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Abstract

Background: Incidence and mortality of lung cancer have dramatically decreased
during the last decades, yet still approximately 160,000 deaths per year occurred in
United States. Smoking intensity, duration, starting age, as well as environmental
cofactors including air-pollution, showed strong association with major types of lung
cancer. Lung squamous cell carcinoma is a subtype of non-small cell lung cancer,
which represents 25% of the cases. Thus, exploring the molecular pathogenic
mechanisms of lung squamous cell carcinoma plays crucial roles in lung cancer
clinical diagnosis and therapy.

Results: In this study, we performed integrative analyses on 299 comparative
datasets of RNA-seq and methylation data, collected from 513 lung squamous cell
carcinoma cases in The Cancer Genome Atlas. The data were divided into high and
low smoking groups based on smoking intensity (Numbers of packs per year). We
identified 1002 significantly up-regulated genes and 534 significantly down-regulated
genes, and explored their cellular functions and signaling pathways by bioconductor
packages GOseq and KEGG. Global methylation status was analyzed and visualized in
circular plot by CIRCOS. RNA-and methylation data were correlatively analyzed, and
24 unique genes were identified, for further investigation of regional CpG sites’
interactive patterns by bioconductor package coMET. AIRE, PENK, and SLC6A3 were
the top 3 genes in the high and low smoking groups with significant differences.

Conclusions: Gene functions and DNA methylation patterns of these 24 genes are
important and useful in disclosing the differences of gene expression and
methylation profiling caused by different smoking levels.

Keywords: Lung squamous cell carcinoma, Data mining, RNA-seq, Methylation, The
Cancer genome atlas, Smoking intensity

Background
Lung cancer ranked the second place in estimated new cases (approximately 234,000

new cases) and the first place in estimated deaths (approximately 160,000 new cases)

in United States, 2018 [1]. Recent studies reveal several major risk factors influence the

lung cancer [2, 3]. For example, environmental pollutions and tobacco consumption

[4–6]. Chronic exposure to carcinogens released by smoking metabolically induced
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damages on pulmonary cells and caused DNA mutation or DNA adducts, eventually

leading to lung cancer [7, 8]. Seeking the connection between smoking habits and

changes of genetic and epigenetic levels in all types of lung cancer is quiet promising in

finding unique biomarkers for diagnosis and treatment, especially after people found

out smoking showed various impacts of different types of lung cancers [9].

There are two main types of lung cancers, small-cell lung carcinoma (SCLC) and

non-small-cell lung carcinoma (NSCLC). Lung squamous cell cancer (LSCC) is the

second common subtype of the latter, which represented almost 25% of overall lung

cancer [10]. Numerous studies had focused on genomic characteristics of NSCLC

(including LSCC), especially mutated genes found in lung cancer patients. Glutathione

S-Transferase Mu 1 (GSTM1) is a glutathione S-transferase, which functions as detoxi-

fier in tobacco smoking induced carcinogenesis [11]. GSTM1 deficiency would signifi-

cantly increase the risk of LSCC [12]. Cytochrome P450 Family 1 Subfamily A Member

1 (CYP1A1) was also found high polymorphic and associated with elevated risk of lung

cancer [13, 14]. Epidemiology studies showed that there was an increasing risk of

developing lung cancer in cigarette amount dependent manner on both GSTM1 and

CYP1A1 gene mutate patients [15]. Other genes with gain or loss of function muta-

tions, such as FGFR1, TP53 and NOTCH1, might also play important roles in develop-

ing LSCC [16–19]. The TCGA project conducted a more comprehensive study on the

genomes and regulatory pathways of LSCC, and reported more mutated genes, such as

CDKN2A, PTEN, PIK3CA, NFE2L2, KEAP1 and RB1 [20]. However, compared to lung

adenocarcinoma, the understanding of mutated genes and pathways in LSCC is still

limited, especially in terms of actionable mutations.. Next-generation sequencing and

gene chip technology produce high-throughput RNA, DNA and CpG methylation data

from multiple LSCC patients. With appropriated bioinformatics analysis tools, these

data would be revisited/reinvestigated in a more comprehensive perspective of gene

differentiation and regulatory pathways, and for the purpose to identify significant

biomarkers for diagnosis and treatment.

In this study, we aimed to identify biomarker genes related to the smoking intensity

in LSCC patients, and performed the integrative analysis using dataset downloaded

from The Cancer Genome Atlas (TCGA). In particular, gene ontology, cellular enrich-

ment functions and pathway analysis were performed on RNA-seq data. Global DNA

methylation profiles were drawn from on methylation data. Significant biomarker genes

were selected and regional CpG methylations of them were evaluated. All the bioinfor-

matics analyses were performed using Bioconductor packages and computer software.

This study is for the first time to systematically explore the genetic and epigenetic

profiles of LSCC patients and look for potential genes significantly different between

high- and low-smoking groups. Such information is highly valuable for establishing an

effective non-invasive screening method and treatment against human LSCC.

Materials and methods
Data source, RNA-seq and DNA methylation analysis

We used publicly available data for the TCGA-LSCC cohort that includes 513 cases

[21, 22]. From this cohort, we obtained 299 LSCC cases with both gene expression and

epigenetic datasets. We divided these data into two equal groups according to smoking
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intensity, 150 high smoking cases (average number of cigarettes consumed per year

73.6 packs with a median of 63 packs) and 149 low smoking cases (average number of

cigarettes consumed per year 30.9 packs with a median of 30 packs).

The gene expression data was obtained as raw count values from TCGA public level

3 transcription profiles. We applied bioconductor package (edgeR) [23] to the

transcription profiles and tested for differential expression between high-smoking and

low-smoking groups. P-values were corrected for multiple testing by computing q-

values (false discovery rates). Then the significant Differentially Expressed Genes

(DEGs, P < 0.01 and fold change value > 2 or < − 2) were selected for further analysis.

Principle component analysis was performed to classify between high- and low-

smoking groups. The Gene Ontology (GO) functional annotation of DEGs was accom-

plished by Biomart Database and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway annotation of DEGs was accomplished by using BLASTP to align to KEGG

database with a cutoff e-value of 10–5 [24–26]. GO enrichment analysis provides all

GO terms that significantly enriched in DEGs comparing to the genome background,

and filtered the DEGs that correspond to biological functions. This method firstly

mapped all DEGs to GO terms in the database [27], calculating gene numbers for every

term, then using hyper geometric test to find significantly enriched GO terms in DEGs

comparing to the genome background. The formula is:

P ¼ 1−
Xm−1

i¼0

M
i

� �
N−M
n−i

� �

N
n

� �

Where N is the number of all genes with GO annotation; n is the number of DEGs

in N; M is the number of all genes that are annotated to the certain GO terms; m is

the number of DEGs in M. The calculated P-value goes through Bonferroni Correction,

taking corrected P-value < = 0.05 as a threshold. GO terms fulfilling this condition are

defined as significantly enriched GO terms in DEGs. Pathway enrichment analysis iden-

tified significantly enriched metabolic pathways or signal transduction pathways in

DEGs comparing with the whole genome back ground. And the calculating formula

was the same as that in GO enrichment analysis.

The DNA methylation data was obtained as beta values from TCGA public level 3

methylation profiles. We applied bioconductor packages CHAMP to the methylation

profiles and tested for differential methylated CpG site and region between smoking

high and low group samples [28]. Individual samples and CpG sites with a high missing

rate (> 5%) were excluded. The overall DNA methylation status was analyzed and

visualized by CIRCOS, a multi-layer highly informative circular infographics suitable

for different sets of DNA methylation status [29].

Integrative analysis of RNA-seq and DNA methylation data

Integrative analysis of RNA-seq and DNA methylation data was performed and

detected cis-related correlations of CpG methylation and RNA expression. The core set

of samples was used since all samples in this set had data available across the two

platforms. For analysis involving the RNA-seq datasets, a log2-transformation was used

in order to deal with skewness in the data. Filtered DEGs from both datasets were
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picked up and showed in a Column/Dot plot with RNA expression and DNA methyla-

tion status. Given the scientific evidence that reverse regulation was shown between

DNA methylation and transcription levels, all genes that following the relationship were

selected for further detailed pattern analysis.

Identification of regional DNA methylation pattern on selected genes

For identifying the regional DNA methylation pattern from selected 24 genes, biocon-

ductor package coMET was used for analysis and data visualization [30]. The coMET

package provides information including chromosome position of genes, regional CpG

site methylation changes, genomic annotation tracks and correlation of DNA methyla-

tion in selected CpG sites. The coMET is valuable for interpreting paternal results in

order to fully elucidate the relationship between gene epigenome and transcriptional

expression.

Results
Differentially expressed genes between LSCC patients in high and low groups

In order to explore the genetic profiles and identify significant genes differentially

expressed in the comparison of high and low groups, we performed principle compo-

nent analysis (PCA), DEGs discovery and statistical analysis (EdgeR), Gene Ontology

(GO) and KEGG analysis on all 299 RNA-seq datasets. First of all, PCA plot shows less

significant variance between high and low groups and results are summarized in

Additional file 1: Fig. S1. Even through the overall transcriptome signatures are not

significantly different, it is very intriguing to see if individual genes are able to be

identified to distinguish two groups by bioinformatical analysis. Using EdgeR, we

identified a total number of 1002 up-regulated and 534 down-regulated DEGs in high

smoking intensive group when compared to low group. Then we input up-regulated

and down-regulated genes separately into Goseq package for GO and KEGG enrich-

ment analysis to determine gene functions and pathways.

For up-regulated genes, top ranked 40 enriched GO terms and 11 KEGG pathways

are summarized in Fig. 1a and b, respectively. In Fig. 1a, highly enriched GO terms with

high gene numbers annotated can be roughly divided into two biological functions:

regulating the mRNA formation and translation in ribosome which includes transla-

tional initiation, translation, rRNA processing, nuclear-transcribed mRNA catabolic

process, nonsense-mediated decay, and viral infection to host cells (viral transcription).

Several biological process GO terms such as mitochondrial electron transport, cyto-

chrome c to oxygen, mitochondrial electron transport, NADH to ubiquinone are highly

associated with mitochondrial membrane potential, which suggested that high intensive

smoking might cause significant dysfunction of mitochondria. Mitochondrial

membrane potential has been determined as a unique biomarker for oxidative environ-

mental stress, especially for smoking cigarettes [31]. Intensive researches have been

conducted and found out cigarette smoke not only induces significantly mitochondrial

membrane potential alteration, but also disturbs the expression and distribution of

membrane protein, mitochondrial depolarization [32, 33]. Reactive oxidative stress (or

inflammation) associated biological process GO terms, NIK/NF-kappa B signaling,

DNA damage checkpoint are also found. Nicotine has been reported to induce
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b

Fig. 1 For up-regulated genes, GO terms and KEGG pathways. (a) Top ranked 40 enriched GO terms
associated with biological process (b) 11 KEGG enrichment pathways. Log10 fold-changes are used
as parameters
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inflammation and oxidative stress through regulating the nuclear factor (NF)-kappa B

signaling pathway [34]. DNA damage is also one of major carcinogenic mechanisms in-

duced by smoking [35]. In Fig. 1b, 11 KEGG pathways are listed and ribosome pathway

(and RNA transport pathway) are highly associated with biological process GO terms

identified previously. Proteasome pathway involves in many cellular functions including

regulating cell cycle [36], inflammation response [37] and induction of apoptosis [38]

reported in cigarette smoking induced carcinogenesis. The summary of GO terms and

KEGG pathways for up-regulated genes are summarized in Additional file 5: Table S1A

and Additional file 6: Table S1B.

For down-regulated genes, top ranked 34 enriched GO terms and 7 KEGG pathways

are summarized in Fig. 2a and b, respectively. In Fig. 2a, transcription, DNA-templated

is defined as regulating the RNA synthesis using DNA template. For the first time, high

intensive smoking has been identified not only to positively affect RNA expression and

function in ribosome, but also negatively influence the transcription using DNA-

template. These findings are critical for fully understanding the mechanism of high

cigarette smoking caused LSCC and other type of lung cancers, and provides guidance

for future lung cancer research focusing on RNA function targeted therapies and diag-

nosis biomarkers. Regulation of Wnt signaling pathway, positive regulation of epithelial

cell proliferation, negative regulation of apoptotic signaling pathway, negative regula-

tion of endothelial cell proliferation can be grouped as cell fate signaling pathways.

Wnt signaling pathway has been well studied as an important regulatory pathway re-

sponse to cigarette smoking [39–42], and some of studies reports that Wnt pathway

plays important roles in epithelial cells proliferation [43–45]. Smoking also impairs the

endothelial cell proliferation through reactive oxidative stress, and inhibited cell apop-

tosis [46–48]. In Fig. 2b, phagosome is described as defendant system against infectious

toxin induced tissue damage. Several studies show that inhalation of toxic particles dur-

ing smoking is able to induce severe damages on cellular phagosome [49, 50]. Lyso-

some is main organelle responsible for external macromolecules degradation. Cigarette

smoking is reported to impair the function of lysosome through dysfunction of NRF-2

antioxidant pathway [51] and immune-response apoptotic pathways [52], which

pathways are well organized as critical regulators in many human cancer carcinogenesis

[53, 54]. Hippo signaling pathway regulates the cell density and population by enhan-

cing cell proliferation and inducing apoptosis, controlling organ size across many spe-

cies including human [55]. Cohort studies suggest that hippo signaling pathways are

involved and important in types of lung cancers [56]. Yes Associated Protein 1 (YAP1)

and WW Domain Containing Transcription Regulator 1 (WWTR1/TAZ) are key

regulatory factors of Hippo Signaling pathways, and are targeted to develop effective

lung cancer therapy by their inhibition [57]. The summary of GO terms and KEGG

pathways for down-regulated genes are summarized in Additional file 7: Table S2A and

Additional file 8: Table S2B.

DNA methylation status visualization

All 299 cases of methylation data were analyzed by Bioconductor package CHAMP. Beta

value distribution and hierarchical cluster is summarized in Additional file 2: Figure S2A-B.

The principle component analysis of methylation status difference between high and low
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Fig. 2 For down-regulated genes, GO terms and KEGG pathways. (a) Top ranked 34 enriched GO terms
associated with biological process (b) 7 KEGG enrichment pathways.. Log10 fold-changes are used
as parameters
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groups is summarized in Additional file 3: Fig. S3. These Figs suggest that global epige-

nome of LSCC patients with different smoking intensity has few significant changes in this

cohort study. This observation shows consistency with our previous results from RNA-seq

dataset analysis. However, significant changes of individual differentially methylated CpG

site and region between high and low group are identified by CHAMP package. To check

overall genome-wide methylation changes, CIRCOS is used to visualize data as multiple-

layer circular plot in Fig. 3. The outer layer contains information includes chromosome,

CpG island position and DNA methylation alteration. The middle layer is scatter plot of

CpG site location. Each marker represents a CpG site which can be either hypo- or hyper-

methylated and Y-axis represents the possibility. The inner layer lists the top 100 gene

which show the most significant CpG island methylation changes based on betafc values.

Integrative analysis for biomarker gene identification

The first step of integrative analysis is to select common genes showed in both RNA-

seq and DNA methylation datasets, after gene filtration using core set presented

Fig. 3 Circos analysis of global methylation status differences between high and low intensive smoking
LSCC patients. The outer layer represents CpG islands heatmap. Red color represents CpG islands are hyper-
methylated. Green color represents CpG islands are hypo-methylated. The middle layer represents scatter
plot of single CpG site. Each dot represents a significant different DNA methylation changes, with p-value
associated at Y-axis. The inner layer of circular plot is top 100 genes with the largest betafc value in DNA
methylation changes of CpG islands
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previously in this study. First of all, top 50 hyper and hypo-methylated CpG islands on

94 genes were selected from methylation data, with a p-value < 0.05. They are summa-

rized and visualized in Fig. 4a and b. In Fig. 4a, Column growing to right means CpG

island (red column) hyper-methylated and gene expression (green column) increased.

Column growing to left means CpG island hypo-methylated and gene expression de-

creased. Evidentially, genes with red and green columns growing to different directions

are collected for further analysis. In Fig. 4b, all 94 genes expression and CpG island

methylation status data from both high and low groups are extracted and presented as

scatter plot. All dots close to right bottom corner are described as gene, which expression

is lower and associated CpG island is hyper-methylated. These genes are considered

having the most biological meaning in gene transcriptional pattern and potential to

distinguish the difference between high and low groups.

In order to further explore the genomic and epigenomic difference between high and

low group, the second step of integrative analysis is to select gene with high transcrip-

tional expression and low CpG island methylation status, or low transcriptional expres-

sion and high CpG island methylation status. 24 genes have been found to match such

requirements and their transcriptional expression heatmap across all LSCC patients are

presented in Fig. 5. In Fig. 5, Y-axis is 24 gene names and X-axis is LSCC patient RNA

expression level arranged by clustering order. The expression scale is set up at log2

(fold-change) from − 3.0 to 3.0. From the heatmap, it is clear that some LSCC patients

show positively correlated and other LSCC patients show negative correlation on the

transcriptional level. This interesting finding leads us to further studying gene promoter

region of these 24 genes CpG methylation correlation pattern in order to elucidate the

possible reasons. In addition, the integrative analysis of DNA methylation status and tran-

scriptional expression of 24 genes are also presented in Additional file 4: Figure S4A-B.

DNA methylation correlation analysis on specific biomarker genes

Methylation alternation in nearby CpG sites shows strong correlation and has been

identified in recent studies [58–60]. CoMet package is used to graphically display

regional CpG site methylation changes and related information. Autoimmune Regulator

(AIRE), Proenkephalin (PENK) and Solute Carrier Family 6 Member 3 (SLC6A3) are

top 3 genes in the integrative analysis above, and may show potential for clinical

diagnosis and therapies of LCSS. Their information are summarized in Fig. 6a, b, and c

respectively. The entire coMet Fig contains three layer: top layer shows chromosome pos-

ition of gene, and CpG site methylation changes with –log (p-value) plot. Each dot repre-

sents a CpG site. Higher dot means this CpG site has more chance to be methylated.

Middle layer contains information like gene ENSEMBL, CpG islands, Broad ChromHMM,

SNP from USCS etc. The bottom layer shows the CpG site name and heatmap of nearby

CpG site methylation correlation. The scale of heatmap is from − 1.0 to 1.0, in which −

1.0/blue means negatively correlated and 1.0/red means positively correlated. For AIRE

gene, cg09510531 to cg00495713, and cg01351072 to cg18876487 show strong positive

correlation. CpG site range cg11923631 to cg27251412 shows strong negative correlation

with CpG site range cg04878385 to cg21616420. For PENK gene, cg04612444 to

cg06066137, and cg11060276 to cg27531336 show strong positive correlation. CpG site

range cg04612444 to cg00468400 shows strong negative correlation with CpG site range

Ma et al. BioData Mining           (2019) 12:18 Page 9 of 18



Fig. 4 Top 50 significantly hyper/hypo methylated CpG islands annotated on 94 unique genes. (a) Represents
DNA methylation status and gene ID in column plot (b) Represents DNA methylation status and gene ID in
dot plot
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cg11060276 to cg27531336. For SLC6A3, cg04073265 to cg15999077 and cg17306747 to

cg27580375 show strong positive correlation. CpG site range cg04073265 to cg16526509

shows strong negative correlation with CpG site range cg16614020 to cg27580375.

Discussion
In this study, we found 24 identical genes in LSCC patients, which exhibit significant

epigenetic and genetic patterns between high and low intensive smokers. AIRE, PENK

and SLC6A3 are Top 3 candidate genes, may be involved in the development of LSCC.

AIRE is a transcriptional regulator gene, which guides the production of tissue specific

antigens [61, 62]. Mutation of AIRE genes caused the dysfunction of T cell develop-

ment and the immune system self-tolerance breakdown [63]. Recently, AIRE genes are

found expressed in both human androgen-sensitive prostate cancer LNCaP cells and

human androgen-insensitive prostate cancer PC-3 cells [64]. Interleukin-6 (IL-6), which

acts as both pro-inflammatory and anti-inflammatory cytokine, is proposed to be regu-

lated directly by AIRE genes in PC-3 cells. In addition, AIRE is found highly expressed

in PC-3 cells and functions as prostate tumor promoter gene in vivo. AIRE deficiency

finds to decrease the expression of Tyrosinase Related Protein 1 (TYRP1) in thymus,

yet increases the T cell immune responses against melanoma development [65]. AIRE

is also involved in the development of tumor-associated Foxp3 + regulatory T cells

(Tregs), which do not respond to tumor-specific antigens [66]. Epidemiological study

shows that AIRE gene expression is strongly associated with tumor prognosis in ER

positive breast cancer patients [67]. There is no direct evidence to demonstrate the role

of AIRE in the development of human lung cancer, however based on your observa-

tions in this study and previous research, it is highly possible that AIRE regulates the

transcriptional proteins overexpressed to induce G1 cell cycle arrest and apoptosis, and

may also be indirectly involved in the immune escape of tumor cells. PENK (also

known as proenkephalin A) regulates the expression of a serious of opioid polypeptides

which modulates the immune system [68]. The mRNA level of PENK gene is

Fig. 5 Heatmap of global transcriptional expression of 24 selected genes in LSCC patients. The expression
(log2 fold-change) is scaled at the range of − 3 to 3. Blue represents gene expression being inhibited. Red
color represents gene expression being induced
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Fig. 6 (See legend on next page.)
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significantly induced by the activation of T-Helper cell [69]. It has been identified that

PENK was associated with has-miR126, which was found significantly down regulated

in NSCLC [70]. The hyper-methylation of PENK was also found significantly in pros-

tate cancer, colorectal cancer and lung adenocarcinoma [71–73].. Research suggests

that PENK gene may be involved in activating the NF-kB and p53 pathways by

transcriptional repression [74]. SLC6A3 is dopamine transporter encoding gene, which

plays important roles in neuronal disorder diseases [75–78]. It was found that the

polymorphisms of SLC6A3 was highly associated with body mass index [79], which the

later one have been strongly suggested as risk factor of many types of cancer including

lung [80–82]. Recently, SLC6A3 is proposed as poor prognostic biomarker in human

triple negative breast cancer tissues [83]. Methylation status in promoter region of

SLC6A3 gene shows significant strong correlation with overall survival, with significant

probability difference over 40%. SLC6A3 is also found highly expressed in clear cell

renal cell carcinoma, which indicates as powerful therapeutic biomarkers for human

renal cancer diagnosis and treatment [84]. Moreover, SLC6A3 c.-1476 T > G poly-

morphism may increase the risk of NSCLC, and the gain of 5p15.33 (which containing

SLC6A3) is the most frequent genetic event in early stage NSCLC [85, 86]. It suggests

that SLC6A3 may play an important role in the development of LSCC.

Integrative analysis of complex transcriptome, genome, methylome, proteome dataset

and clinical profiles for cancer research are widely applied [87–91]. Whole-exome se-

quence reveals several driver mutations, including TP53, PTEN, NFE2L2 and KEAP1,

whether in White or Asian LSCC patients [92]. Another cohort study determines that

BRF2 RNA Polymerase III Transcription Initiation Factor Subunit (BRF2) is a novel

oncogene showing strong lineage association with specificity of LSCC in an integrative

analysis of genomic and gene expression microarray profiles [93]. The WWTR1/TAZ

gene is also identified by genomic, epigenomic and proteomic integrative analysis in

LSCC cohort study [94]. Most researches are separating LSCC patients by smokers or

not, but not significantly focusing on smoking habit (intensity) or regional CpG methy-

lation pattern analysis. Therefore, for the first time, we categorized the LSCC patients

by smoking intensity and divided them as high (> 59 packs per year) and low (< 38

packs per year) group in this study. We performed computational analysis to reveal

RNA-seq and DNA methylation datasets with clinical records obtained from TCGA

database. Transcriptome dataset are analyzed by multiple Bioconductor packages in-

cluding EdgeR, Goseq and KEGG. Epigenetic datasets are analyzed by CHAMP Biocon-

ductor package, and regional epigenome correlation pattern are revealed and visualized

by coMet Bioconductor package. Most of results are visualized by R. The whole analytic

procedure can be used as guidance for handling multiple-omics datasets for future

cohort genomic and epigenetic studies.

There are several confounding factors might influence including gender, ethnic

and race etc. For example, gender variation has great impact on the risk of lung

(See figure on previous page.)
Fig. 6 CoMET plot showing the regional CpG methylation patterns on gene AIRE, PENK and SLC6A3.
(a) AIRE, (b) PENK, (c) SLC6A3 are organized by p-value, gene location, CpG island (green), Gene ENSEMBL
(yellow), Broad ChromHMM (pink), DNase Clusters, SPN from UCSC etc. and the correlation heatmap of
Spearman correlation values among CpGs in the gene regulatory regions
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cancer [95, 96]. Specific gene mutation such as CYP1A1 significantly increased the

risk of female lung cancer [97]. Among all American cigarette smokers, African

and Native Hawaiians are the more susceptible to lung cancer than white, Asian

and Latino Americans [98]. In addition, some patients had quitted smoking, or

received targeted therapy in our datasets. These confounding factors should also be

considered as well as smoking intensity. Important clinical information of the

patients are summarized in Additional file 9: Table S3.

Dysregulation of gene CpG methylation is one of the hallmarks of human carcino-

genesis, therefore making local and global epigenome serving as good sensor to

response environmental impact, such as smoking patterns, duration and host immune

response. In this study, 24 unique genes are identified their role as distinguisher

between high and low intensive smoking habits and their CpG sites methylation shows

strong correlation patterns. Based on all the results, it is possible to improve current

LSCC early diagnosis and treatment by utilizing these genes.
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