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Dynamic multiphase semi-crystalline polymers
based on thermally reversible pyrazole-urea bonds
Wen-Xing Liu 1,3, Zhusheng Yang1, Zhi Qiao1, Long Zhang2*, Ning Zhao1*, Sanzhong Luo2 & Jian Xu 1*

Constructing responsive and adaptive materials by dynamic covalent bonds is an attractive

strategy in material design. Here, we present a kind of dynamic covalent polyureas which can

be prepared from the highly efficient polyaddition reaction of pyrazoles and diisocyanates at

ambient temperature in the absence of a catalyst. Owing to multiphase structural design, poly

(pyrazole-ureas) (PPzUs) show excellent mechanical properties and unique crystallization

behavior. Besides, the crosslinked PPzUs can be successfully recycled upon heating (~130 °C)

and the molecular-level blending of polyurea and polyurethane is realized. Theoretical studies

prove that the reversibility of pyrazole-urea bonds (PzUBs) arises from the unique aromatic

nature of pyrazole and the N-assisting intramolecular hydrogen transfer process. The PzUBs

could further broaden the scope of dynamic covalent bonds and are very promising in the

fields of dynamic materials.
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Dynamic polymer materials, which rely on the covalent
bonds capable of undergoing the reversible formation and
cleavage under appropriate conditions, are able to reor-

ganize their macromolecular architectures or compositions, and
thus produce a macroscopic response to the environment and
surrounding stimuli1–3. In recent years, great efforts have been
made to create complex, smart, and adaptive polymeric materials
that allow access to topological/constitutional structure transfor-
mation4, controlled assembly5, shape memory6,7, self-healing, and
recyclability8–33, to name a few. Although in this context, the
library of dynamic polymers has extended rapidly, it remains a
challenge to design mechanically robust dynamic polymers with
high strength, extensionality, and malleability.

Isocyanate-based polymers, polyureas, or polyurethanes, are
widely used in coatings, elastomers, adhesives, foams, and fibers34.
Recently, by introducing oxime moiety into urethane bonds, we
developed the dynamic poly(oxime-urethanes) (POUs)35, which
have shown excellent self-healing ability, malleability, and
mechanical properties31,35. Compared with urethane bonds, urea
bonds are more stable and irreversible due to the dual resonance
stabilized structure. Typically, the neutral hydrolysis half-time of
polyureas is >104 years36. Harsh conditions are required to cleave
urea bonds, such as acidic or basic solutions, high temperature,
and catalysts37–39, which limits their applications in dynamic
covalent materials. Metal catalyst such as zinc acetate shows
effectiveness to increase the reversibility of normal urea bonds40.
In addition, by introducing bulky substituents to a urea nitrogen
atom, the hindered urea bonds are significantly destabilized owing
to the steric inhibition of resonance via hindering the orbital co-
planarity of the urea bond, thus resulting in reversibly dissociating
to isocyanate and amine under ambient condition without a cat-
alyst41–43. However, due to the high sensitivity of isocyanate
intermediate to moisture, this system may suffer from high sus-
ceptibility to hydrolysis43.

As stable aromatic heterocyclic compounds, pyrazoles have
been used as building blocks in some material fields44,45. Owing
to the aromaticity of pyrazoles, opposed resonance occurs in
pyrazole-amide bonds and the conjugation effect between the
pyrazole nitrogen and the carbonyl group is slightly diminished
(Fig. 1a)46. This interesting N-acylpyrazole chemistry inspires us
that pyrazole may be a potential candidate for the design of
dynamic amide-containing polymers.

Here, we present the reversible pyrazole–urea bonds (PzUBs),
which are applied for the design of a series of mechanically robust
dynamic polymers, poly(pyrazole–ureas) (PPzUs). PPzUs are
stable at room temperature, and spontaneously reversible at ele-
vated temperatures. Unlike previously reported dynamic poly-
mers, whose crystallization is inhibited because of structure
design with bulky monomers or high-cross-linking density, the
highly cross-linked PPzU thermosets are semi-crystalline poly-
mers. The crystallization behavior of PPzUs offers substantial
advantages in terms of strength, toughness, and solvent resistance
in contrast to the amorphous dynamic polymers.

Results
Dynamic chemistry of pyrazole–urea bonds. Although kinetic
and thermodynamic behaviors are the underlying features of
dynamic reactions, these chemical characteristics of PzUBs have
not been studied up to now47,48. We first investigated the addi-
tion reaction between octyl isocyanate 1b and
4-methylpyrazole 1c (Fig. 1b), whose rate was monitored through
the change of NCO infrared absorption. The reaction could
almost proceed to completion within 25 min at 30 °C in various
aprotic solvents, with the second binding rate constants kb in the
range of 4.2–9.7 × 10−2 M−1 s−1 (rate= kb[NCO][pyrazole],

Supplementary Figs. 1–2) and an Arrhenius activation energy
Ea,b of 11.3 kcal mol−1 (Table 1; Supplementary Fig. 3). What is
more, PzUBs show good stability at ambient temperature (Sup-
plementary Fig. 4). However, a 6% thermal dissociation of 1bc
was obtained in several minutes by 1H NMR at 110 °C with a
dissociation equilibrium constant Kd of 1.3 × 10−3 M and a dis-
sociation enthalpy ΔHd of 18.5 kcal mol−1 (Table 1; Supple-
mentary Fig. 5).

Then a more detailed mechanism investigation was undertaken
by using aryl substituted pyrazole–ureas and exploring thermo-
dynamics of their thermal dissociation reactions. A Hammett
analysis of the dissociation equilibriums revealed that the
dissociation step is hindered by electron-withdrawing groups,
such as Cl and CF3 (Supplementary Fig. 6). A linear free energy
relationship was found with a negative reaction slope (ρ=−1.0),
indicating that a fast proton transfer may occur first in the
reversed process and the C–N bond breaking step is rate-
determining during which the negative charge on the urea moiety
is dramatically reduced.

To quantify the kinetics of the dissociation reaction, the
exchange reaction of 1ac and 1bd to produce 1ad and 1bc was
followed by liquid chromatography at different temperatures
(Fig. 1c; Supplementary Fig. 7). As expected, the equilibrium
mixture containing equimolar amounts of all four pyrazole–ureas
was obtained after 150 min at 120 °C or 2000 min at 90 °C.
Besides, the dissociation rate constant kd of 0.12 h−1 at 90 °C and
the dissociation activation energy Ea,d of 26.0 kcal mol−1 were
found (Table 1, Supplementary Figs. 8–9), which are close to
those of other thermally reversible bonds1,8,35. Above studies
show that PzUBs with fast formation process and good stability at
room temperature can undergo evidently thermal reversibility
without any catalyst.

Theoretical studies. Density functional theory (DFT) calculations
were performed to gain further insight into the formation and
dynamic nature of PzUBs with pyrazole and methyl isocyanate
(MeNCO) as model reactants at the theory level of B3LYP/6-
311++G(2df,2pd)//B3LYP/6-31+G(d,p). Theoretical studies
indicated that after the formation of a complex between pyrazole
and isocyanate, nucleophilic attack of the pyridine-type nitrogen
in pyrazole to MeNCO, via transition state TS1 with an activation
enthalpy of 12.8 kcal mol−1 and an activation free energy of 24.4
kcal mol−1, leads to intermediate Int2 (3.7 kcal mol−1 below
TS1). The subsequent proton shift process smoothly produces
pyrazole–urea P1 with an activation enthalpy of 3.3 kcal mol−1,
which is exothermic by 23.0 kcal mol−1. According to these cal-
culations, this pathway with nucleophilic addition as rate-limiting
step accords with the first-order kinetics for both pyrazole and
isocyanate as well as the Hammett analysis (Supplementary
Figs. 1 and 6), and the reverse reaction requires an activation
enthalpy of 27.9 kcal mol−1 (Fig. 2a). These activation parameters
are close to those obtained by experiments (Supplementary
Figs. 10–11, Supplementary Tables 1–2).

For further consideration, resonance energies (ER) of the amide
bond in different ureas were calculated to account for the
distinctions in dynamicity at the level of B3LYP/6-31+G(d)
(Fig. 2b)49. Resonance energy in pyrazole–urea (5.6 kcal mol−1) is
lower than that in normal urea (7.2 kcal mol−1), but is higher
than that in hindered urea (3.9 kcal mol−1), which is consistent
with the relative stability of the corresponding ureas. Therefore,
the compatibility of stability and reversibility of PzUBs originates
from the aromatic character of pyrazole moderately weakening
the resonance stabilization and the presence of adjacent nitrogen
atom facilitating the intramolecular 1,4-hydrogen transfer process
(Supplementary Figs. 12–14).
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Fig. 1 The dynamic nature of pyrazole–urea bonds. a Destabilized pyrazole–urea bonds through opposed resonance and kinetically favored intramolecular
hydrogen transfer. b The association and dissociation of 1bc. c The model exchange reaction of 1ac and 1bd to produce 1ad and 1bc as a function of time
upon heating at different temperatures

Table 1 Kinetic and thermodynamic parameters of PzUBs

kb (303 K, M−1∙s−1)a Ea,b (kcal∙mol−1)a kd (363 K, h−1)b Ea,d (kcal∙mol−1)b Kd (383 K, M)c

6.4 × 10−2 11.3 0.12 26.0 1.3 × 10−3

aThe reaction was performed with 1b (0.80 mmol) and 1c (0.80mmol) in CH2Cl2 (2 mL)
bObtained from the model exchange reaction in bulk
cThe dissociation of 1bc (0.21 mmol) was carried in d6-DMSO (0.5 mL)
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Synthesis and characterization of poly(pyrazole–ureas). With
the chemistry of PzUBs in hand, we intended to fabricate
dynamic covalent polymeric materials based on PzUBs. As
microphase-separated polymer structures being composed of
hard segments (HS) and soft segments (SS) could exhibit both
good strength and high extensibility50, multiphase PPzUs were
designed using multifunctional pyrazoles (4 and 5) and hexam-
ethylene diisocyanate (HDI) as monomers (Fig. 3). The flexible
poly(thio)ether chain containing cross-linker would act as the SS,
while the HDI and pyrazole constitute the HS. In this design, not
only the symmetric structure of HDI and aromatic planarity of
pyrazole would contribute to the regular packing of the molecular
chain in HS but the installation of covalent cross-linking in SS
also reduce the inhibitory effect on HS crystallization.

The monomers can be simply prepared from 4-
pyrazolecarboxylic acid 2 within two steps through esterification
reaction and thiol-ene reaction. Then, linear or cross-linked PPzUs
(6 or 7a–c) with variable formulas were synthesized through the
polymerization of multifunctional pyrazoles and HDI at room
temperature in CHCl3 (Fig. 4a; Supplementary Figs. 15–16).

Differential scanning calorimetry (DSC) thermograms disclose
that one obvious endothermic peak is detected for each of the
four PPzUs (Fig. 4b; Supplementary Fig. 17), which can be
assigned to the melting of partially crystallized HS from
pyrazole–urea domains. Of particular note is that PPzU 7c with
the highest cross-linking degree (average molecular weight
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Fig. 3 Design and synthesis of dynamic multiphase poly(pyrazole–ureas)
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between cross-links (Mc)= 1.7 kg mol−1, Supplementary Table 3)
is still semi-crystalline although cross-linking process indeed
interferes with the crystallization. This is markedly different from
formerly reported ones which always exhibited amorphous
behavior8–33,40–43. With the increase of cross-linking density
(Supplementary Table 3), the decrease of the intensities of
crystalline peaks (2θ= 19° and 21°) in X-ray diffraction (XRD)
patterns (Fig. 4c) and the gradual disappearance of birefringence
(Supplementary Fig. 18) are both observed. Dynamic mechanical
analysis reveals that PPzUs possess three main thermal transi-
tions (Supplementary Fig. 19), where the first one corresponds to
the glass transition (Tg,SS ≈ −10 °C) of SS, while the last two
should be the glass transition (Tg,HS ≈ 30 °C) and melting of HS
(Tm,HS ≈ 110 °C for 6, 7a−b; ≈60 °C for 7c). Small-angle X-ray
scattering (SAXS) shows that except for 7c, other PPzUs exhibit a
broad primary scattering peak with the corresponding d-spacing
values falling into the range of 6.4–8.8 nm (Supplementary
Fig. 20). The lack of higher orders of scattering peaks suggests
that the phase separation is likely short-range correlated, which is
rational in view of the fact that these PPzUs are not typical block
copolymers51. Furthermore, atomic force microscopy images also
proved the microphase separation between soft and hard domains
(Supplementary Fig. 21). Gratifyingly, the crystallization endows
PPzUs with excellent solvent resistance (Supplementary Fig. 15)
and mechanical properties. Representatively, PPzU 6 has a tensile
strength (σb) of 35.9 ± 0.9 MPa and a strain-at-break (εb) of 805 ±
9% (Fig. 4d; Supplementary Table 4). In comparison with
dynamic hindered polyureas43, PPzUs show excellent hydrolytic
stability at 37 °C within 6 days (Supplementary Fig. 22). These
observations indicate that PPzUs are a kind of high-performance
semi-crystalline polymers.

Thermal reversibility of poly(pyrazole–ureas). Next, we pay our
attention to evaluate the dynamicity of PPzUs. To restrain the

crystallization and increase the solubility, PPzU 8 was prepared
from 1,3-bis(isocyanatomethyl)-cyclohexane (mixture of cis/trans
isomers) instead of HDI. By tuning the monomer ratio, PPzU 8
can be initially depolymerized at elevated temperature and then
repolymerized at low temperature (Supplementary Fig. 23), which
was also observed in our recently reported dynamic poly(oxime-
urethanes) (POUs)35. Interestingly, after the mixture of PPzU 8
(Mn= 12 kDa) and POU 9 (Mn= 58 kDa, for synthesis see
Supplementary Methods) was heated at 110 °C for 3 h in N,N-
dimethylformamide (DMF), the original peaks derived from 8
and 9 disappeared and fused into a new unimodal peak of poly
(urethane-urea) 10 (Mn= 18 kDa, Fig. 5a, b). The successful
reorganization and molecular-level blending of polyurethane and
polyurea through macromolecule interchange reaction are
undoubtedly attributed to the common isocyanate intermediate
in the two reversible reactions. Different from traditional polymer
blending methods, this artful methodology using dynamic cova-
lent bonds provides an approach to polymer blends via the
interchange reaction of polymer chains.

The plasticity of the cross-linked PPzU 7c was studied by
temperature-dependent stress-relaxation analysis, and the results
showed that higher temperature accelerates faster relaxation (Fig. 5c).
The characteristic relaxation time τ* (where G/G0= e−1) follows the
Arrhenius law, and an activation energy Ea,r of 24.5 kcal mol−1 was
calculated (Supplementary Fig. 24), which is in good conformity
with that obtained for the model compounds (Ea,t= 26.4 kcal mol−1,
Supplementary Fig. 7). The thermal reprocessability of the cross-
linked PPzUs was characterized by uniaxial tensile testing on both
pristine and recycled dogbone samples. Representatively, PPzU 7c
can almost fully recover its mechanical properties on σb and εb when
being remolded at 130 °C for 30min, even after three cycles (Fig. 5d;
Supplementary Fig. 25 and Supplementary Table 4). Noteworthily,
the obvious change on yield stress and Young’s modulus of the
original and the first recycled samples could be observed, especially
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for PPzUs 7a and 7b. Both the complete recovery of plateau
modulus and the absence of isocyanate IR absorption for all recycled
PPzU thermosets exclude the possibility of the irreversible breaking
of PzUBs (Supplementary Figs. 19 and 26). The slight differences in
tensile curves of recycled samples imply that the change of
mechanical properties is more likely caused by the distinction of
crystallization behavior between the original preparation process and
the thermal recycling experiment, which is also supported by the
SAXS and XRD experiments (Supplementary Figs. 20 and 26).

Discussion
In conclusion, we have successfully introduced the dynamic
ability of pyrazole–urea bonds, which can undergo rapidly ther-
mal dissociation or exchange reactions. Moreover, the dynamic
pyrazole–urea bonds are utilized for the synthesis of a type of
mechanically robust semi-crystalline dynamic polymers, poly
(pyrazole–ureas). The formation of poly(pyrazole–ureas) between
isocyanate and pyrazole is fast, simple, and catalyst-free at room
temperature. The unique crystallization property in poly
(pyrazole–urea) thermosets is rarely reported in most other
highly cross-linked dynamic polymers. Considering the widely
existed isocyanate-based systems, the pyrazole–urea bonds will
offer a valuable platform for a range of applications, including
materials design with dynamic adaptive capacity.

Methods
General information. For synthetic procedures and NMR spectra of compounds
and linear polymers, see Supplementary Methods and Supplementary Figs. 27–43.
For details on kinetic and thermodynamic studies, see Supplementary Note 1.
Computational methods can be found in Supplementary Methods and

Supplementary Note 2. Cartesian coordinates of all molecules are given in Sup-
plementary Note 3.

Synthesis of cross-linked poly(pyrazole–urea) 7c. To a stirred solution of tri-
functional pyrazole 5 (2.507 g, 1 equiv) in anhydrous CHCl3 (2.5 mL) was added
HDI (0.634 g, 1.5 equiv). The system was stirred for 2 min, then poured into an
aluminum mold (50 mm L × 50mmW), and allowed to stand at room temperature
in a desiccator for ca. 24 h. The film was demolded, and placed under vacuum at
70 °C for ca. 48 h to ensure complete removal of solvent. The films were kept in a
desiccator before measurement.

Reprocessing experiments. The cross-linked PPzUs were cut into pieces (~2.8 g)
and placed into a rectangular mold (ca. 50 mm (L) × 50 mm (W)), and then hot
pressed (10MPa; 140 °C for 7a, 130 °C for 7b and 7c) for 30 min. The mold was
cooled to room temperature for ~15 min, and the reprocessed samples were
demolded.

Data availability
The data that support the findings of this study are available from the corresponding
authors upon reasonable request.
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