. Modern life performs prediction by learning from
past events, using a range of mechanisms and over a range
of time scales (e.g. [61–65]). Humans, crows, elephants,
octopi and other cognitive animals can learn to solve problems
through play and training. Mammalian immune systems use
an orchestrated form of evolution to search the space
of antibodies and produce long-term records of successful
searches [66,67]. Gene regulatory networks show associative
learning capabilities [68,69], and even individual protein mol-
ecules behave akin to combinatorial logic gates [70]. Evolution
can also be thought of as a learning process, as organisms, col-
lectives and ecosystems encode information about both the
abiotic and biotic components of their environments [71–73].

The importance of the use and encoding of information in
the biosphere cannot be understated, and the journey from
complex physico-chemical dynamics to biological dynamics
had to involve a transition to adaptive encoding and
control of information at some point (including non-genetic
systems) [74,75].

A great deal of research has explored the emergence of
information in biomolecular systems, in particular the genetic
and catalytic polymers [76–84], and self-replicating systems
[25,85,86]. These studies focus upon the quantitative relations
between the information content of polymeric systems, and
the disequilibria that drive the system. In the present work,
we wish to go further and consider not just information
itself, but the processing and exploitation of that information,
up to and including learning.

Extant life is replete with information processing
structures, mechanisms and systems. The first life would
have had drastically more primitive information processing
capacity. But for a proto-organism to be precarious [87], i.e.
for it to exist in any environment beyond the ideal ‘incubation’
environment, it would have to begin to process information
about the new environment, such that the perturbations
away from the incubation environment could be managed.
Any predictable phenomena in the new environment could
potentially be encoded and modelled by the system. If the
modelling ability were to feed back positively on the robust-
ness or proliferation of the prebiological system, then it will
be selected for (not in a strictly biological sense, but in a
dynamical stability sense).

The extent to which a system undergoes some form of learn-
ing or computation can be quantified using the frameworks of
information thermodynamics and computational mechanics.
Roughly speaking, if a system’s epsilon machine exhibits high
entropy rate and statistical complexity, and if these metrics are
growing with time, then the system is increasing its compu-
tational capacity and hence may also be exhibiting life-like
characteristics. In general, theoretical and experimental studies
of emergence seek systems that exhibit growing complexity
(preferably perpetual complexity growth, or open-endedness).
Measurements of statistical complexity would therefore be
an invaluable guide as to which systems are becoming more
life-like from a non-living initial condition. Complexity com-
parisons may be performed over time or between members of
an ensemble that is spread over a given parameter space.
1.4. Executive summary
We propose that the strong correlation between life, complex-
ity and information processing, combined with recent
progress in quantifying complexity and information proces-
sing, can be wielded to construct guiding experimental and
theoretical protocols for origins studies. Our thesis comprises
the following points:

(1) Complexity and information processing are fundamental
and necessary conditions for life, and hence must feature
in any hypothesis for life’s beginnings.

(2) Complexity and information processing are now rigorou-
sly defined, measurable and aligned with their intuitive
meanings, thanks to advances in stochastic thermodyn-
amics, information thermodynamics and computational
mechanics.

(3) New experimental and theoretical approaches that
exploit this progress could bring great advances to ori-
gins studies, by guiding paths towards more complex
and more life-like prebiological systems.

2. Foundations and recent advances of modern
statistical physics

This section will present brief surveys of the pertinent aspects
of stochastic thermodynamics, computational mechanics and
information thermodynamics. We cannot present these fields
in their entirety since they are vast and not all aspects are
directly relevant. There are also other reviews available (e.g.
[42,49,58]). Our objective is simply to give a high-level over-
view of the areas most relevant to the origins field. Those
who are already well versed in any of the three subdisciplines
should feel free to skip those sections.

Recent decades have seen significant progress in the ability
to model and experimentally manipulate micro-to-nanoscale
physical systems, including those upon which life depends to
harness free energy from the environment, or process infor-
mation [52,53,88–90]. Because of the peculiarities of very
small energy and length scales, it was necessary to develop a
new thermodynamic description of these systems called
stochastic thermodynamics [46–49,91]. Much of this progress
was motivated by a desire to derive quantitative descriptions
of the sub-micrometre structural units of living cells and
viruses, for which stochasticity and randomness dominate.
The many degrees of freedom (approx. 1023) and assumptions
of reversibility and equilibrium upon which classical thermo-
dynamics is built are problematic when describing the small
systems and large gradients operative in cells. Though the
laws of classical thermodynamics hold on average for infinitely
sampled small systems, individual microscopic trajectories of
small systems can drastically deviate from equilibrium values
(e.g. [48,53,92]).

Proponents of the alkaline hydrothermal vent theory
for life’s emergence, including Michael Russell and Elbert
Branscomb, have argued strongly that in order for life to
emerge, significant geochemical gradients in the environment
must have been available. They further argue that the emer-
gence of prebiotic transduction mechanisms able to couple
with these geochemical gradients in order to create other,
downhill gradients was required [93–95]. They hypothesize
such prebiotic transductionmechanismswould be akin tomol-
ecular motors and enzymes, but in contrast to modern biology,
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were comprised largely of the inorganic constituents of min-
erals found in vents [16]. These authors have also stressed the
importance of accounting for the nanoscopic dimensions of
thesemineral systems in analogywith the stochastic behaviour
of molecular motors and enzymes.

Despite this, much work remains to derive quantitative
models and design experiments to probe the nanoscale pro-
cesses taking place within alkaline vent systems (though note
the importantworkof [96]). Thismay bedue inpart to a paucity
of awareness of the great progress in stochastic thermodyn-
amics. There is also an inherent difficulty in the experimental
study of these small systems, especially when the non-
equilibrium conditions characteristic of vents are simulated.
Nonetheless, we contend that stochastic thermodynamics is a
necessary tool to constrain and rationalize whether the nano-
scopic minerals and organic molecules in vents would have
evolved into evermore life-like systems. Our goal is to introduce
some of the fundamental concepts of stochastic thermodyn-
amics. Beyond this, we explain how the recent extension of
stochastic thermodynamics to fundamental models of infor-
mation processes may allow for the determination of energetic
lower bounds necessary to acquire and process information in
a submarine alkaline vent or other prebiotic environment.

2.1. Introduction to fluctuation theorems
An important concept in stochastic thermodynamics is the
driving protocol Ω, defined as the time-dependent profile
of a control parameter λ, used to do work, W, on a system.
An example of such a parameter would be the extension by
which an RNA molecule was stretched in the experiments
of Collin et al. [53].

In what follows we first consider a system that starts at an
equilibrium state A and is then driven out of equilibrium by
the control parameter to some terminal state B, following a
predetermined schedule (the driving protocol). Together
with the first law of thermodynamics, the Clausius statement
of the second law tells us that (for a single heat bath) the
work required to vary λ must be equal to or greater than
the free energy difference between the terminal states of the
protocol [48]:

W[V] � DF: ð2:1Þ

For macroscopic systems, there is no expectation to observe
a violation of this law. However, when one considers small,
non-equilibrium systems where fluctuations and overdamped
motion dominate, the inequality above can be violated.
To interrogate small systems, a reinterpretation of the process
described above is necessary.

Imagine a small molecule such as RNA that, in its natural
course, folds and unfolds to function properly. If one were to
perform an experiment where they repeatedly drive a single
RNA molecule from a folded (state A) to unfolded state (state
B), they would find the work required to unfold the RNA
molecule can vary for each realization of the experiment
[48,53]. Some realizations will require less work than the
free energy difference of the folded and unfolded states, in
violation of equation (2.1). This variation in work values is
not due to the control parameter, since the same driving pro-
tocol is used for each unfolding process. Rather, it is due to
the stochastic fluctuations of the heat bath which bombard
the RNA molecule. From such an experiment, work distri-
butions for this process can be obtained and the free energy
difference between the folded and unfolded state of the
RNA molecule can be determined from Jarzynski’s relation:

he�bWi ¼ e�bDF: ð2:2Þ

Brackets 〈•〉 denote an average over many realizations of the
process described above, β≡ (kBT )

−1 is inverse temperature,
kB is Boltzmann’s constant, and T is the environmental (equi-
librium) temperature at the start of the unfolding process.
Note that the start and terminal states of the process are
equilibrium states.

Jarzynski’s relation was one of the first prominent results
of stochastic thermodynamics and has been experimentally
verified, including for the RNA (un)folding protocol by
Collin et al. [53]. This relation enables the determination of
equilibrium free energy states of individual biomolecules
from non-equilibrium work processes, such as unfolding indi-
vidual polymers. However, there can be significant errors in
computing free energies of single molecules using Jarzynski’s
relation if the work distributions are undersampled [97].

Crooks fluctuation theorem (equation (2.3)) is a more general
result that applies to systems that obeymicroscopic reversibility
[91]. Before introducing Crooks fluctuation theorem, it is
necessary to differentiate between the forward protocol, Ωf and
the reverse protocol, Ωr. An example of a forward protocol is
the process of unfolding RNA described above. The reverse
protocol is simply the control parameter schedule for the
forward protocol in reverse. So if for the forward protocol one
drives the system from A to B, then for the reverse protocol
one would drive the system from B to A. The general form of
Crooks fluctuation theorem states that the ratio of the
probability to observe a system trajectoryXf during the forward
protocol,Ωf, to the probability to observe the reverse trajectory
Xr during the reverse protocol, Ωr, is given by an exponential
factor of the entropy production ΔS, in the system and
environment, during the forward protocol [47,48,55,91]:

P[Vf(Xf)]
P[Vr(Xr)]

¼ exp
Wf � DF

kBT

� �
: ð2:3Þ

This equality holds for systems driven arbitrarily far from
equilibrium and provides insight into irreversible processes
by relating the degree of time asymmetry a system exhibits
to entropy production. Stated more simply, if one were to
record the system of interest driven during the forward proto-
col and then play the movie backwards, the distinguishability
of the twomovies depends upon the entropy produced during
the forward protocol. Breaking time symmetry incurs a ther-
modynamic cost, which must be paid for by dissipation. It is
this same cost which must be paid to drive directed behaviour
of molecular machines to reliably complete work cycles in
finite time. The Crooks fluctuation theorem has also been
experimentally verified and does not suffer from the problem
of under-sampling that the Jarzynski relation does [53,55].

Recent work by Crooks, Sivak, and others has begun to
shed light on the impact that different driving protocols have
on the efficiency of performing various types of work on
driven nanoscale systems [55,98–100]. How does one optimize
the driving protocol to performwork on a systemwithminimal
dissipative cost? An elegant approach to the problem is cur-
rently under development and has been applied to both
information processing systems and biological macromolecules
[101,102]. There has also been recent interest in considering a
stochastic driving protocol rather than a well-defined one as
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in the examples above [103]. The detailed mathematics of opti-
mal driving protocols are beyond the scope of this article as they
involve calculating geodesics along Riemann manifolds, geo-
metry typically encountered in General Relativity. However,
we encourage readers to review these papers, as the important
role of the ‘driving protocol’ and its optimization is qualitatively
discussed later.

2.2. Computational mechanics and information
thermodynamics

Information theory and computer science are relatively
young fields compared to classical thermodynamics. And
yet their influence has been profound and rapid. They have
taken us from an industrial age of power through liberating
electrons from organic materials and donating them to an
oxidized atmosphere, to a digital age where electrons instead
encode and transfer information on a massive scale. This may
become the most major of the major evolutionary transitions.

2.2.1. Shannon entropy
The foundations of computer science were laid by Turing,
von Neumann and others. Although this paved the way for
the digital age, the relationship between information, compu-
tation and energy would take somewhat longer to formulate.
A rigorous treatment of information and communication was
provided by Shannon [35]. This framework relates information
content to probabilities of received signal content (the degree
of surprise of receiving a certain signal). More generally, the
Shannon entropy is a metric of probability distributions:

H[X] ¼ �
X
i

pilog2pi, ð2:4Þ

where i indexes the possible states of a system, members of a
signal alphabet, or outcomes of a measurement, etc., and pi is
the probability of observing state i. Equation (2.4) ismaximized
for uniform distributions (complete ignorance), and vanishes
under complete knowledge (when one probability in the set
is unity and all others vanish). This expression can also be
seen as a generalization of Boltzmann’s entropy formula
(which applies to the special case of equally likely states in an
ensemble), and is also equivalent to the expression due to
Gibbs (whom was less explicitly concerned with information).
Shannon’s result and its link to the classical thermodynamics of
Carnot, Boltzmann and Gibbs illustrated the deep connection
between available or free energy, and the state of knowledge
of the observerof a system.Knowledge clearlywas power; how-
ever, there was still a missing piece. Carnot had shown how
efficiently thermal gradients can be converted into work, but
the restrictions of equilibrium thermodynamics did not
permit a quantitative understanding of dynamic processes
that interconvert between heat, work and information.

2.2.2. Maxwell’s demon
Maxwell semi-whimsically introduced his demon in 1867, and
it was still defying a thorough exorcism until the latter half of
the twentieth century, when it was finally vanquished by the
efforts of Szilard, Landauer and others (see [104] for an
overview). It had been shown that many measurement proto-
cols that the demon might use could be performed with
negligible energy expenditure. However, it was Landauer
[105] who demonstrated that erasing information carries an
inevitable energetic and entropic cost. When a system such as
a Szilard engine [104] is reset to its starting state (which it
must be to be cyclic), information about its previous state is
lost. This loss produces a net entropy contribution of kBlog2,
due to the two-to-one phase spacemap that arises from erasing
the single bit of stored state information. Thus any entropy
reduction from converting a quantity of heat into work by a
demon system is offset by at least this ‘Landauer bound’ (in
general more entropy than this limit is generated).

Hence the second law of thermodynamics was saved, and
its safety has been reinforced by increasingly accurate
nanoscale experiments [58,59,106–110]. It was then possible
to calculate and verify bounds on the free energy that one
could yield from a system given a source of information about
that system (e.g. [59,110,111]).

More recently, a complete framework that includes the
use of information (conventionally bits on a tape) as a
resource has been presented [56,57,112–114]. This formalism
allows the calculation of efficiency limits for the exploitation
of information for the conversion of disordered energy into
ordered energy, or the minimal cost of dissipating ordered
energy to write information into a subsystem’s state. In the
limit of no information, this framework reduces to Carnot’s
theory. Garner et al. [56] concluded that the most efficient
information processing devices are prediction machines that
minimize the storage of superfluous or non-predictive infor-
mation. The lower bound on the dissipative cost of pattern
manipulation was found to be given by the crypticity of the
pattern (see Crutchfield [42] and references therein for further
details on the crypticity of a time series). In the field of com-
putational mechanics, it has been proposed that the minimal
and optimal predictor of a time series is the epsilon machine
of Shalizi & Crutchfield [44]. The story of its development
now follows.
2.2.3. Complexity metrics
The most well-known early attempts to quantify complexity
were due to Kolmogorov & Chaitin [115,116]. Given an input
sequencedescribinga system (e.g. a discrete time series ofdiscre-
tized measurements), the Kolmogorov–Chaitin complexity
(KCC) measures the size of the minimal program that repro-
duces the time series when fed into a universal Turing
machine. In other words, the KCC is a measure of minimum
description length (greater degree of regularity allows a more
compact description). Simple systems such as crystals at equili-
brium have small KCC due to their high degree of symmetry.
Less predictable systems have higher KCCs. However, herein
lies the flaw in the KCC: it is maximized by random strings,
for which the minimal program is simply a copy of the string
itself. Clearly, a string of random bits is unpredictable, but not
complex, since it exhibits precisely zero structure. In addition,
there is no universal procedure for computing the KCC of
arbitrary input strings.

In light of these issues, more recent efforts have extended
thermodynamic and computational concepts to formalize
complexity (note also the early work of [117]). Thirty years
ago, Charles Bennett, known for his contributions to the ther-
modynamics of computation, surveyed various candidate
measures of complexity, and did not conclude that any of
them satisfied the necessary requirements [38]. Adami & Cerf
[37] developed a metric that extended the KCC and prioritized
meaning and context. Their ‘physical complexity’ measured
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regularities in strings in the context of given environments,
inspired by analysis of genetic sequences. Such sequences
can be highly meaningful or functional in one niche, but
useless in others.

The nobel laureate Murray Gell-Mann also contributed to
the development of complexity metrics [39]. He and Seth
Lloyd noted that it is essential to capture reproducible, deter-
ministic components of a system, and also the stochastic
components (already captured by the Shannon entropy rate).
Their metric, known as the total information, was a summation
of the effective complexity (measuring the reproducible aspects
of the system), and the Shannon entropy rate (measuring the
stochastic aspects). This approach is conceptually similar to
the epsilon machine approach of computational mechanics
described below.

The contribution of Hazen et al. [40] prioritized the func-
tion of strings given the ensemble of all similar strings.
In particular, their ‘functional information’ quantified the
probability of the emergence of functional members of the
ensemble. This was applied to digital organism genomes
and biopolymer sequences, but did not achieve the generality
of the framework discussed next.
2.2.4. Epsilon machine reconstruction
Computational mechanics began with the fundamental issue
of deriving state information from partial measurements
[118]. How can we objectively and optimally glean details
about a system’s phase space dynamics when we can only
measure a small fraction of its degrees of freedom? It was dis-
covered that simply projecting a subset of the degrees of
freedom of a system can reveal structure in the larger phase
space of that system. A striking example of this was simple
timing measurements in the dripping faucet experiment
[119,120]. These ideas of phase space projection from time
series eventually led to the concept of causal state splitting
reconstruction. This process characterizes all the possible
causal states that could comprise a minimal model of a
time series, and groups those that are ‘causally equivalent’
(see [42–44] for full details).

As was noted by Gell-Mann & Lloyd [39], any metric
for complexity should include both stochastic and determi-
nistic elements, and vanish for perfectly stochastic or
perfectly ordered systems. The computational mechanics
approach solves this issue. It includes a rigorous procedure
for generating predictive models of a given input (causal
state splitting reconstruction, as mentioned above). Those
models are optimal and minimal by design, and can thus
be used to quantify the complexity of the input.

In its simplest form, this modelling process takes as input a
discrete time series. Through causal state splitting recon-
struction, it computes the minimal effective causal states of
a Markov model that can reproduce time series that are
statistically equivalent to the input series (up to an accuracy
quantified by the parameter epsilon). Once this Markov
model is constructed, it is then straightforward to calculate
the Shannon entropy rate (the degree of randomness of the
time series), and the statistical complexity (the information con-
tent of the state space of the epsilon machine). The full
mathematical details of these metrics can be found in [42–44].
For the present discussion, it is sufficient to be aware of the
interpretation of these quantities: the entropy rate measures
degree of randomness, and the statistical complexity measures
regularities in the dynamics of the system, indeed its degree of
self-organization [43]. Also crucial is the fact that there is a defi-
nite procedure for the computation of these metrics from a
given time series.

Let us consider the meaning of these quantities with some
simple examples. If a process has vanishing entropy rate, that
implies it is completely deterministic. An example would be
periodic bit flipping (0101010101…), or in the continuous
realm, a noiseless periodic oscillation such as a sine wave.
Conversely, processes with high entropy rate have a high
degree of stochasticity. Predicting future values of such series
is inherently difficult or impossible for a pure noise signal.
However, it is simple to construct a Markovian representation
of such processes. Coin-flipping could, for example, be rep-
resented with a single-state machine that has two transitions,
each with probability 1/2 (see fig. 1b of [42]). Each equally
likely transition produces a head or a tail. Deterministic
processes can also be compactly represented by epsilon
machines. Typically, they would comprise a small number
of states with transition probabilities that have a highly
non-uniform distribution.

Complex systems combine elements of both of these
extremes: they exhibit both deterministic and stochastic
elements, and both elements contribute to any emergent
structures and the ability to perform computation.Aprime bio-
logical example is genes and their replication. The familiar
crystal structure of DNA shows a high degree of symmetry
and predictability. Likewise, it can be replicated with astound-
ing fidelity. But clearly, perfect replication would grind
evolution to a halt. Mutations are the engine of novelty and
evolutionary invention. Mutations are thus an information
source that interact with selective forces to produce and stabil-
ize new characteristics and variations. However, mutation rates
that are too high (large entropy rate) produce offspring that are
not viable and the system suffers an error catastrophe. Hence at
the genetic level, the profound complexity of life stems from
a combination of the highly reproducible structure and func-
tion of DNA, and the stochastic fluctuations from mutations.
This characterization of complexity as the rich middle ground
between order and chaos has been noted by many (e.g.
[42,121,122]).
3. Conceptual and experimental proposals
In light of the previous sections, wewill now present examples
of how modern thermodynamics could provide novel insights
and guidance in origins-related research. As previously pro-
posed by Branscomb & Russell [93–95], molecular machines
or engines that process information and convert free energy
are essential to life. This suggests they should have become
part of life’s story at an early stage. Hence we can ask: at
what point in Earth’s historywould emergent information pro-
cessors appear, and in which physical systems would they
manifest? Of particular relevance to this theme issue iswhether
assemblages of information processors can emerge and evolve
in chemical gardens or alkaline vent systems comprised of
catalytic, nano-to-meso phase mineral assemblages.

Several proposals have been put forward for how infor-
mation is created and endures as a heritable trait in mineral
systems. Perhaps one of the best-known examples is the clay
mineral hypothesis [123,124]. Some have suggested that this
system is an unlikely vehicle for information creation and
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transfer [125,126], but several newer proposals have been
suggested [127–129]. We posit that such questions can be
answered in a natural and intuitive way by viewing minerals
as stochastic sensors with some capacity to learn, and invoke
the ‘control parameter’ from stochastic thermodynamics
of single-molecule manipulation experiments as a likely
‘stochastic signal’ that an emergent sensor, a mineral in our
case, might learn about. More specifically, we interpret this
control parameter as the environment from the perspective of
nano-phase minerals such as green rust.

3.1. Pumping and stochastic sensing in iron layered
double hydroxide minerals

The role of iron minerals in the origins of life has long
been emphasized [130]. This is due to several properties
including their catalytic abilities [131–136], the diverse
spaces of structure and function of iron minerals [128,137],
their ability to bind biomolecules [96,138], their role in
biological enzymes and energetics [139–142] and their
potential to store information [125].

The first practical application of stochastic thermodyn-
amics to such minerals comes from the consideration that
prebiotic chemistry involves small-scale systems which
when viewed as individual entities, require the framework of
fluctuation theorems to determine quantities such as free
energy, dissipation and other thermodynamic properties. If
one accepts the argument that analogues to functioning mol-
ecular machines are requisite structures at life’s emergence,
one cannot escape the need to use stochastic thermodynamics
to characterize and engineer such molecular structures. For
instance, Russell and colleagues have hypothesized that
layered double hydroxide (LDH) minerals such as green rust
can act as primitive molecular pumps. Their line of reasoning
relies upon evidence that LDH compounds are capable of anio-
nic exchange, and thus there is a degree of mobility for
molecules within their interlayer cavities. Secondly, a publi-
cation by Wander et al. [143] determined the hole polaron
hopping rates for three distinct pathways between iron lattice
sites along the cationic sheets of green rust.

Polarons are ‘self-trapped’ charges, equivalent to electrons
or holes which deform the crystal lattice within their local
vicinity. Concerted charge hopping among the dominant
hopping pathways in two adjacent cationic sheets would
lead to laminar deformation, potentially capable of pumping
and condensing interlayer molecules. How much energy is
required to carry out this function though, and what is the
dissipative cost? Can experiments be carried out on individual
nanoparticles to determine this? Along with computational
modelling, we suggest single particle experiments with iron
minerals such as green rust are necessary to confront these
questions. Single-nanoparticle electrochemistry is an emerging
field which provides an attractive complement to current
prebiotic chemistry studies [144]. In addition, a recent exper-
imental approach developed by Ross et al. [145], called
relaxation fluctuation spectroscopy, offers a method to study
nanoscale systems which are not amenable to the traditional
force spectroscopy experiments previously described for
RNA hairpins.

The second compelling reason to employ stochastic ther-
modynamics in the study of prebiotic mineral systems is
evidenced in its connection to information processing and
learning [112,113,146–151]. To confront the question of if and
how information manifested in prebiotic mineral systems,
one must determine what the information was correlated
with and what the requisite energetic budget is to store and
process information.

Many authors have used fluctuation theorems to analyse
information incorporation into polymer species [76–84]. Here,
we propose a similar analysis for mineral and mineral-organic
systems relevant to the origins of life. Put simply, we aim to
measurewhether mineral systems could build abstract internal
representations of (structured) external signals (e.g. driving
protocols). Calculating the entropy production for such signals
is straightforward using the fluctuation theorems of §2. A key
challenge, however, would be the appropriate choice of
measurement apparatus and variables to quantify information
uptake by the internal mineral system. This builds on an earlier
proposal due to Greenwell & Coveney [125]. However, their
model did not take into account progress in the field of infor-
mation thermodynamics or computational mechanics, since it
was proposed before many of the important developments in
those fields.

Zenil et al. [152] observed that in evolutionary biology
‘…attention to the relationship between stochastic organisms
and their stochastic environments has leaned towards the
adaptability and learning capabilities of the organisms rather
than toward the properties of the environment’. While we
advocate the exploration of how prebiotic mineral systems
learn and adapt, the structure and predictability of the environ-
ment must always be carefully considered. In general, we
interpret the environment as the mechanisms by which external
control parameters couple to an internal system, in our case a
mineral. Hence the time-dependent ‘protocol’ discussed in pre-
vious sections is akin to the ‘algorithm’ concept invoked by
Walker & Davies [74] and Zenil et al. [152]. It is important to
stress that such stochastic, time-dependent driving protocols
are a function of naturally varying parameters such as pH
and chemical potentials, which for submarine, alkaline vent
systems are dictated by processes such as serpentinization,
local petrology, hydrodynamics and ocean chemistry
[153–156]. Among the heterogeneous mixtures of mineral
precipitates driven by variations in pH, Eh and chemical
concentrations, we hypothesize that some fraction will
emerge for which the interplay of the mineral system with a
structured environment will lead to the acquisition and utiliz-
ation of information, as seen in stochastic sensors and
information engines.
3.2. Open-endedness and the role of information
We now turn from mineral experiments to theoretical con-
cepts related to information and learning. All attempts thus
far at modelling perpetually emergent complexity (open-
endedness) reach some form of saturation, especially those
with simple or equilibrium boundary conditions. But from
a learning perspective, it is not surprising that systems with
a simple problem to solve (e.g. finding a minimum in an
energy landscape, or simply replicating faster than competi-
tors) produce simple solutions to that problem. Clearly, the
problem of surviving as an organism is vastly more compli-
cated than just replicating faster, or dissipating an external
gradient as rapidly as possible. We contend that a primary
element in the survival problem is the encoding, processing
and utilization of information [62,152,157]. And crucially,
the process of learning itself creates more to learn about.
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For example, when early photosynthesizers learned to
channel photon energy into water-splitting such that water
could be used as an electron donor, they solved the problem
of finding readily available electron donors. However, they
simultaneously created a huge new problem for the biosphere:
oxidative stress. This new challenge pushed evolutionary inno-
vation to new realms, as organisms struggled to survive in an
oxidized atmosphere.

In the anthropic realm, when humanity learned to build
automobiles as a means of transport, it then also had to find
ways to construct smooth roads, safe traffic control systems
and costly systems for protecting financial liability. Those
systems then also gave rise to further optimization problems.

Hence, solving problems invariably creates more problems,
and if the creation of newproblems outstrips the rate of solution
of existing problems, there is a potential engine for open-ended
complexity. One could interpret niche construction in a similar
way: when an organism alters its environment, the alteration
normally creates additional challenges for other species, or
even the organism itself (there are impending anthropic
examples of this). Mature ecosystems show that this process
seems to iterate perpetually, through competition and sym-
bioses that may resolve existing survival challenges, while
creating new ones for future inhabitants.

Despite the failure to simulate open-endedness, there have
been results in recent years demonstrating how structured,
non-equilibrium driving forces can promote emergent com-
plexity in non-living systems. Jeremy England has published
several works in this vein, showing, for example, that chemical
systems will exhibit self-organization through resonant
matching with time-varying external forcing [158,159].

Additionally, in the origins realm, there has been a surge
of interest in wet–dry cycles for the promotion of polymeriz-
ation in prebiotic systems [29,32,160–162]. Alongside the
physical chemistry of this effect, one could also interpret
these results as an internal self-organization due to the infor-
mation content of the external driving force. Periodic cycling
between wet and dry conditions makes a certain quantity of
information available to the internal system. The effect of this
informational driving (as compared to steady-state driving)
is reflected in the enhanced disequilibrium state of the
internal system (sustained existence of polypeptides or long
genetic polymers). If one was to observe the system without
prior knowledge of the driving protocol, the polymer size
distribution would contain information about whether any
wet–dry cycling had been performed (the system has a
degree of memory). The emergence of longer polymers is
known to be extremely difficult under simpler modes
of external forcing, though one area of success has been
thermophoresis [163].

We suggest that the England results and the wet–dry cycle
results reflect a common underlying effect: systems that are
beginning to primitively learn about their environment.
3.3. Requirements for emergent learning
To take this concept further, we suggest three necessary
conditions for emergent learning:

(1) The ability of a system to form a dynamic memory of
its environmental perturbations. This could be as
simple as a persistent, low entropy compositional distri-
bution, or as sophisticated as a Hopfield network
(perhaps comprised of a chemical reaction network, or
redox states of a mineral structure).

(2) The possibility of simple computational circuits and
information transfer among the components of the
system. These would allow it to carry out a learning pro-
cess. An example would be a Hebbian-type process for
associative learning.

(3) A positive feedback or reinforcement mechanism between
the process of learning and the lifetime or resilience of the
learning system. In a Darwinian system, this would be
natural selection.

Many systems of relevance to origins studies have shown the
potential for information processing, including chemical
reaction networks [164–169], genetic polymers [170–172] and
mineral structures [125]. Hence the field is now poised to
make significant strides by modelling such systems (numeri-
cally and experimentally), and using the tools of modern
thermodynamics described above to quantitatively assess
their information processing ability. Note the distinction
between information processing discussed here, and infor-
mation in prebiotic systems, for which there is already a large
literature [76–84].

Assessments based upon information processing ability
could be used to compare instantiations of similar systems
that are spread through parameter space. This is particularly
relevant to high-throughput, automated chemistry exper-
iments where many combinations of reactants and conditions
need to be compared as quickly as possible [33,173,174].

It is often difficult to objectively carry out this comparison,
and researchers commonly seek recognizable life-like features
such as self-reproduction or chemotaxis. An automated
system that instead screens for complexity and information
processing would be more agnostic, since it does not dis-
tinguish using familiar features of extant life. Systems could
also be monitored in time to see whether their information
processing abilities are growing. A cartoon example of a
system set-up that uses this approach is presented in figure 1.

In this example, the external driving force is simply a time-
varying voltage across two plates at either end of the system.
The internal composition could include minerals and small
organic molecules. The driving force can be thought of as a
signal, and in general would include deterministic and sto-
chastic elements. This signal could form the input of an
epsilon machine reconstruction process, as outlined in §2.
The result of this process would be complexity metrics
including entropy rate and statistical complexity.

Internal measurements of the system would also be used
as input for another process of epsilon machine reconstruc-
tion. The result would be two sets of complexity metrics,
one for the system boundary conditions (signal), and a
second for the internal response of the system. It would
also be possible to measure the mutual information between
the internal and external signals (see right-hand inset of
figure 1). This would serve as a measure for the rate of infor-
mation uptake by the internal system. Note the green curve
on the right inset graph of figure 1. This mutual information
measure increases exponentially as the system learns but then
saturates, producing a sigmoidal profile. We have denoted
this as the requisite variety limit, in reference to the concept
of the same name introduced by the cyberneticist W Ross
Ashby [175] (see also [112]). Simply put, this refers to the
fact that every environment contains a quantity of discernable
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(Online version in colour.)
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(and learnable) states. Any system that learns about its
environment must ‘be aware of’ at least this number of exter-
nal states, such that it can regulate itself against changes in
those external states.

The computational mechanics approach can thus be used
as a screening metric: quantify the complexity of the driving
signal and then calculate complexities of system responses.
One can compare the complexities of the responses and use
that as a guide for which systems to explore further, under
the assumption that the more complex systems (greater com-
putational capacity) are more likely to evolve towards living
systems. In general, we are seeking those systems that pro-
duce the largest internal complexity per unit complexity of
the driving signal.

3.4. Associative learning in a prebiological setting
In addition to analyses of complexity in prebiological systems,
we also present the following more explicit example of
how learning might play a role in early chemical evolution.
Let us imagine a system that is potentially prebiotically rel-
evant (e.g. a non-enzymatic metabolic cycle). Under ideal
conditions, the cycle proceeds to synthesize organic monomers
that could comprise a proto-organism. When the system is
perturbed away from that ideal window, the metabolic
process diminishes. This would likely apply to recent examples
of prebiotic metabolisms that have been experimentally
demonstrated [133,136].

Let us now imagine an augmented version of the metab-
olism that has additional reactions and compounds, which
permit sensitivity to the environment. This sensitivity allows
environmental information to be encoded. The augmented ver-
sion can also process that information in some way, and this
processing thenmodulates the reactions and physical processes
that the system undergoes. The set of all augmented metabolic
systems is vast, and most will have a neutral or destructive
effect on their own persistence. However, if a subset of those
systems exhibits a positive feedback with regards to infor-
mation processing capacity and the extra resilience that it
confers, then that subset will be screened out, to the exclusion
of others. A simplified example of this is shown in figure 2.

This network autocatalytic protometabolism functions
under ideal conditions but is catastrophically damaged by a
highly reactive compound T, that forms through the reaction
of I and J (centre right panel of figure 2). In general, the con-
centrations of I and J will be time-varying, and under
‘environment B’ they are also temporally correlated (perhaps
delivered by a common geophysical process). Thus, the
metabolic system will be more resilient if that correlation
can be learned, and used to trigger production of compound
L, which can preferentially react with T and prevent
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the breakdown of the metabolism (lower right panel of
figure 2). Synthesizing L in the absence of T wastes scarce
free energy (lower left panel of figure 2). When I and J are
not correlated, the system need not synthesize L (centre
left panel of figure 2). Chemical associative learning was
successfully simulated by McGregor et al. [176], and similar
reaction networks could be used in this example system.
Note that we have omitted other reactions and compounds
that may be present, but do not play a role in the associative
learning process.

The motivation of this example is to understand the con-
ditions under which a learning ability could be physically
selected for. It is well understood how learning networks
encode and process information, but in the context of origins
research, the learning behaviour and the architecture for per-
forming the learning must both emerge spontaneously. Such
a feat has not yet been achieved, but would be a watershed
moment for complexity science.
4. Conclusion
Stochastic thermodynamics of information processes and
computational mechanics provide a firm basis to evaluate
any theory about the emergence of biological information
from abiotic systems. The creation and manipulation of infor-
mation is necessarily bounded by the energetics of a system
and its environment. Thus, when researchers claim a gain
in information or complexity of their system under study,
evaluating the thermodynamics or epsilon machine of the
system can act as verification for such claims, and provide a
lower bound on how much information processing is poss-
ible for that system. If submarine alkaline, hydrothermal
mounds were the site of life’s emergence and evolution to
the Last Universal Common Ancestral Set, this implies a
large amount of information acquisition and processing had
already occurred and could in principle be bounded using
the tools introduced above. This task will require careful
interpretation to map the relevant thermodynamic and infor-
mation theoretic quantities to the geochemical systems and
processes at play in submarine alkaline vents. Likewise,
these concepts provide possible benchmarks for hypotheses
concerning the emergence and evolution of information in
any prebiotic system. This would provide the research com-
munity with standard definitions by which results can
be compared.

Much origins research is guided by specific storylines or
specific compounds. Here, we are advocating a complemen-
tary approach where one does not seek specific compounds,
pathways or products. Instead the guide is marginal increases
in key thermodynamic metrics that are demonstrably associ-
ated with biological activity. These metrics, stemming from
recent progress in thermodynamic theory, include statistical
complexity and entropy rate. This allows modellers or exper-
imenters to screen their systems in terms of computational or
learning capacity. Such abilities are absolutely fundamental
to the operation of life as we know it, and hence must have
become part of life’s repertoire at an early stage of its
emergence from the non-living world.
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