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Abstract

The “hunger” hormone ghrelin regulates food-intake and preference for high-calorie (HC) food 

through modulation of the mesocortico-limbic dopaminergic pathway. Laparoscopic sleeve 

gastrectomy (LSG) is an effective bariatric surgery to treat morbid obesity. We tested the 

hypothesis that LSG-induced reductions in appetite and total ghrelin levels in blood are associated 

with reduced prefrontal brain reactivity to food cues. A functional magnetic resonance imaging 

(fMRI) cue-reactivity task with HC and low-calorie (LC) food pictures was used to investigate 

brain reactivity in 22 obese participants tested before and one month after bariatric surgery (BS). 

Nineteen obese controls (Ctr) without surgery were also tested at baseline and one-month later. 

LSG significantly decreased (1) fasting plasma concentrations of total ghrelin, leptin and insulin, 

(2) craving for HC food, and (3) brain activation in the right dorsolateral prefrontal cortex 

(DLPFC) in response to HC vs. LC food cues (PFWE < 0.05). LSG-induced reduction in DLPFC 

activation to food cues were positively correlated with reduction in ghrelin levels and reduction in 

craving ratings for food. Psychophysiological interaction (PPI) connectivity analyses showed that 

the right DLPFC had stronger connectivity with the ventral anterior cingulate cortex (vACC) after 

LSG; and changes in BMI were negatively correlated with changes in connectivity between the 

right DLPFC and vACC in the LSG group only. These findings suggest that LSG-induced weight-

loss may be related to reductions in ghrelin, possibly leading to decreased food craving and 

hypothetically reducing DLPFC response to the HC food cues.
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Introduction

Laparoscopic sleeve gastrectomy (LSG) is a surgical procedure that leads to the removal of 

the gastric fundus. It is currently one of the most effective treatments for morbid obesity 

(Diamantis et al., 2014).

Ghrelin acts as a hunger regulating peptide and is mainly produced by endocrine cells in the 

gastric fundus. Ghrelin is the only known peripheral hormone that has orexigenic properties, 

as it stimulates appetite and increases short-term food-intake (Papailiou et al., 2010). Several 

studies have reported significant reduction in both appetite and fasting blood ghrelin 

concentrations at one-month post-LSG (Tsoli et al., 2013; Langer et al., 2005). The 

reduction in ghrelin concentrations remained stable at 6-and 12-months postoperatively 

(Tsoli et al., 2013; Langer et al., 2005; Ramon et al., 2012; Karamanakos et al., 2008). 

However, fasting ghrelin changes after LSG are different from the short-term diet-induced 

weight-loss and after laparoscopic adjustable gastric banding (LAGB) or gastric bypass 

surgery in obese subjects. That is, after an energy-restricted diet, fasting plasma ghrelin has 

been shown to increase (Lean and Malkova, 2016). In another study, fasting ghrelin levels 

remained unchanged at 6-months, but increased at 12-months after LAGB (Hanusch-Enserer 

et al., 2003). However, ghrelin levels significantly decreased after gastric bypass surgery in 

some (Cummings et al., 2002), but not all studies (Faraj et al., 2003; Holdstock et al., 2003).
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Ghrelin’s actions are not limited to control of basic food intake; it also increases incentive 

salience to food reward (Skibicka et al., 2011) via activation of the mesocorticolimbic 

dopaminergic system (Skibicka et al., 2013; Abizaid et al., 2006). Ghrelin signaling in the 

ventral tegmental area appears to play a role in food-choice behavior (i.e., increased intake 

of palatable food) (Egecioglu et al., 2010). Rats who are knock-out for the ghrelin receptor 

gain less weight, eat less, and have higher brown adipose tissue (Zallar et al., 2018). A food-

cue reactivity study in humans revealed that fasting ghrelin concentrations were associated 

with the hedonic effects of food pictures and with enhanced subjective craving when 

confronted with reward cues (Kroemer et al., 2013). In summary, ghrelin plays an important 

but complex and not fully understood role in food intake, food reward and in weight loss 

after LSG.

Neuroimaging studies in obese patients have shown functional abnormalities in the frontal-

mesolimbic circuitry (Bohon, 2014; Tracy et al., 2015; Volkow et al., 2008), including the 

prefrontal cortex (PFC), particularly the dorsolateral prefrontal cortex (DLPFC) (Hare et al., 

2009) and mesolimbic regions (Killgore et al., 2013). Brain regions within the frontal-

mesolimbic circuitry encompasses the PFC, which is crucial for executive function (Lowe et 

al., 2009). In particular, the capacity of the DLPFC to modulate eating-behavior in response 

to tempting food is strongly linked to several aspects of impulse-control, such as inhibitory-

control (Batterink et al., 2010), executive-attention (Hofmann et al., 2009) and emotion-

regulation (Gruber and McDonald, 2012). There is strong evidence for impairments in these 

brain regions and/or circuits in obesity, which have been associated with elevated food 

craving (Pepino et al., 2009) and over-eating (Volkow et al., 2011). Neuroimaging studies 

have also revealed alterations occurring in homeostatic/hedonic neurocircuits after bariatric 

surgery, including an association between lessened postoperative craving for HC food and 

diminished activity within mesolimbic areas/DLPFC (Ochner et al., 2012; Bruce et al., 

2012).

It remains unclear whether LSG-induced modulation of the prefrontal-mesolimbic 

neurocircuitry is associated with significant changes in peripheral appetitive hormones. 

Here, we employed functional magnetic resonance imaging (fMRI) with a food-cue-

reactivity paradigm in conjunction with a psychophysiological interaction (PPI) analysis to 

investigate the alterations of cue-induced brain activation/connectivity in obese patients at 

one-month after bariatric surgery (BS). We hypothesized that changes in fasting plasma 

ghrelin levels post-LSG would be associated with decreased craving for HC food-cues and 

attenuation of HC food-cue induced activation in brain regions implicated in inhibitory-

control. Clearly, the neurobiological mechanisms contributing to weight loss following LSG 

are quite complex and likely to depend on the balance among several hormones, as well as 

short-term and long-term adaptations of several endocrine pathways, including hormones 

that, unlike ghrelin, execute anorexigenic effects like leptin and insulin. As such, in addition 

to ghrelin, these hormones were also measured in the present study.
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Materials and Methods

Subjects

The experimental protocol was approved by the Institutional-Review-Board of Xijing 

Hospital of the Fourth Military Medical University in Xi’an, China and registered in the 

Chinese Clinical Trial Registry Center as: ChiCTR-OOB-15006346 (http://

www.chictr.org.cn). The experiments were conducted in accordance with the Declaration of 

Helsinki. All participants were informed of the nature of the research and provided written 

informed consent. Participants with psychiatric/neurological diseases, previous intestinal 

surgery/inflammatory intestinal disease/organ dysfunction or taking any current medication 

that could affect the CNS were excluded. Individuals who had a waist-circumference (WC) 

> the interior diameter of the MRI scanner were excluded (Zhang et al., 2016). Thirty-five 

morbidly obese patients were recruited for laparoscopic sleeve gastrectomy at Xijing 

Gastrointestinal Hospital. Given the exclusion criteria, six candidates were disqualified (two 

had WC > the interior diameter of the scanner, three due to metal implants, and one subject’s 

imaging data were lost due to technical problems). Seven obese subjects reported having 

significant weight loss after surgery via their local clinics. However, these subjects could not 

return for follow-up MRI assessment due to long distance travel. As a result, 22 patients 

remained in the BS group. The patients completed the pre-surgical MRI scan (Pre-BS) then 

underwent surgery. In LSG; the greater curvature, including the complete fundus, was 

resected from the antrum to the angle of His. The stomach was reduced to a narrow gastric 

tube at the lesser curvature over a 36-French bougie. As the integrity of the vagus nerve 

remains preserved in LSG; no pyloroplasty was performed. At the end of resection, the 

stapled line was covered by a running suture (Langer et al., 2005). The same MRI scans 

were performed one-month after surgery (Post-BS). Nineteen obese patients who did not 

receive LSG surgery were recruited as controls (Ctr). The BS and Ctr groups were matched 

for BMI, age, and sex (Table 1). The Ctr group completed two identical MRI scans 

mirroring BS, one (CtrT) at baseline, and a retest (CtrRT) one-month later.

Experimental design

All participants underwent 12-hours overnight fasting and were instructed to rate their 

hunger level at a scale from 1–5. Fasting blood samples were taken and MRI scans were 

performed between 9 AM and 10 AM.

Fasting blood samples were obtained before and one-month after surgery and stored at 

−80 °C until assayed. Plasma concentrations of total ghrelin, leptin and insulin were 

measured using a Bio-Plex 200™ suspension array system (BIO-RAD, Inc, Hercules, 

California, USA), according to the manufacturers’ instructions (please see Supplementary 

Information-SI for detailed information) (Goldstone et al., 2014; Nagasaki and Ohta, 2015). 

We only assessed the association of peripheral hormones with brain activity during the 

fasting state.

Questionnaires

A designated clinician rated the severity of the subjects’ anxiety using the Hamilton Anxiety 

Rating Scale (HAMA) (Hamilton, 1959), and depression using the Hamilton Depression 
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Rating Scale (HAMD) (Hamilton, 1960). Subjects were required to complete the Yale Food 

Addiction Scale (YFAS) evaluation (Clark and Saules, 2013) (Table 1). All clinical 

measurements were conducted before (baseline) and one-month after surgery, and the same 

surgeon performed all surgical procedures.

fMRI food-cue-reactivity task

Food-cue stimuli consisted of 88 unique HC and 88 LC food pictures selected from the 

International Affective Picture System (IAPS) (Bradley and Lang, 2007) and others 

(Killgore et al., 2013; Stoeckel et al., 2008; Dimitropoulos et al., 2012). Negative images 

with uncomfortable content such as those that would induce disgust, anger, anxiety were 

avoided. We modified the images to a consistent resolution/saturation/brightness/size via 

Adobe Photoshop. To increase the task’s validity, all participants were familiarized with the 

items. Food images were randomly selected for each subject and the same images were used 

but they were randomly presented for each subject at baseline and one month later. The 

software E-Prime (Psychology Software Tools, INC) was used to present visual images. The 

stimulation consisted of three HC and three LC food-cue blocks, and they were presented in 

a pseudorandom order. Each block lasted 30 seconds, during which 10 pictures were 

presented for 3 seconds each without inter-trial-interval. Finally, there were 30 seconds 

between blocks.

Craving ratings

After the food-cue-reactivity task, participants were instructed to rate their level of craving 

for HC/LC food using a visual-analog-scale (range 0–100) (Ochner et al., 2011). Statistical 

analyses of behavioral performance data were carried out using SPSS 22 (Armonk, NY, 

USA). A two-way ANOVA was conducted to model the effects of group (BS, Ctr), condition 

(HC, LC) and time (Baseline, 1 Month) on behavioral/clinical data.

MRI acquisition

The experiment was carried out using a 3T GE (Signa Excite HD, Milwaukee, WI, USA) 

scanner. First, a high-resolution structural image for each subject was acquired using three-

dimensional magnetization-prepared rapid acquisition gradient-echo-sequences with a voxel 

size of 1 mm3 and with an axial fast spoiled gradient-echo-sequence (TR=7.8ms, TE=3.0ms, 

matrix size=256×256, field-of-view=256×256mm2, slice thickness=1mm and 166 slices). 

Then, a gradient-echo T2*-weighted echo-planar-imaging sequence was used for acquiring 

functional images with the following parameters: TR=2000ms, TE=30ms, matrix 

size=64×64, field-of-view=256×256mm2, flip angle=90 degrees, in-plane resolution of 

4mm2, slice thickness=4mm and 32 axial slices. The scan for functional imaging lasted 360 

seconds. Subjects were instructed to open their eyes and watch the instruction and food 

pictures during the entire scanning procedure. A radiologist examined the imaging data to 

rule out abnormalities in brain structure.

Image processing

All imaging data were analyzed using Statistical Parametric Mapping 12 (SPM12, http://

www.fil.ion.uclac.uk/spm). The functional images first underwent conventional slice-timing, 
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head movement correction. The echo-planar images were co-registered to everyone’s T1 

anatomical image, and spatially normalized to the template of the Montreal-Neurological-

Institute and resampled to a voxel size of 3 mm3. An isotropic Gaussian kernel (full-width-

at-half-maximum=6mm3) was used to spatially smooth the images.

For each subject, a general linear model (GLM) including HC/LC food-cue condition 

regressors was constructed. Each regressor was created by convolving the canonical 

hemodynamic response function with a box-car function corresponding to the onset/duration 

of each condition. Additionally, six realignment parameters were also included in the GLM 

as covariates. Finally, individual contrast images for HC vs. LC food-cues were computed 

and submitted to second-level whole brain repeated-measures ANOVAs employing the 

factor group (BS, Ctr) and time (Baseline, 1 Month). In addition, the beta images responded 

to HC and LC food stimulation were also generated at the first-level and were used in the 

repeated-measures ANOVAs to examine the factor condition (HC and LC) and time 

(Baseline, 1 Month) in each group. Results were corrected for multiple comparisons using 

family wise error (FWE) corrections at the cluster level correction approach (PFWE<0.05) 

with a minimum cluster size of k=100 voxels and a cluster defining threshold of P<0.001 

(uncorrected at the voxel level).

PPI analysis

The clusters with significant group × time interaction effects were selected as the seed 

regions, then whole-brain PPI analyses were performed to investigate alterations in task-

related functional connectivity in response to HC vs. LC food-cues following surgery in the 

BS group (cluster level correction PFWE<0.05, k>100; please see SI for detailed 

information).

Association between behaviors and brain response/functional-connectivity

We conducted a partial-correlation analysis with age/gender as covariates to assess the 

association between ROI brain responses and food-craving, and between brain responses and 

clinical data, including BMI/YFAS which showed interaction (group × time) effects, as well 

as correlations between changes in ROI brain responses and changes in behavioral 

measurements. Similarly, correlation analyses were also performed between PPI values and 

behavioral measurements. Bonferroni-correction was applied for multiple-comparisons; and 

level of significance was set at P<0.008 (0.05/6).

Results

Demographic characteristics

At baseline, there were no significant differences in age, gender, duration of obesity, weight, 

BMI, WC and scores on the YFAS, HAMD and HAMA questionnaires between BS and Ctr 

groups (Table 1). There were significant group × time interaction effects for weight (F(1, 

39)=43.2, P<0.001), BMI (F(1, 39)=43.1, P<0.001),WC (F(1, 39)=14.7, P<0.001), and 

YFAS (F(1, 39)=10.0, P=0.003) due to significant weight loss (t=−7.3, P < 0.001, d=1.6), 

reductions of BMI (t=−8.8, P<0.001, d=1.9) and WC (t=−6.6, P<0.001, d=1.4), and 
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decreased YFAS score (t=−3.4, P=0.003, d=0.7) in the BS group, but not in the Ctr group 

(Supplementary Table 1).

Peripheral hormone measurements

At baseline, there were no significant differences in ghrelin (t=0.7, P=0.494, d=0.1), leptin 

(t=0.3, P=0.773, d=0.1) and insulin (t=0.3, P=0.758, d=0.1) levels between BS and Ctr 

groups. In the BS group, out of the three hormones investigated here, only fasting plasma 

ghrelin levels were negatively correlated with BMI (r=−0.54, P=0.014, Fig 1A) and 

positively correlated with craving for HC food (r=0.60, P=0.004, Fig 1B) before LSG. After 

the surgery, plasma ghrelin, insulin, and leptin levels were significantly lower than before 

the surgery (P<0.001, Fig 1C–E). The leptin/BMI ratio was also significantly lower after 

surgery (P<0.001, Fig 1F).

Food craving

There were no significant interaction effects (time × group, F(1,39) = 0.8, P = 0.360) for 

hunger levels (Pre-BS:3.27±0.09; Post-BS:3.18±0.12; CtrT:3.21±0.14; CtrRT: 3.31±0.15). 

There was no significant difference in HC/LC food craving between BS and Ctr group at 

baseline condition (Fig 2, Supplementary Table 2). The ANOVA showed significant 

condition × time × group interaction effects for food craving (F(1,39)=7.5, P=0.009) (Fig 2). 

Further post-hoc tests showed that Pre-BS and Ctr groups (both CtrT and CtrRT) had higher 

craving for HC/LC food-cues (Pre-BS: t=3.6, P=0.002, d=0.8; CtrT: t=2.6, P=0.017, d=0.6; 

CtrRT: t=2.3, P=0.035, d=0.5). There was a significant reduction of craving for HC food in 

the BS group after surgery (t=−6.0, P<0.001, d=1.2), and the reduction in HC food-cue 

cravings post-surgery were larger than for LC food-cues (t=3.1, P=0.005, d=0.7) (Fig 2). 

Food craving for LC food did not significantly change in either group. After surgery, there 

was a trend for a positive correlation between the changes in ghrelin (ΔPost-Pre) and the 

changes in craving for the HC vs. LC food-cues contrast, such that the larger the ghrelin 

decreases, the greater the decline in food-craving post-surgery (r=0.46, P=0.041, 

Supplementary Fig 1).

Brain response to food cues

At baseline condition, both Pre-BS and CtrT had activation in the right DLPFC and occipital 

gyrus in response to HC vs. LC food-cues, and there was no difference between the two 

groups. There were significant interaction effects (group × time) on brain responses to HC 

vs. LC food-cues in the right DLPFC (PFWE<0.05, Fig 3A, Supplementary Table 3) due to 

significant activation reduction in the BS group after surgery (t=3.5, P=0.002, d=0.7) (Fig 

3B). All groups showed greater responses for HC than for LC food-cues (Pre-BS: t=6.6, 

P<0.001, d=1.4; Post-BS: t=2.3, P=0.032, d=0.5; CtrT: t=2.6, P=0.018, d=0.6; CtrRT: t=3.1, 

P=0.006, d=0.7), and LSG decreased DLPFC activation induced by HC food cues in the BS 

group (t=3.7, P<0.001, d=0.8). The Ctr group did not show significant changes in brain 

activation between measures at baseline and one-month later (Fig 3B). Changes in DLPFC 

activation in response to HC vs. LC food-cues were positively correlated with changes in 

ghrelin levels (r=0.59, P=0.004, Fig 3C) and changes in craving for HC versus LC food-cues 

(r=0.54, P=0.009, Fig 3D) following surgery in the BS group, such that the greater the 

decreases in ghrelin post-surgery the greater the attenuation of the DLPFC responses and the 
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greater the attenuation of the DLPFC, the larger the decreases in food-craving. There were 

no significant associations of food craving with plasma insulin and leptin levels.

PPI connectivity analysis

The functional-connectivity between the right DLPFC seed and the ventral anterior cingulate 

cortex (vACC) showed condition × group interaction effects, such that calorie-related 

increases in connectivity (i.e., HC vs. LC food-cues) were stronger for Post-BS than for Pre-

BS (PFWE<0.05, K>100, Fig 4A). The results suggested surgery-increased functional 

connectivity between the right DLPFC and vACC during exposure to HC vs. LC. Moreover, 

the correlation analysis revealed that changes in connectivity of the vACC post-surgery were 

negatively correlated with the changes in BMI, such that increases in connectivity between 

right DLPFC and vACC post-surgery were associated with greater reduction in BMI (r=

−0.48, P=0.017, Fig 4B). Higher BMI prior to surgery also correlated with lower PPI 

connectivity between the right DLPFC and vACC (r=−0.58, P=0.004, Fig 4C).

Discussion

We found LSG significantly decreased plasma ghrelin concentrations, craving for HC food, 

and decreased brain activation in DLPFC regions involved with executive-control in 

response to HC versus LC food-cues in the BS group. The decreased DLPFC activation in 

response to HC vs. LC food-cues post-surgery was positively correlated with decreased 

ghrelin levels and reduced craving for HC versus LC food-cues. Additionally, LSG increased 

the connectivity between the right DLPFC and vACC since there was a greater increase in 

connectivity with a larger reduction in BMI post-surgery.

DLPFC plays important roles in the central regulation of eating-behavior (Hare et al., 2009; 

Tataranni et al., 1999) and in effectively down-regulating the motivation to consume 

desirable food (Hare et al., 2009; Lavagnino et al., 2016). The activation of the DLPFC may 

inhibit activation within the striatum and motor cortex during food-cue stimulation (Killgore 

et al., 2003). HC food stimuli were shown to activate the DLPFC (Hare et al., 2009). Greater 

PFC activation in response to HC foods may be due to inhibitory processes in response to 

increased reward value of HC foods (Killgore et al., 2003). Similar results were also found 

in studies showing PFC activation during inhibition of food-intake (DelParigi et al., 2007). 

Conscious attempts to inhibit eating-behavior are processed primarily in the DLPFC 

(DelParigi et al., 2007), and are reciprocally activated with reward-related regions in 

response to HC food (Burger and Stice, 2011). Our results showed significantly decreased 

brain activation in the right DLPFC in response to HC versus LC food-cues after surgery, 

which is consistent with findings by Ochner et al. (Ochner et al., 2011) who reported 

decreases in HC food-cue induced DLPFC activation one-month after gastric bypass surgery. 

Our findings suggest beneficial effects of LSG surgery in the normalization of DLPFC 

hyperactivity in responses to HC food-cues.

The findings of positive correlations between changes in DLPFC activation in response to 

HC vs. LC food-cues and changes in ghrelin levels and changes in craving for HC versus LC 

food-cues suggest that changes in the stomach-derived hormone ghrelin after LSG surgery 

may underlie the changes in brain reactivity and eating-behaviors. Notably, similar 
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correlations were not found for insulin or leptin, which are also key appetitive hormones 

produced by the pancreas and adipose tissue, respectively. This difference suggests a 

potential predominant role of ghrelin, over other endocrine pathways, at least in the short-

term (one month) effects following LSG. While speculative, this interpretation would be 

consistent with the fact that LSG results in an acute manipulation of the gut-brain axis, while 

more systemic changes and adaptation involving other endocrine pathways may take place at 

a later time. The significant associations between ghrelin, craving and DLPFC activation 

mirrored concurrent postsurgical reduction in the desire to eat (craving under HC food-cues) 

(Ochner et al., 2011). The reduction in brain activation in DLPFC may be related to 

decreased brain activation in the mesolimbic-reward pathway, as found in previous studies 

(Ochner et al., 2012; Ochner et al., 2011). The association between changes in ghrelin levels 

and changes in DLPFC activation suggests that ghrelin and gut hormone-mediated shift in 

hunger/satiety would simply lead to reduced reward value of food, and hence reduced need 

for DLPFC response when exposed to HC food cues. While the present study does not show 

a causality role of ghrelin, it is possible to speculate that ghrelin may represent a peripheral 

biomarker of the here described LSG-induced changes in food craving and DLPFC 

activation; or could be implicated in the mechanisms of how LSG leads to changes in brain 

areas involved in food reward and food craving, or both.

To further assess the connectivity of the right DLPFC and its associated brain regions, we 

used PPI analysis. Under HC food-cues stimuli, the seed in the right DLPFC had stronger 

connectivity (increased PPI value) with the vACC after the surgery, and changes in BMI 

were negatively correlated with changes in connectivity between the right DLPFC and 

vACC. The ACC is implicated in the executive-control of internal/external stimuli-related, 

context-dependent behaviors involving evaluation of salience of emotional information and 

modulation of the emotional response (Cohen et al., 2005; Bush et al., 2000). The ACC may 

contribute to an imbalance between cognitive and emotional processing and consequentially 

an increased risk of overeating (Cohen et al., 2005). The area in the vACC that showed that 

the increased connectivity corresponds to Brodmann Area (BA) 25, is implicated in 

emotional regulation, presumably through its connection with hypothalamic, limbic, 

thalamic and brain stem nuclei (Hamani et al., 2011).

Increased connectivity of the right DLPFC and vACC may reflect an enhanced ability of the 

DLPFC to resolve emotional conflict processed by vACC (Wallis et al., 2017). The negative 

correlation between changes in BMI and changes in connectivity of the right DLPFC and 

vACC may indicate that greater modulation of the vACC by the DLPFC, which might then 

prevent impulsive/compulsive overeating and thus lead to reductions in BMI.

Limitations

There are several limitations in this study that need to be taken into account, as they limit the 

generalizability of our results and require follow-up investigation. Specifically, 1. Due to 

strict exclusion criteria and the difficulty in retaining patient’s post-surgery for follow-up 

scanning, we did not have a larger cohort for the BS group pre-and post-surgery, including 

the controls, and we did not have longer post-surgery assessments and scans. 2. We assessed 

obese participants at two-time points only. Multiple time-point assessments are warranted 
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for future investigations on the progression of food-induced decreases in craving and 

DLPFC activation after surgery. 3. There was no standardized diet for participants followed 

outside of the study. 4. We only assessed the association of peripheral hormones with brain 

activity during the fasting state. Further studies are needed to assess these gut hormones and 

their association with brain reactivity at fasting and postprandial conditions. 5. We measured 

total ghrelin even if acyl-ghrelin is the form of the peptide that stimulates appetite 

(Filigheddu et al., 2007). While this approach is a limitation, we elected to measure total 

ghrelin as it is easier to measure, and it is likely that total and acyl-ghrelin highly correlate 

with each other. Nonetheless, future studies should measure both total ghrelin and acyl-

ghrelin concentration and calculate the acyl-to-total ghrelin ratio.

Conclusion

This study investigated the association of ghrelin and brain changes under food-cue 

exposures after LSG surgery. We found that the reductions in fasting ghrelin levels was 

correlated with reduced craving for HC food-cues and reduced activation in the right DLPFC 

under HC versus LC food-cue stimuli along with strengthening of connectivity of the right 

DLPFC with vACC, which are regions implicated in executive-control and self-regulation. 

These associations seem specific for ghrelin, as we did not find similar results for leptin and 

insulin, at least within the short-term post-surgery assessment conducted in this study. These 

findings suggest that LSG-induced weight-loss one-month after surgery may be in part due 

to changes in fasting ghrelin. A shift in hunger/satiety as a result of decreased ghrelin levels 

would simply lead to reduced craving for food, hence a reduced need for DLPFC response 

when exposed to HC food cues. Future studies are needed to test the causal role of the 

ghrelin system in the changes in food craving and in brain activity after bariatric surgery and 

to investigate the potential role of the ghrelin system as a treatment target for sustained 

weight loss after the surgery.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

○ LSG decreased fasting plasma ghrelin levels, food craving, and brain 

activation in right DLPFC.

○ Reduction in ghrelin levels and food craving correlated with reduction in 

DLPFC activation.

○ Changes in BMI negatively correlated with changes in connectivity between 

DLPFC and vACC.
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Figure 1. 
Changes in plasma peripheral hormones before and after LSG surgery and correlations 

between peripheral hormones and behavioral measurements. A-B. In the BS group, only 

fasting plasma total ghrelin (neither insulin nor leptin) levels were negatively correlated with 

BMI and positively correlated with craving for HC food. C-F. Total ghrelin, insulin, leptin 

levels and leptin/BMI ratio were lower than before the surgery.

Abbreviation: LSG; laparoscopic sleeve gastrectomy; BMI, body mass index; Pre-BS, 

obese patients who received MRI scan before surgery; Post-BS, obese patients who received 

MRI scan at one month after surgery.
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Figure 2. 
ANOVAs for food craving and post-hoc tests. There was condition × time × group 

interaction effects for food craving, time × group interaction effects for HC food craving, 

and food × time interaction effects in the BS groups. Both Pre-BS and Ctr groups (CtrT, 

CtrRT) had higher craving for HC than LC food cues. There was a significant reduced 

craving for HC food in the BS group after surgery, and HC food cue cravings were lower 

than LC food cues after surgery; there were no changes in craving for LC food in either 

group.

Abbreviation: Pre-BS, obese patients who received MRI scan before surgery; Post-BS, 

obese patients who received MRI scan at one month after surgery; CtrT, control subjects 

who received MRI scan at baseline; CtrRT, control subjects who received MRI scan one 

month after the first scan.
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Figure 3. 
Whole brain ANOVAs for brain responses to food cues and post-hoc tests. A. There was a 

significant interaction effect (group × time) for brain responses to HC vs. LC food cues in 

the DLPFC. B. BS group showed significant reduction in brain responses to HC vs. LC food 

cues after surgery. There were significant group × time interaction effects for brain 

responses to HC food cues, and significant condition × time interaction effects for brain 

activations in the DLPFC in the BS group. C. Changes in DLPFC activation in response to 

HC vs. LC food cues were positively correlated with changes in ghrelin. D. Positive 

correlation between changes in craving for HC versus LC food cues and changes in DLPFC 

activation in response to HC vs. LC food cues following LSG surgery in the BS group.

Abbreviation: BS, bariatric surgery; Pre-BS, obese patients who received MRI scan before 

surgery; Post-BS, obese patients who received MRI scan at one month after surgery; CtrT, 

control subjects who received MRI scan at baseline; CtrRT, control subjects who received 

MRI scan one month after the first scan; DLPFC, dorsolateral prefrontal cortex; HC, high-

calorie; LC, low calorie.
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Figure 4. 
Altered PPI connectivity between the DLPFC and vACC in the BS group following surgery 

and correlation analysis between PPI connectivity and behavior measures. A. There was 

elevated PPI connectivity between the DLPFC and vACC when exposed to HC vs. LC food 

cues in Post-BS compared to Pre-BS group (PFWE<0.05). B. Prior to surgery, higher BMI 

was correlated with lower PPI connectivity between the right DLPFC and vACC. C. After 

the surgery, greater decreases in BMI were correlated with greater increases in PPI 

connectivity.

Abbreviation: Pre-BS, obese patients who received MRI scan before surgery; Post-BS, 

obese patients who received MRI scan at one month after surgery; DLPFC, dorsolateral 

prefrontal cortex; vACC, ventromedial anterior cingulate cortex; BMI, body mass index.
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