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Abstract.—Rapid and reliable identification of insects is important in many contexts, from the detection of disease vectors and
invasive species to the sorting of material from biodiversity inventories. Because of the shortage of adequate expertise, there
has long been an interest in developing automated systems for this task. Previous attempts have been based on laborious
and complex handcrafted extraction of image features, but in recent years it has been shown that sophisticated convolutional
neural networks (CNNs) can learn to extract relevant features automatically, without human intervention. Unfortunately,
reaching expert-level accuracy in CNN identifications requires substantial computational power and huge training data
sets, which are often not available for taxonomic tasks. This can be addressed using feature transfer: a CNN that has been
pretrained on a generic image classification task is exposed to the taxonomic images of interest, and information about
its perception of those images is used in training a simpler, dedicated identification system. Here, we develop an effective
method of CNN feature transfer, which achieves expert-level accuracy in taxonomic identification of insects with training
sets of 100 images or less per category, depending on the nature of data set. Specifically, we extract rich representations
of intermediate to high-level image features from the CNN architecture VGG16 pretrained on the ImageNet data set. This
information is submitted to a linear support vector machine classifier, which is trained on the target problem. We tested the
performance of our approach on two types of challenging taxonomic tasks: 1) identifying insects to higher groups when
they are likely to belong to subgroups that have not been seen previously and 2) identifying visually similar species that are
difficult to separate even for experts. For the first task, our approach reached >92% accuracy on one data set (884 face images
of 11 families of Diptera, all specimens representing unique species), and >96% accuracy on another (2936 dorsal habitus
images of 14 families of Coleoptera, over 90% of specimens belonging to unique species). For the second task, our approach
outperformed a leading taxonomic expert on one data set (339 images of three species of the Coleoptera genus Oxythyrea;
97% accuracy), and both humans and traditional automated identification systems on another data set (3845 images of
nine species of Plecoptera larvae; 98.6 % accuracy). Reanalyzing several biological image identification tasks studied in the
recent literature, we show that our approach is broadly applicable and provides significant improvements over previous
methods, whether based on dedicated CNNs, CNN feature transfer, or more traditional techniques. Thus, our method,
which is easy to apply, can be highly successful in developing automated taxonomic identification systems even when
training data sets are small and computational budgets limited. We conclude by briefly discussing some promising CNN-
based research directions in morphological systematics opened up by the success of these techniques in providing accurate
diagnostic tools.

Rapid and reliable identification of insects, either to
species or to higher taxonomic groups, is important
in many contexts. Insects form a large portion of the
biological diversity of our planet, and progress in the
understanding of the composition and functioning of the
planet’s ecosystems is partly dependent on our ability to
effectively find and identify the insects that inhabit them.
There is also a need for easy and accurate identification
of insects in addressing concerns related to human food
and health. Such applications include the detection of
insects that are pests of crops (FAO 2015), disease vectors
(WTO 2014), or invasive species (GISD 2017).

Identifying insects is hard because of their immense
species diversity [more than 1.02 million species
described to date (Zhang 2011)] and the significant
variation within species due to sex, color morph,
life stage, etc. With some training, one can learn
how to distinguish higher taxonomic groups, such

as orders, but already at the family level the task
becomes quite challenging, even for experts, unless
we restrict the problem to a particular life stage,
geographic region, or insect order. Generally speaking,
the lower the taxonomic level, the more challenging the
identification task becomes (Fig. 1). At the species level,
reliable identification may require years of training and
specialization on one particular insect taxon. Such expert
taxonomists are often in short demand, especially for
groups that are not showy and attractive, and their time
could be better spent than on routine identifications.

For these reasons, there has long been an interest in
developing automated image-based systems for insect
identification (Schröder et al. 1995; Weeks et al. 1997,
1999a, 1999b; Gauld et al. 2000; Arbuckle et al. 2001;
Watson et al. 2003; Tofilski 2004, 2007; ONeill 2007;
Steinhage et al. 2007, Francoy et al. 2008; Yang et al. 2015;
Feng et al. 2016; Martineau et al. 2017). Common to all
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FIGURE 1. A schematic illustration of the taxonomy of insects. The full
tree is organized into hierarchical ranks; it contains approximately 1.02
million known species and several millions that remain to be described.
Classifying a specimen to a group of higher rank, such as order, is
usually relatively easy with a modest amount of training. The challenge
and amount of required expertise increases considerably (transition
from green to red) as the taxonomic rank is lowered.

such systems designed to date is that they depend on
handcrafted feature extraction. “Handcrafted” or “hand-
engineered” are standard terms in machine learning and
computer vision referring to the application of some
process, like an algorithm or a manual procedure, to
extract relevant features for identification from the raw
data (images in our case). Examples of features that
have been used for taxonomic identification include the
wing venation pattern, the relative position of wing vein
junctions, and the outline of the wing or of the whole
body. Although many of these systems achieve good
identification performance, the need for special feature
extraction tailored to each task has limited their use in
practice.

In recent years, deep learning (DL) and convolutional
neural networks (CNNs) have emerged as the most
effective approaches to a range of problems in automated
classification (LeCun et al. 2015; Schmidhuber 2015),
and computer vision is one of the fields where these
techniques have had a transformative impact. The basic
ideas have been around for a long time (Fukushima 1979,
1980; Fukushima et al. 1983) but a significant increase in
the complexity and size of the neural networks and a

huge increase in the volume of data used for training
have generated spectacular advances in recent years.
These developments, in turn, would not have been
possible without the extra computational power brought
by modern graphical processing units (GPUs).

In contrast to traditional approaches of machine
learning, requiring handcrafted feature extraction, DL
and CNNs enable end-to-end learning from a set
of training data. In end-to-end learning, the input
consists of labeled raw data, such as images, nothing
else. The images may even represent different views,
body parts, or life stages—the CNN automatically
finds the relevant set of features for the task at
hand. CNNs have been particularly successful in image
classification tasks, where large labeled training sets
are available for supervised learning. The first super-
human performance of GPU-powered CNNs (Cireşan
et al. 2011) was reported in 2011 in a traffic sign
competition (Stallkamp et al. 2011). The breakthrough
came in 2012, when a CNN architecture called AlexNet
(Krizhevsky et al. 2012) outcompeted all other systems in
the ImageNet Large Scale Visual Recognition Challenge
(Russakovsky et al. 2015), at the time involving 1.3
million images divided into 1000 categories, such as
“lion,” “cup,” “car wheel,” and different breeds of cats
and dogs. Since then, CNN performance has improved
significantly thanks to the development of deeper, more
complex neural network architectures, and the use of
larger data sets for training. Open-source licensing
of DL development frameworks has triggered further
methodological advances by attracting a vast developer
community.

Training a complex CNN from scratch to performance
levels that are on par with humans requires a huge set
of labeled images and consumes a significant amount
of computational resources, which means that it is not
realistic currently to train a dedicated CNN for most
image classification tasks. However, in the last few years,
it has been discovered that one can take advantage
of a CNN that has been trained on a generic image
classification task in solving a more specialized problem
using a technique called transfer learning (Caruana 1995;
Bengio 2011; Yosinski et al. 2014; Azizpour et al. 2016).
This reduces the computational burden and also makes
it possible to benefit from the power of a sophisticated
CNN even when the training set for the task at hand is
moderate to small.

Two variants of transfer learning have been tried.
In the first, fine-tuning, the pretrained CNN is slightly
modified by fine-tuning model parameters such that the
CNN can solve the specialized task. Fine-tuning tends
to work well when the specialized task is similar to the
original task (Yosinski et al. 2014), but it may require a
fair amount of training data and computational power.
It is also susceptible to overfitting on the specialized task
when the data sets are small because it may incorrectly
associate a rare category with an irrelevant feature, such
as a special type of background, which just happens
to be present in the few images of that category in the
training set.



Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:17 23/9/2019 Sysbio-OP-SYSB190016.tex] Page: 878 876–895

878 SYSTEMATIC BIOLOGY VOL. 68

TABLE 1. Comparison of the performance of some automated
image identification systems prior to CNNs and some recent state-
of-the-art CNN-based methods on two popular fine-grained data
sets (i.e., data sets with categories that are similar to each other),
Bird-200-2011 (Wah et al. 2011), and Flower-102 (Nilsback and
Zisserman 2008)

Methods Bird Flower References

Pre-CNN methods
Color+SIFT 26.7 81.3 (Khan et al., 2013)
GMaxPooling 33.3 84.6 (Murray and Perronnin, 2014)

CNN-based techniques
CNNaug-SVM 61.8 86.8 (Razavian et al., 2014)
MsML 67.9 89.5 (Qian et al., 2014)
Fusion CNN 76.4 95.6 (Zheng et al., 2016)
Bilinear CNN 84.1 — (Lin et al., 2015)
Refined CNN 86.4 — (Zhang et al., 2017)

Note: All CNN-based methods used pretrained VGG16 and transfer
learning (Simonyan and Zisserman 2014). Numbers indicate the
percentage of correctly identified images in the predefined test set,
which was not used during training.

The second variant of transfer learning is known as
feature transfer, and involves the use of the pretrained
CNN as an automated feature extractor (Donahue et al.
2014; Oquab et al. 2014; Razavian et al. 2014; Zeiler and
Fergus 2014; Azizpour et al. 2016; Zheng et al. 2016). The
pretrained CNN is exposed to the training set for the
specialized task, and information is then extracted from
the intermediate layers of the CNN, capturing low- to
high-level image features; see description of the CNN
layer architecture below). The feature information is then
used to train a simpler machine learning system, such
as a support vector machine (SVM) (Cortes and Vapnik
1995), on the more specialized task. Feature transfer in
combination with SVMs tends to work better than fine-
tuning when the specialized task is different from the
original task. It is computationally more efficient, works
for smaller image sets, and SVMs are less susceptible
to overfitting when working with imbalanced data sets,
that is, data sets where some categories are represented
by very few examples (He and Garcia 2009).

Sophisticated CNNs and transfer learning have been
used successfully in recent years to improve the
classification of some biological image data sets, such as
“Caltech-UCSD Birds-200-2011” (Birds-200-2011) (Wah
et al. 2011) (200 species, 40–60 images per species) and
“102 Category Flower Data set” (Flowers-102) (Nilsback
and Zisserman 2008) (102 flower species commonly
occurring in the UK, 40–258 images per species) (Table 1).
Similar but larger data sets contributed by citizen
scientists are explored in several ongoing projects, such
as Merlin Bird ID (Van Horn et al. 2015), Pl@ntNet (Joly
et al. 2014) and iNaturalist (web application available
at http://www.inaturalist.org). These data sets involve
outdoor images of species that are usually easy to
separate for humans, at least with some training, and the
automated identification systems do not quite compete
in accuracy with human experts yet.

The main purpose of the current article is to explore
the extent to which CNN feature transfer can be
used in developing accurate diagnostic tools given

realistic-size image sets and computational budgets
available to systematists. The article represents one
of the first applications of CNN feature transfer to
challenging and realistic taxonomic tasks, where a high
level of identification accuracy is expected. In contrast
to previous studies, all independent identifications used
here for training and validation have been provided by
taxonomic experts with access to the imaged specimens.
Thus, the experts have been able to examine characters
that are critical for identification but that are not visible
in the images, such as details of the ventral side of
specimens imaged from above. The experts have also
had access to collection data, which often facilitates
identification.

We examined two types of challenging taxonomic
tasks: 1) identification to higher groups when many
specimens are likely to belong to subgroups that have
not been seen previously and 2) identification of visually
similar species that are difficult to separate even for
experts. For the first task, we assembled two data sets
consisting of diverse images of Diptera faces and the
dorsal habitus of Coleoptera, respectively. For the second
task, we used images of three closely related species
of the Coleoptera genus Oxythyrea, and of nine species
of Plecoptera larvae (Lytle et al. 2010). Training of
the automated identification system was based entirely
on the original images; no preprocessing was used
to help the computer identify features significant for
identification.

In all our experiments, we utilized the CNN
architecture VGG16 with weights pretrained on the
ImageNet data set (Simonyan and Zisserman 2014) for
feature extraction, and a linear SVM (Cortes and Vapnik
1995) for classification. Our work focused on optimizing
feature extraction techniques to reach high levels of
identification accuracy. We also analyzed the errors
made by the automated identification system in order
to understand the limitations of our approach. Finally,
to validate the generality of our findings, we tested
our optimized system on several other biological image
classification tasks studied in the recent literature on
automated identification.

MATERIALS AND METHODS

Data Sets and Baselines
Data sets. We used four image data sets

(D1–D4) for this study (Table 2, Fig. 2,
Supplementary Material available on Dryad at
http://dx.doi.org/10.5061/dryad.20ch6p5. The first
two data sets (D1–D2) consist of taxonomically diverse
images that were used in testing whether the automated
system could learn to correctly circumscribe diverse
higher groups based on exemplar images, and then
use that knowledge in classifying images of previously
unseen subtaxa of these groups. Data set D1 contains 884
images of Diptera faces, representing 884 unique species,
231 genera, and 11 families. Data set D2 has 2936 images

doi:10.5061/dryad.20ch6p5
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TABLE 2. Data sets used in this study

Images per taxon Image size
Data set Taxon Level No. of taxa (range) (height×width) Part of insect Source

D1 Flies family 11 24–159 946×900 Face—frontal view www.idigbio.org
D2 Beetles family 14 18–900 1811×1187 Body—dorsal view www.idigbio.org
D3 Beetles species 3 40–205 633×404 Body—dorsal view this study
D4 Stoneflies species 9 107–505 960×1280 Body—variable view Lytle et al. 2010

FIGURE 2. Sample images of each of the four data sets. For each data set, we show two or three different image categories. The example
images illustrate some of the taxon diversity and variation in image capture settings within each category.

of the dorsal habitus of Coleoptera, all belonging to
unique specimens that together represent >1932 species,
>593 genera, and 14 families (352 images identified only
to genus and 339 only to tribe or family). Both D1 and
D2 were used to test family-level identification. Subsets
of D2 were also used to test discriminative power at
the tribal level (data set D2A consisting of 21 tribes of
Curculionidae with 14 or more images each (average
32); in total 675 images belonging to 109 unique genera)
and at the genus level (data set D2B consisting of images
of two genera, Diplotaxis [100 images] and Phyllophaga
[121 images], both from the tribe Melolonthini of the
family Scarabaeidae; in total, D2B contains images
of 132 unique species; in two-thirds of the cases the
images represent a single example of the species or
one of two examples). D1 and D2 were assembled from
images downloaded from iDigBio (http://idigbio.org)
as described in the Supplementary Material available
on Dryad. The identifications provided by iDigBio were
assumed to be correct (but see Results for D2).

The last two data sets (D3–D4) were used to test
the success of the automated system in discriminating
between visually similar species that are difficult to
separate even for human experts. Data set D3 is original

to this study; it consists of 339 images of the dorsal
habitus of three closely related species (Sabatinelli 1981)
of the genus Oxythyrea: O. funesta, O. pantherina, and
O. subcalva (Coleoptera: Scarabaeidae). The depicted
specimens are from four different countries of the south-
west Mediterranean region where these taxa occur.
Only O. funesta has a wider distribution, extending
into Europe and Asia as well. One of the authors
of the current article (DV) worked extensively on the
taxonomy of this genus, based both on morphological
and genetic data (Vondráček 2011; Vondráček et al. 2017).
Current knowledge does not allow specimens of the
three species studied here from North African localities
to be identified with 100 % accuracy based only on
the dorsal view of adults. Additional information from
the ventral side of the specimen is also needed; the
shape of the genitalia and the exact collection locality
are also helpful in identifying problematic specimens
(Sabatinelli 1981; Mikšić 1982; Baraud 1992). For D3,
the identifications provided by DV after examination
of the imaged specimens, and the locality data were
assumed to be correct. Morphological species concepts
were independently validated by genetic sequencing of
other specimens.
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Data set D4 was taken from a previous study of
automated identification systems (Lytle et al. 2010) and
consists of 3845 images of nine species of Plecoptera
larvae representing nine different genera and seven
families. The identification system developed in the
original study (Lytle et al. 2010) was based on various
handcrafted techniques to find image features of
interest, such as corners, edges, and outlines. These
features were then described with scale-invariant feature
transform (SIFT) descriptors (Lowe 2004), which were
subsequently submitted to a random forest classifier
(Breiman 2001).

In contrast to the other data sets, the specimens of D4
are not portrayed in a standardized way. The position
and orientation of the specimens vary randomly, and
specimens may be damaged (missing legs or antennae).
All larval stages are included, and the specimens vary
dramatically in size. On one extreme, the specimen may
be so small that it only occupies a small part of the image;
on the other extreme, only part of the specimen may be
visible (Lytle et al. 2010). The variation in D4 makes more
information about each category available, which should
make the identification engine more reliable and robust.
On the other hand, different object sizes and viewing
angles may require the system to learn a wider range of
distinguishing features, making the identification task
more challenging. It is not obvious which of these effects
will be stronger.

Even though all species in D4 belong to different
genera, two of the species (Calineuria californica and
Doroneuria baumanni) are very similar and quite
challenging to separate. The original study reported the
identification accuracy achieved by humans, including
some entomologists, in separating sample images of
these two species after having been trained on separating
them using 50 images of each species. We compared
the human performance to the performance of our
method in separating the same two species in the entire
data set, which contains 490 images of Calineuria and
532 of Doroneuria). The true identifications provided
in the original study were based on examination of
the actual specimens by two independent taxonomic
experts, which had to agree on the determination; these
identifications are assumed here to be correct.

Image characteristics. The images in D1-D3 represent
standardized views, in which specimens are oriented
in a similar way and occupy a large portion of
the image area. However, the exact orientation and
position of appendages vary slightly, and some of the
imaged specimens are partly damaged. In D4, both
specimen orientation and size vary considerably as
described above (Fig. 2). Images from all data sets
were acquired in lab settings. Imaging conditions vary
significantly in D1 and D2, since these images have
different origins, but are standardized in D3 and D4.
The backgrounds are generally uniform, particularly
in D3 and D4, but the color is often manipulated in
D1–D2 to get better contrast. In D2, some images have
been manipulated to remove the background completely.
Noise may be present both in the background (collection

and determination labels, scales, measurements, glue
cards, etc.) or on the specimens (pins, pin verdigris,
dust etc.).

Data preprocessing. All three color channels (red,
green, and blue) of the images were used. Before
feeding images into CNNs, they are commonly resized
to squares with VGG16 having default input size of
224×224 pixels. Since D1, D2 and D3 images represent
standard views but vary in image aspect ratio (height
vs. width), resizing them to squares could lead to
uneven distortion of objects from different categories,
potentially resulting in information loss, or introducing
bias that could interfere with training. Therefore, we
performed the main experiments using images where
the aspect ratio (height vs. width) was preserved. The
best performing model was subsequently tested also on
images that were resized to squares, even if it affected the
aspect ratio.

To preserve aspect ratio, we first computed the average
image height and width for each data set. Then we
resized images such that one dimension of the image
would fit the average size, and the other would be less
than or equal to the average. If the latter was less than
the average, we would center the image and then add
random pixel values across all channels around the
original image to fill the square frame. To preserve a
minimalistic approach, no segmentation (cropping of the
image) was performed, and the background was kept on
all images.

Training and validation sets. We divided each data
set into ten subsets using stratified random sampling,
ensuring that the proportion of images belonging to each
category was the same in all subsets. We then applied
our procedure to the images belonging to nine of the
subsets and used the last subset as the test image set. The
reported accuracy values represent averages across ten
repetitions of this procedure, each one using a different
subset as the test set.

The images of D1–D3 all represent unique individuals,
but D4 contains multiple images (4–5) of each specimen,
varying in zooming level, pose, and orientation of the
specimen (Lytle et al. 2010). The main results we report
here do not take this into account; thus, the test set was
likely to contain images of specimens that had already
been seen during training. To investigate whether this
affected the overall performance of our method, we
repeated the procedure with a new partitioning of D4
into subsets in which all images of the same specimen
were kept in the same subset, thus ensuring that none of
the specimens imaged in the training set had been seen
previously by the system.

Model
We used VGG16 for feature extraction. VGG16

is known for its generalization capabilities and is
commonly used as a base model for feature extraction
(Caruana 1995; Bengio 2011; Yosinski et al. 2014). VGG16
has a simpler structure compared to other current
architectures, such as Microsofts ResNets (He et al. 2016)
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FIGURE 3. CNN model architecture. We used the CNN model VGG16 (Simonyan and Zisserman 2014) for feature extraction. The model
consists of five convolutional blocks, each block consisting of two or three convolutional layers (green) followed by a MaxPooling layer (red).
These blocks are followed by three layers of fully connected neurons (gray), the last of which consists of a vector of length 1000. Each element in
this vector corresponds to a unique category in the ImageNet Challenge. The convolutional layers are obtained by applying different filters of
size 3×3 to the input from the preceding layer. The MaxPooling layer reduces the dimensions of the output matrix, known as the feature matrix,
to half the width and half the height using spatial pooling, taking the maximum of the input values.

or Google’s Inception v3 (Szegedy et al. 2016b), Inception
v4 (Szegedy et al. 2016a), and Xception (Chollet 2016).
However, these more complex models also tend to learn
more domain-specific features, which makes them more
challenging to use for feature extraction on unrelated
tasks.

Specifically, we used VGG16 (Simonyan and
Zisserman 2014) implemented in keras (Chollet
2015) with a TensorFlow backend (Abadi et al. 2016).
In VGG16, the input images are processed in five
convolutional blocks that we will refer to as c1– c5,
respectively (Fig. 3). A block is made up of two or three
convolutional layers, followed by a MaxPooling layer.
Each convolutional layer applies a number of 3×3 filters
to the input. The number of different filters used in the
convolutional layers vary across blocks: in the original
VGG16 architecture used here, they are 64, 128, 256, 512,
and 512 for convolutional block c1-c5, respectively. In
the MaxPooling layer, the matrix is reduced to half the
width and half the height by spatial pooling, taking the
maximum value across a 2×2 filter. Thus, an original
image of 224×224 pixels (the standard size used by
VGG16) is reduced to an output matrix of height ×
width 7×7 (224/25=7) after having passed through
all five blocks. However, in the process the matrix has
gained in depth through the application of filters in each
of the convolutional layers. Thus, in block c5 the total
output dimension is 7×7×512, where 512 is the number
of filters in this block. The output of each block is known
as its feature matrix, and the feature matrix of c5 is known
as the bottleneck features. The last convolutional block
is succeeded by three fully connected layers, the last
of which provides the output related to the ImageNet
classification task (Fig. 3).

Feature Extraction
When using a CNN for feature extraction, it is common

to focus on the fully connected final layers or on the

bottleneck features, but feature matrices from deeper
layers can also be used. It is standard practice to apply
global pooling when extracting information from a
feature matrix (Lin et al. 2013). Global pooling will
reduce a feature matrix of dimension HxWxF—where
H is height, W is width, and F is the number of filters—
to a matrix of dimension 1×1×F, that is, a vector
of length F. This may result in information loss, but
some reduction in dimensionality is needed, especially
when using deeper feature matrices or when working
with large input images. For instance, an image of size
416×416 would produce a feature matrix of dimension
52×52×256 in block c3 of VGG16, corresponding to
almost 700,000 features; this would be very difficult to
process for a classifier. Global pooling would reduce
this feature matrix to a more manageable vector of
just 256 feature elements. To optimize transfer learning
for the taxonomic identification tasks we examined,
we experimented with different methods of feature
extraction and pooling as described below.

Impact of image size and pooling strategy. To
examine the impact of image size and pooling strategy,
we focused on bottleneck features. We analyzed the
performance across all four data sets using input
images being 128, 224, 320, 416, or 512 pixels wide,
and using two different pooling strategies: global max
pooling (using the maximum value for each filter layer)
and global average pooling (using the average value).
There are other dimensionality reduction strategies that
could have been used, but these two pooling strategies
completely dominate current CNN applications.

Impact of features from different layers, multilayer
feature fusion and normalization. Using the optimal
image size and pooling strategy from the previous step,
we compared the discriminative potential of features
from deeper convolutional blocks (c1, c2, c3, c4) with
that of the commonly used bottleneck features of c5.
We did not attempt to extract features from the final
fully connected layers, as these top layers tend to learn
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high-level semantics specific for the task the model is
trained on. In the ImageNet challenge, such semantics
might include the presence or absence of typical cat
or dog features, for example. Therefore, one might
expect that features extracted from deeper layers of
the CNN would give better results when the model is
used as a feature extractor for unrelated classification
tasks (Zheng et al. 2016). This should be particularly
true for tasks where one attempts to separate visually
similar categories, so-called fine-grained tasks, such as
the taxonomic tasks we focus on in this article.

We also investigated the effect of feature fusion,
introduced in Zheng et al. (2016); it involves
concatenating feature vectors from several convolutional
blocks. Finally, we examined the effect of signed square
root normalization and 12-normalization as introduced
in Arandjelović and Zisserman (2013). Normalization
procedures are used in this context to reduce the
variance of the elements in the feature vector. Reducing
the influence of extreme values is known to improve the
performance of SVMs.

Impact of preserving more features. Previous
research has shown that globally pooled features
generally give better performance than raw features in
feature extraction (Zheng et al. 2016). However, it is not
known whether intermediate levels of dimensionality
reduction might give even better performance than
either of these two extremes. To investigate this, we
applied intermediate levels of pooling to the feature
matrices from the three best performing convolutional
blocks identified in the previous step.

Input images of the size selected in the first step,
416×416, generate feature matrices of dimensions 52×
52×256, 26×26×512, and 13×13×512 for c3, c4, and
c5, respectively. If all features from the output matrix
of c4, say, were used, a total of 26×26×512 = 346,112
features would be obtained. In contrast, global pooling
would yield a 1D vector of only 1×1×512 = 512 features.
To explore intermediate levels of data compression, we
applied pooling of various degrees to obtain NxNxF
feature matrices, each of which was then reshaped and
flattened to a 1D feature vector. To standardize the
dimensionality reduction procedure, we first generated
26×26×F feature matrices for each of c3, c4, and c5 as
follows. For c3, the output feature matrix of size 52×52×
256 was average-pooled to 26×26×256 applying a 2×2
filter with stride two. The features of c4 already had the
correct dimension (26×26×512), while the features of c5
were extracted before the last MaxPooling layer to retain
the input size 26×26×512 of c5.

To each of these 26×26×F feature matrices, we then
added zero-padding to get feature matrices of size 28×
28×F. Using spatial pooling of various degrees, the
matrices were then reduced to matrices of size 14×14×F,
7×7×F, 4×4×F, and 2×2×F. Each of these matrices
was reshaped and flattened to a one-dimensional feature
vector, and its performance compared that of the 1×1×F
feature vector resulting from global pooling. We also
investigated the effect of combining intermediate-level
pooling with feature fusion for c3+c4, c3+c5, c4+c5, and

c3+c4+c5. Before training the classifier on the data, we
applied signed square root normalization.

Classifier and Evaluation of Identification performance
Classifier. As a classifier for the extracted features, we

used an SVM method (Cortes and Vapnik 1995), which is
a common choice for these applications (Donahue et al.
2014; Oquab et al. 2014; Razavian et al. 2014; Zeiler and
Fergus 2014; Azizpour et al. 2016; Zheng et al. 2016).
SVM performance is at least on par with other methods
that have been studied so far (e.g., Azizpour et al. 2016).
SVMs are supervised learning models that map inputs
to points in high-dimensional space in such a way that
the separate categories are divided by gaps that are as
wide and clear as possible. Once the SVM classifier is
trained, new examples are mapped into the same space
and predicted to belong to a category based on which
side of the gaps they fall.

SVMs are memory efficient because they only use
a subset of training points (support vectors). They
generalize well to high dimensional spaces (Vapnik and
Chapelle 2000) and are suitable for small data sets where
the number of dimensions is greater than the number of
examples (Vapnik 1999). SVMs are also good at learning
from imbalanced data sets (He and Garcia 2009), even
though the performance tends to be lower on categories
with few examples.

Specifically, we used the linear support vector
classification algorithm (LinearSVC) implemented in
the scikit-learn Python package (Pedregosa et al. 2011)
under default settings. LinearSVC uses a one-versus-all
strategy, which scales well (linearly) with the number
of categories. Other SVM implementations use a one-
versus-one scheme, the time complexity of which
increases with the square of the number of categories.
A disadvantage of LinearSVC is that it does not provide
probability estimates.

Measuring identification performance. The
identification performance was tested on the four
main data sets and the data subsets described above. All
accuracies reported were calculated as the proportion
of predicted labels (identifications) that exactly
match the corresponding true labels. Error rate (or
misclassification rate) is the complement of accuracy,
that is, the proportion of predicted labels that do not
match the true labels.

Impact of sample size. To examine the influence of the
image sample on identification performance, we studied
the relation between the identification accuracy for each
category and the number and types of images of that
category in D1 and D2. We also created random subsets
of D4 with smaller number of images per species than
the original data set.

Recently published image identification challenges.
To validate the generality of our findings, we explored
the performance of our approach on several recently
published biological image data sets used to develop
automated identification systems for tasks similar to the
ones studied here. We did not optimize a model for each
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of these data sets; instead, we used a standard model that
performed well across data sets D1–D4 according to the
results from our optimization experiments.

Specifically, we used the following five data sets to
test the general performance of our standard model: 1)
ClearedLeaf, consisting of 7597 images of cleared leaves
from 6949 species and 2001 genera (Wilf et al. 2016); 2)
CRLeaves, containing 7262 leaf scans of 255 species of
plants from Costa Rica (Mata-Montero and Carranza-
Rojas 2015); 3) EcuadorMoths, containing 2120 images
of 675 moth species, all genetically verified but only
some properly morphologically studied and described,
belonging to the family Geometridae (Brehm et al. 2013);
4) Flavia, with 1907 images of leaves from 32 plant species
(Wu et al. 2007); and 5) Pollen23, covering the pollen
grains of 23 Brazilian plant species (805 images in total)
(Gonçalves et al. 2016). For ClearedLeaf, we used one
of the identification challenges in the original study,
involving families with 100+ images each.

Scripting and visualization. The python scripts used
for the experiments are provided as Supplementary
Material available on Dryad. Visualizations were
generated using the plotly package (Plotly Technologies
2015). Image feature space was visualized using t-
distributed stochastic neighbor embedding (t-SNE)
(Maaten and Hinton 2008), a popular technique for
exploring high dimensional data in 2D or 3D space
(Fig. 12). It is an unsupervised method where the
identities of the images are not provided during training.
The identities are only used subsequently to assign
different colors to the data points.

RESULTS

Feature Extraction
Impact of image size and pooling strategy. Our

results showed that identification performance was

significantly affected by image size and pooling strategy
(Fig. 4). The use of global average pooling yielded
notably better results than global max pooling (Fig. 4a).
This may be related to the fact that the imaged specimens
in our data sets typically occupy a large fraction of
the image, such that features across the entire image
contribute to identification. The difference between
average pooling and max pooling was slightly smaller in
D4, which might be explained by this data set containing
a substantial number of images of small specimens
occupying only a tiny part of the picture frame.

Input images of size 416×416 performed better than
other image sizes when global max pooling was used,
with the exception of D3 where 320×320 images were
best. When global average pooling was used instead,
the optimal image size was still 416×416 for D3 and
D4, but the largest image size (512×512) yielded a
slight improvement over 416×416 images for D1 and
D2. Based on these results, we decided to proceed with
the remaining optimization steps using input images of
size 416×416 and global average pooling, unless noted
otherwise.

Impact of features from different layers, multilayer
feature fusion, and normalization. Using c4 features
resulted in the best identification results across all data
sets (Fig. 4b). Features from c4 consistently outperformed
the features from c5; sometimes, c5 features were also
outperformed by c3 features. In D3, high identification
accuracy was already obtained with features from c2.
This might be due to the fact that the classes in
D3, three sibling species, are differentiated by minute
details (quantity, location, and size of the white spots
on the elytra and on the pronotum, and the amount
of setae), which are presumably well represented by
feature matrices close to the raw image. Signed square
root normalization consistently improved identification
accuracy (Fig. 4b), while adding 12-normalization
deteriorated performance.
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FIGURE 4. a) Impact of image size and average versus max global pooling of c5 features on identification accuracy. Data sets are separated
by color, and the best result for each data set is indicated with a cross (X). Global average pooling was always better than global max pooling.
In general, 416×416 tended to be the best image size. It was the optimal size for two out of four data sets (global average pooling) or three out
of four data sets (global max pooling). b) Impact of feature depth, normalization and feature fusion on identification accuracy. Input images
of size 416×416 and average global pooling was used in all cases. Data set colors and indication of the settings giving the best identification
performance as in (a); note that the performance of feature fusion here is slightly different from that in (a) because of minor differences in the
protocol between the experiments. Normalization and feature fusion generally improved identification accuracy, although c4 features tended to
outperform features from all other individual layers.
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The fused features generated better identification
results than features from individual convolutional
blocks in all data sets except D3, where the c4 features
alone were slightly better than fused features (5.57%
against 6.48% error rate). Feature fusion was particularly
effective for D1, where the error rate was reduced by
one-third over that of c4 features alone (from 11.43% to
8%). The effect on D2 was also significant (a reduction
by 14%, from 5.48% to 4.73% error rate). Even for D4,
where identification accuracies were generally very high,
feature fusion resulted in a significant reduction in error
rate (from 0.86% to 0.34%).

Using global max pooling instead of global average
pooling resulted in reduced identification accuracy,
but otherwise gave similar results with respect to
the relative performances of both individual and
fused feature matrices. Combining features from global
average and global max pooling did not improve the
results; instead, the identification performance was
intermediate between that of each method applied
separately (Supplementary Fig. 1).

Impact of preserving more features. For three out of
four data sets, the best results were not obtained with
fusion of globally pooled features (Fig. 5). For D1–D3,

preserving more features (2×2×F, 4×4×F or 7×7×F)
from the best performing convolutional block yielded
identification results that were competitive with those
from fused, globally pooled features (1×1×F). In the
case of D3, the nonglobal features from c3, c4, and
c5 all outperformed the best result from the previous
experiments, cutting the error rate in half (from 5.57%
to 2.64%). It is also interesting to note that c3 achieved
identification accuracies that were comparable to those
of c4 when more fine-grained feature information was
retained. An explanation for this result could be that
differences between the three sibling species in D3
are due to small details represented by only a few
pixels each, information that could easily be lost in
dimensionality reduction.

Impact of aspect ratio. All results reported above
were obtained with images where the aspect ratio
was maintained, even if it involved introduction of
uninformative pixels to fill out the square input
frame typically used with VGG16. To inspect how this
affects identification performance, we exposed the best
performing models to images where the input frame
had been filled completely even if that distorted the
proportions of the imaged objects. The performance was
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FIGURE 5. Impact of preserving more features during feature extraction on identification accuracy for data sets D1 (a), D2 (b), D3 (c), and
D4 (d). We used input images of size 416×416 in all cases, and we pooled features from each of the last three convolutional blocks (c3–c5) into
matrices of dimension N×N×F, where F is the number of filters of the corresponding convolutional block and N was set to 1 (global average
pooling), 2, 4, 7, 14, or 28. The dashed black line indicates the best performing model from previous experiments (Fig. 4b). For D2 and D4 we
stopped at N = 14 because of the computational cost involved in computing the value for N = 28, and since the accuracy had already dropped
significantly at N = 14. Because of the computational cost, we computed performance of fused feature matrices only up to N = 7 (D1 and D3) or N
= 4 (D2 and D4). On data sets D1, D2, and D3, the optimum identification performance was somewhere between globally pooled and nonpooled
features. For D4, global pooling yielded the best identification performance.
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FIGURE 6. Reduction in error rate throughout our optimization steps,
using input images of size 416×416. The minimum error rates (and
top identification accuracies) for D1–D3 were achieved after applying
nonglobal feature pooling in the last step (red bar). Note the drastic
improvement that came with nonglobal feature pooling in D3, the most
fine-grained data set studied here. The best result for D4 was achieved
already in the penultimate step, by fusing globally pooled features
from c1 to c5.

similar to that in the original experiments, with only
slight changes in accuracy (+0.38%, +0.27%, +0.77%, and
+0.03% for D1–D4, respectively).

Taxonomic Identification

Task 1—Identifying Insects to Higher Groups
Data set D1. Frontal view of the head of Diptera

specimens. The best model achieved 7.35% error rate
when discriminating between the 11 families in D1
(Fig. 9). As expected, families represented by few
specimens were more difficult for the model to identify
correctly than those represented by many exemplars
(Fig. 7). Interestingly, the Pipunculidae were the most
easily identified family, even though they were only
represented by 30 images. The vernacular name of this
family is big-headed flies, referring to the big eyes that
cover nearly the entire head. This highly distinctive

feature makes it particularly easy to identify members of
this family from head images. Among the misclassified
images, the second best guess of the model was correct in
approximately two out of three cases (Fig. 9), indicating
that the model was usually not completely off even in
these cases.

Almost one-third (29%) of D1 images are from genera
represented by only one, two, or three examples. The
model was able to learn from at most two examples from
such a genus, and often none. As one might expect, our
findings showed that the families with a small average
number of exemplars per genus were also the ones that
were most difficult for the model to learn to identify
correctly (see Fig. 8).

Data set D2—Families of Coleoptera. The best
model had an error rate of 3.95% (116/2936) when
discriminating between the 14 beetle families in D2
(Fig. 9). As for D1, the number of examples per
category affected the result significantly (Fig. 7), with
more examples giving higher identification accuracy.
A notable outlier is the family Tenebrionidae, which
had an unexpectedly low identification accuracy (85%)
given the sample size (158 images). Tenebrionidae is
a cosmopolitan and highly diverse family with over
20,000 species. Tenebrionids vary significantly in shape,
color and morphological features, and the family is well
known to contain species that superficially look similar
to typical representatives of other families of Coleoptera.

Another case that stands out is the family
Chrysomelidae (70% accuracy) (Fig. 7). The poor
identification performance for this family was likely
related to the small number of examples (44 images),
and the fact that these examples covered a significant
amount of the morphological diversity in the family
(37,000 species described to date). The Chrysomelidae
examples for which we had at least genus name (40 of
44 images) are scattered over 25 genera, 11 tribes, and
7 subfamilies. Interestingly, one of the subfamilies is
better represented than the others, the Cassidinae (14
examples from 10 genera and 3 tribes); only one of these
images was misclassified by the best model.

A B

FIGURE 7. Effect of sample size on identification accuracy. a) Scatter plot of identification accuracies against sample sizes for all families from
D1 and D2. Note that accuracies varied more across families at small sample sizes. Accuracies were also affected by how well the sample covered
the variation in each family; such effects appear to explain many of the outliers (arrows; see text). b) The effect of the number of images per
species on the performance of the best model on D4. Each point represents the average across ten random subsamples of the original data set.
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FIGURE 8. Effect of sample nature on identification accuracy. Scatter
plot of identification accuracies against the number of example images
per genus for all families from D1 and D2. The more examples there
were on average of each genus in the family, the more likely it was that
the model had seen something similar to the image being classified,
lowering the misclassification rate.

As for D2, the most challenging images were those
belonging to genera likely to have few or no examples
in the training set (Fig. 8). For the majority of the
misclassified images, the second best guess of the model
was correct (Fig. 9).

After we had completed the experiments, we
discovered that seven of the D2 images had been
erroneously classified by the experts submitting them
to iDigBio. This means that the training set we used
was not clean but contained 0.2% noise on average.
Apparently, this did not seem to be a significant
obstacle in developing a model with high identification
performance. When the erroneously labeled images
were in the test set, the best model identified four of them
to the right family. Of the remaining three specimens, one
does not belong to any of the 14 families studied here, and
another one is a poorly preserved specimen for which we
were not able to establish the correct family identification
ourselves with any degree of confidence.

Data set D2A—Tribes of Curculionidae. Applying
the best model for D2 on this task, we reached an
overall identification accuracy of >79%. The tribes with
fewer examples were generally more challenging to
identify correctly. The accuracy dropped to 42% when
no example of the genus was included in the training

set, and increased to more than 90% for genera with >15
examples.

D2B—Genera of Melolonthini. The best model for
D2 was able to separate the two chosen genera of
Melolonthini with an error rate of 2.7%. The misclassified
images were predominantly from species that had not
been seen by the model (5 of 6 misclassified images were
the only exemplar of the species). For species with more
than three example images, the error rate dropped to
1.6%, compared to 3.2% for species represented by only
one example image.

The two genera in D2B are from different subtribes,
and experts can easily distinguish them by looking at
features of the abdomen and the labrum. However, none
of these characters is visible in images of the dorsal
habitus, making the task of identifying the genera from
the D2B images quite challenging even for experts. We
asked one of the leading experts on Melolonthini, Aleš
Bezděk, to identify the images in D2B to genus; his error
rate was 4.1%.

Task 2—Identifying Visually Similar Species
D3—Closely related species of Oxythyrea. The best

model had a misclassification rate of only 2.67%.
Oxythyrea funesta was the most challenging species to
identify, with five misclassified images (5.2% error rate),
followed by O. pantherina with three misclassified images
(1.5% error rate) and O. subcalva with one misclassified
image (2.5% error rate).

Some of the misclassified images are indeed
challenging (Fig. 10). For instance, the left two
misclassified specimens of O. funesta would probably
be identified by most humans as O. pantherina, the
species that our model suggested. Similarly, all three
misclassified specimens of O. pantherina are more similar
to O. funesta, the identification suggested by our model,
than to typical O. pantherina.

D.V., who studied the genus for 8 years, estimates
that he can reliably identify up to 90% of the specimens
of these three species based on dorsal habitus alone.
When challenged with the D3 images, DV was able to
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FIGURE 9. Proportion of correct identifications from the top three suggestions of the model for data set D1 (a), D2 (b), D3 (c), and D4 (d). When
the most probable identification (first suggestion) of the model was erroneous, the second most probable identification was usually correct,
indicating that the model was not too far off.
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FIGURE 10. Examples of misclassified images from D3 (Oxythyrea). Next to the misclassified images of O. funesta (5 images), O. pantherina (3
images), and O. subcalva (1 image) we show typical representatives of the three Oxythyrea species. Note, for instance, that the first two misclassified
specimens of O. funesta are quite similar to typical specimens of O. pantherina, the identification suggested by our model.

FIGURE 11. Examples of misclassified images from D4 (Plecoptera larvae). Note that most misclassified specimens are small or photographed
from angles making them difficult to identify.

identify 95% of the images correctly, but some of those
identifications were aided by the fact that he recognized
the imaged specimens and remembered what species he
had identified them to when he photographed them.

D4—Species of Plecoptera larvae. The original study
reported 5.5% error rate for this data set using a system
based on handcrafted feature extraction (Lowe 2004).
The best of our models had an error rate of only 0.34%.
On four of the nine species it reached 100% accuracy,
including Moselia infuscata, the species with the smallest
number of examples and the highest misclassification
rate in the original study (10.1%).

In the images misclassified by our model (Fig. 11), it
is noticeable that the specimen is often turned toward
the side, unlike the majority of the images where the
specimen is seen from above. Many of the misclassified

specimens are also small, occupying a small portion of
the picture frame. However, even for the misclassified
images, the model mostly (9 of 13 cases) suggested the
correct taxonomic identification with the second highest
probability (Fig. 9).

Larios et al. (2008) trained 26 people, most of whom
had some prior training in entomology, to distinguish
Calineuria californica from Doroneuria baumanni (Fig. 2).
Of the nine species, these are the ones that are most
difficult to separate from each other. Participants were
first trained on 50 random samples from each species,
and then tested on another set of 50 images. The study
reported an error rate of 22%.

These two species were also the ones that were most
often confused by our model: all misclassified images
of C. californica were classified as D. baumanni, and
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vice versa. However, our model misclassified only four
images of C. californica (0.82% error rate) and four images
of D. baumanni (0.75% error rate), even though it was
faced with the harder task of classifying the images into
one of nine species instead of just separating these two
species. The original study reported misclassification
rates of 6.7% and 5.1% for C. californica and D. baumanni,
respectively.

D4 contains multiple images (4–5) of the same
specimen, varying in zoom, pose, and orientation (Lytle
et al. 2010). In the original experiment, we did not keep
these images together. Thus, the test set would typically
contain images of specimens that had already been seen
during training, albeit in a different magnification, and
seen from a different angle and in a different pose. When
all images of the same specimen were kept in the same
fold, such that test images never included specimens that
had been seen before, the accuracy of the best model
remained high (98.62% accuracy and corresponding to
1.38% error rate).

Under these more stringent conditions, the majority of
misclassified images belonged to specimens that differ
markedly from typical representatives of the species.
For instance, one specimen of Isogenoides is much bigger
and darker (probably representing a later larval stage)
than the other specimens; three of the five images
of this specimen were misclassified. One specimen of
Hesperoperla pacifica is pale while others are dark (four
of five images misclassified) and one Zapata specimen
is completely curved and photographed from a lateral
view, which is not the case for the other specimens (five
of five images misclassified). Misclassified C. californica
and D. baumanni have parts occluded, are photographed
from a lateral view, are unusually curved, or are really
small and pale. It is interesting to note that all but eight
of the 774 imaged specimens (1%) had the majority of
their images correctly identified by our model.

Performance on Related Tasks

To examine the generality of our results, we tested the
performance of our approach on five related biological
image identification challenges that have been examined
in recent studies of automated identification systems.
We did not optimize our model for each of these data
sets. Instead, we used settings that performed well across
all of the data sets D1–D4. Specifically, unless noted
otherwise, we used input images of size 416×416, global
average pooling, fusion of c1–c5 features, and signed
square root normalization.

ClearedLeaF. The original study (Wilf et al. 2016)
reported results on various identification tasks involving
this data set, using manual extraction of SIFT descriptors
(see Lowe 2004). We randomly picked one of the tasks,
identifying families with 100+ images each. The original
study reported 72.14 % accuracy on this task; with
our approach, we reached an identification accuracy of
>88%.

CRLeaves. Using fine-tuned Inception v3 (Szegedy
et al. 2016b) pretrained on ImageNet, Rojas et al.
(2017) report 51% accuracy in identifying the 7262
images of CRLeaves to the 255 included plant species.
They also tried fine-tuning on a bigger plant data set
(253,733 images) followed by fine-tuning on target tasks
such as CRLeaves. Although this approach improved
accuracies by 5% on other data sets examined in their
study, it actually lowered the performance on CRLeaves
(49.1% accuracy). Our model achieved an identification
accuracy of >94%.

EcuadorMoths. This data set of 675 geometrid moth
species (2120 images) is extremely challenging because
of the visual similarity of the species and the small
number of images per species. Previous studies have
reported 55.7% accuracy (Rodner et al. 2015) and 57.19%
accuracy (Wei et al. 2017). Both studies were based on
models pretrained on ImageNet (Russakovsky et al.
2015). The first utilized feature extraction by globally
pooling bottleneck features from AlexNet (Krizhevsky
et al. 2012). The second utilized VGG16 (Simonyan
and Zisserman 2014), introducing a novel approach
the authors called selective convolutional descriptor
aggregation (SCDA) for localizing the main object
and removing noise. Wei et al. (2017) show that the
SCDA approach outperforms 11 other CNN methods on
EcuadorMoths. They used a training set of 1445 images,
containing on average only two images per species.
Using the same partitioning into training and test data
set, our model achieved 55.4 % identification accuracy,
slightly worse than both previous studies. However,
features from block c4 alone outperformed the default
settings (58.2%). This is similar to the results we found
for D3, which is also a task with visually similar and
closely related species.

Flavia. The original study used handcrafted feature
extraction and reported 90.3% identification accuracy
(Wu et al. 2007). This was subsequently improved with
other traditional techniques (93.2 %, 97.2 %) (Kulkarni
et al. 2013; Kadir 2014). The performance was recently
pushed even further with deep belief networks (99.37%
accuracy) (Liu and Kan 2016) and by several CNN-based
approaches (97.9 % and 99.65% accuracy; Barré et al.
2014 and Sun et al. 2017, respectively). Our base model
misidentified only one image in Flavia, achieving 99.95%
accuracy.

Pollen23. The original study reported 64 % accuracy
on this task with the best-performing model (Gonçalves
et al. 2016). It was based on combination of handcrafted
features, such as color, shape and texture, and a method
known as “bag of words” (Yang et al. 2007). The
performance was comparable to that of beekeepers,
who were trained for this particular task; they achieved
67% accuracy. Images from this data set are small
(approximately one half of the images having width or
height <224 pixels, the default input size for VGG16,
so we decided to use 160×160 as the size of our
input images. Our model achieved >94% identification
accuracy on this task.
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TABLE 3. Experiments on recently published biological image classification tasks

Data sets Categories Our method Original study Method Reference

ClearedLeaf 19 families 88.7 71 SIFT + SVM (Wilf et al., 2016)
CRLeaves 255 species 94.67 51 finetune InceptionV3 (Carranza-Rojas et al., 2017)
EcuadorMoths 675 species 55.4

(58.2)
55.7
57.19

AlexNet + SVM
VGG16 + SCDA + SVM

(Rodner et al., 2015)
(Wei et al., 2017)

Flavia 32 species 99.95 99.65 ResNet26 (Sun et al., 2017)
Pollen23 23 species 94.8 64 CST + BOW (Gonçalves et al., 2016)

Note: We used input images of size 416×416 (160×160 for Pollen23), global average pooling, fusion of c1–c5 features, and signed square root
normalization. Accuracy is reported using 10-fold cross validation except for EcuadorMoths, where we used the same partitioning as in the
original study. Bold font indicates the best identification performance.

(D1) (D2)

(D3) (D4)

(A) (B)

(C) (D)

FIGURE 12. Visualization of the c4 feature space of data sets D1 (a), D2 (b), D3 (c), and D4 (d) using t-SNE (Maaten and Hinton 2008). The c4
features contain a considerable amount of information that is useful in separating image categories. Note that some categories are more isolated
and easier to identify than others. Note also that it is common for categories to consist of several disjunct sets of images. These disjunct sets are
likely to represent images that differ from each other in features that are irrelevant for identification, such as background color or life stage.

DISCUSSION

CNN Feature Transfer
The ultimate goal of the machine learning community

is to build systems that can perceive and execute
highly complex tasks without prior knowledge and with
minimal if any human intervention (Bengio and LeCun
2007). In recent years, DL and CNNs have contributed
to spectacular advances in this direction in computer
vision. Image classification tasks can now be solved
with a very high degree of accuracy using systems that
support end-to-end learning (LeCun et al. 2015).

In this study, our aim was to explore the extent to
which systematists can build on these breakthroughs in
developing automated taxonomic identification systems.
Clearly, we currently lack both sufficiently large

training sets and enough computational resources to
train state-of-the-art CNNs from scratch on taxonomic
identification tasks. Therefore, some form of transfer
learning is needed, and feature transfer has recently
emerged as the method of choice.

Perhaps, the most important reason for this is that
feature transfer is more computationally efficient than
fine-tuning. In fine-tuning, the images have to be
run through the CNN in a forward pass, and then
the computed derivatives from the predictions have
to be backpropagated to modify the CNN, which is
computationally expensive. Even worse, this process
of alternating forward and backward passes has to be
repeated until our model converges, which only happens
if we have chosen the right parameters. Choosing the
right parameters is not trivial; it requires machine
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learning knowledge. In feature extraction, the image
is only passed forward through the pretrained CNN
once; no backpropagation or fine-tuning of the model
is needed. The only parameter tuning that is needed
in feature extraction is the adaptation of the classifier,
which is fast because the classifier focuses entirely on
the smaller training set for the target task.

Feature transfer is known to outperform hand-
engineered features on some tasks (Donahue et al. 2014)
and fine-tuning often further helps the performance
(Li and Hoiem 2016). However, when fine-tuning on
small or on unbalanced data set, overfitting is a serious
concern. This is usually tackled with aggressive data
augmentation, which may include geometric (cropping,
flipping, rotating, shifting, and distorting) or color
(shading, shifting color channels, or changing the
brightness) transformations. Both the original images
and their duplicates (D instances) are then used in
training the network, increasing the size of the training
set from N to N(D+1) images. This further increases the
computational cost of fine-tuning.

For these reasons, the combination of a pretrained
CNN, usually VGG16, for feature extraction and linear
SVMs for classification is a common choice in recent
computer vision studies (Donahue et al. 2014; Razavian
et al. 2014; Azizpour et al. 2016; Zheng et al. 2016).
Nevertheless, our results show that there is still room
for improvement. Specifically, by experimenting with
the feature extraction strategy, our results show that
the identification accuracy can be improved significantly
compared to the basic off-the-shelf approach that
involves global max pooling of bottleneck features from
input images of size 224×224 (Figs. 4–6).

Our finding that global average pooling performs
better than global max pooling (Fig. 4a) is congruent with
the results of a recent study applying feature transfer
to fine-grained classification tasks (Zheng et al. 2016).
A possible explanation for the better performance of
average pooling is that the objects in our images tend
to be big and occupy a large part of the picture frame.
Thus, features from all parts of the image contribute to
identification, which they can do through the average but
not the max value. This explanation is consistent with
the observation that the difference between average and
max pooling was smaller for D4, containing a number of
images of smaller objects (Fig. 4a).

Our results suggest that there may be an advantage
of using intermediate-level features compared to
bottleneck features or features from the final layers.
These findings contrast with those from generic
classification tasks, such as Caltech-101 (Fei-Fei et al.
2006), Caltech-256 (Griffin et al. 2007), and PASCAL
VOC07 (Everingham et al. 2010), where the first fully
connected layer has been found to be the most
discriminative layer. It also differs from the results of
previous studies of fine-grained identification tasks,
such as Bird-200-2011 (Wah et al. 2011) and Flower-102
(Nilsback and Zisserman 2008), where it has been found
that c5 is the most discriminative layer (Zheng et al. 2016).

One possible explanation for these differences is that
our data sets are more fine-grained than any of the data
sets examined in these studies. However, the results we
obtained on other recently published data sets suggest
that fusion of intermediate-level features will perform
well on a broad range of biological image classification
tasks.

Our results also indicate that preserving more features
than the standard off-the-shelf approach may give
better identification performance (Fig. 4b). Preserving
more features increases the computational cost, but
this may be a price worth paying when working with
challenging fine-grained classification tasks, or when
the identification accuracy is more important than
the computational cost of training the classifier. The
advantage of preserving more features is most evident
on D3, which is the most fine-grained of all the data sets
studied here (Fig. 6).

Recent research has shown that CNNs trained from
scratch on the large ImageNet data set perform well
despite the presence of small amounts of noise (0.3 %)
(Russakovsky et al. 2015). Our results for D2 (0.2% noise)
indicate that also feature transfer from pretrained CNNs
is robust to a similar level of noise in the training set for
the target task. This facilitates practical use of methods
based on CNN feature transfer, as it can be exceedingly
difficult to completely eliminate mislabeled data from
training sets even when identifications are provided by
experts.

It is somewhat surprising that the optimal feature
extraction strategy turned out to be so similar across
all tasks and data sets (D1–D4) examined in detail
here, despite the fact that they are so varied. It is true
that D1–D3 share several important features: the object
comprises a major part of the image and the images
are standardized with respect to viewing angle and
orientation of the specimen. However, these features are
not shared by D4. The tasks are also different in that D1–
D2 involve the recognition of variable higher taxa, while
D3–D4 involve the identification of more homogeneous
categories with fine-grained differences among them.

The only striking features that are shared across all
problems examined here are the small training sets,
the clean images (few distracting objects), and the
high labeling (and expected identification) accuracy.
Thus, it might be possible to find a single feature
extraction protocol that would perform well across a
broad class of biological identification problems with
similar properties. This prediction is supported by the
results from applying a standard feature extraction
protocol inspired by our results for D1–D4 on a
range of recently studied biological image classification
problems (Table 3). Without task-specific optimization,
our approach managed to beat the state-of-the-art
identification accuracy for almost all data sets, often with
a substantial margin.

Undoubtedly, further work can help improve the
performance of the method described here. For
instance, preprocessing images by implementing
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object segmentation (separation of objects from
the background) has been shown to improve the
performance of image classification in general
(Rabinovich et al. 2007), and it seems likely it will
also help improve our CNN feature extraction protocol.
Other interesting techniques that have emerged recently,
and that should be tried in the CNN feature extraction
framework, include: assembling multiple architectures
as in bilinear CNNs (Lin et al. 2015); using multiple
images as inputs as in Siamese CNNs (Zbonar and
LeCun 2016); and identifying informative image parts
with HSnet search prior to feeding them into the CNN
(Lam et al. 2017).

It may also be possible to improve identification
performance by rethinking taxonomic tasks. For
instance, preliminary experiments that we performed
indicate that identification performance can be increased
by subdividing the categories of interest before training
the system. In taxonomic identification, appropriate
subdivisions might include sex (male or female), life
stage, or color morph. For instance, assume that we are
trying to separate two closely related species, A and
B, in a group with distinct sex dimorphism. Then it
might be a good idea to train the system on separating
males from females at the same time as it is trained
to separate the species, as this will help the system in
finding the sex-specific species differences between A
and B. Another idea is to combine images representing
different viewing angles of the same specimen in the
training set. For instance, the system might be trained
on separating combined images showing both the dorsal
and ventral side of the same specimen.

Taxonomic Identification
Taxonomic identification tasks differ in several ways

from more typical image classification problems. For
instance, it is common that taxonomic image sets use
a standard view, that specimens are oriented in the same
way and occupy a large part of the frame, and that there
are few disturbing foreign elements in the images. These
are all features that should make it easier for machine
learning algorithms to learn the classification task, since
they reduce the variation within image categories. If
images are more heterogeneous, like our data set D4,
one expects more training data to be needed for the
same level of identification accuracy. Interestingly, our
results suggest that the extra difficulties introduced by
more heterogeneous images are not as dramatic as one
might think. Using roughly 400 images per category, we
actually achieved better identification accuracies for the
heterogeneous D4 than we did with the less challenging
D1–D3 using 100–200 images per category.

Taxonomic identification tasks differ widely in the
morphological variation one expects within categories,
and the degree to which it is possible to cover that
variation in the training set. It is perhaps not surprising
that the task of identifying higher taxonomic groups is
more challenging than the separation of species, even

if the species are very similar to each other. Our data
sets used for the identification of higher groups (D1–
D2) are particularly challenging because a large fraction
of the images (all in D1) belong to unique species.
Thus, the model needs to be able to place specimens
in the correct higher group even though it has not
seen the species before, and possibly not the genus it
belongs to either. This requires the model to achieve a
good understanding of the diagnostic features of the
higher taxonomic groups. In view of these challenges,
the accuracies we report here on the higher-group
identification tasks (>92% for D1 and >96% for D2)
are quite impressive, especially given the small number
of images per category in the training set. It requires a
decent amount of training for a human to reach the same
levels of identification accuracy. Given larger training
sets, it seems likely that the automated systems would be
able to compete successfully with experts on these tasks.

On the fine-grained tasks (D3–D4, D2B), our system
clearly reaches or exceeds expert-level accuracies even
with the small to modest training sets used here. On
D3, the best taxonomists in the world could beat the
automated system, but only if they had access to images
of the ventral side of the specimens and locality of
collecting. For a fair comparison, however, one would
then also have to make ventral-view images available in
the training set used for the automated system, which
might tip the race again in the favor of machines.

On task D2B (separating two genera of Scarabaeidae),
our automated system outperformed the expert
we consulted, and on D4 it achieved significantly
higher identification accuracies in separating the most
challenging species pair than reported previously for
26 entomologists trained on the task (Larios et al. 2008)
(>98% vs. 78%). The human identification accuracies
reported by Larios et al. may seem low, but previous
studies have shown that humans are prone to make
errors, regardless of whether they are experts or
nonexperts (MacLeod et al. 2010; Culverhouse 2014;
Austen et al. 2016 and references cited therein). The
errors can be due to a variety of reasons: fatigue,
boredom, monotony, imperfect short-term memory, etc.
(Culverhouse 2007).

In many ways, our results demonstrate wide-ranging
similarities between humans and machines in learning
and performing taxonomic identification tasks. For
instance, the amount of training is clearly important
in improving machine performance (Fig. 7). Machine
identification accuracies are significantly lower for
groups that have not been seen much previously, and
for entirely novel taxa (Fig. 8). Taxa that are unusually
variable, such as the Tenebrionidae, are difficult to learn,
while uniform groups that have striking diagnostic
features, such as Pipunculidae, will be picked up quickly
(Fig. 7).

It is also easy to recognize human-like patterns in
the erroneous machine identifications. For instance, the
D4 specimens that are misclassified by the automated
system are unusually small, occluded, or imaged
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from a difficult angle (Fig. 11). These are specimens
that humans would also have difficulties identifying
correctly. Similarly, the errors in machine identification
of Oxythyrea species are similar to the errors one might
expect humans to make (Fig. 10).

Our results clearly demonstrate that modern machine
learning algorithms are powerful enough to address
even the most challenging taxonomic identification
tasks. For instance, it appears worthwhile to test whether
the method described here would also be able to
identify cryptic species that are extremely challenging
or impossible for human taxonomists to separate, such
as bumblebee species of the lucorum complex (Scriven
et al. 2015). In addressing such tasks, however, several
problems might occur due to the difficulties of image
annotation and the model’s “hunger for examples.” For
instance, humans might not be able to provide accurate
identifications without preparation of the genitalia
or extraction of DNA for sequencing. Thus, accurate
identification of the specimens may leave them in a
condition making them unsuited for imaging, so unless
they were imaged prior to identification, the specimens
cannot be included in training sets.

An interesting aspect of taxonomic identification
is that it falls into two distinct subdisciplines: field
identification and identification of museum specimens.
Even though the two are clearly separated, it is also
obvious that knowledge developed in one domain will
be useful in the other. Transferring knowledge between
such related applications is known as domain adaptation
in computer vision (Csurka 2017). This is a very active
research topic, and although current techniques are less
mature than the image classification algorithms used in
this article, we might expect significant progress in the
near future. It seems likely that citizen-science projects
like iNaturalist and e-Bird will be able to generate large
training sets of field photos of animals and plants in
the near future, allowing the development of powerful
automated systems for field identification. Efficient
domain adaptation should make it possible to extract
the machine knowledge about organism identification
accumulated in such projects and use it in developing
better systems for taxonomic identification of museum
specimens. It may also be useful in many cases to transfer
machine knowledge in the other direction.

CONCLUSION

In conclusion, our results show that effective
feature extraction from pretrained CNNs provides
a convenient and efficient method for developing
fully automated taxonomic identification systems. The
general effectiveness of our approach on a wide range
of challenging identification tasks suggests that the
method can be applied with success even without task-
specific optimizations. The method is robust to noise in
the training set and yields good performance already
with small numbers of images per category. Using the
provided code, it should be easy to apply the method to

new identification tasks with only some basic skills in
python scripting.

With the advent of DL and efficient feature transfer
from pretrained CNNs, the field of automated taxonomic
identification has entered a completely new and exciting
phase. Clearly, routine tasks of sorting and identifying
biological specimens could be replaced already today
in many situations by systems based on existing CNN
technology. Actually, it may be time now to look
beyond the obvious application of CNNs to routine
identification, and start thinking about completely new
ways in which CNNs could help boost systematics
research.

One interesting application may be online discovery
of new taxa as more and more of the world’s natural
history collections get imaged and published on the web.
Although detection of images representing potential
new categories remains a challenging problem in
computer vision, one can imagine a future in which a
taxonomist would be alerted by an automated system
when images of specimens that potentially represent
new species of her group become available.

Using the high-level semantics of CNNs to generate
natural-language descriptions of image features is
another active research field in computer vision
(Donahue et al. 2015; Karpathy and Fei-Fei 2015; Xu et al.
2015) that may have a dramatic impact on systematics.
In theory, such systems could completely automate
the generation of natural-language descriptions of new
species.

The CNN-based automated identification systems
clearly develop a powerful high-level understanding
of the tasks with which they are challenged. If that
understanding of taxonomic identification tasks could
be communicated effectively to biologists, it could
replace traditional identification keys. Perhaps the best
way to do this would be through visualizations of
morphospace that are optimized for identification. In
other words, morphospace as it is organized by a
CNN trained on a relevant identification task. It is not
difficult to imagine ways in which such approaches
might generate identification tools that would be highly
efficient and very appealing to humans.

One could also imagine CNN-based systems for
automating morphological phylogenetic analysis.
Throughout the history of evolutionary biology,
comparative anatomists and paleontologists have
demonstrated that it is possible for the human brain
to reconstruct phylogenies by intuitively evaluating
a large body of morphological facts. In many cases,
these morphology-based hypotheses have withstood
the test of time even though they were challenged by
many of the early molecular phylogenetic analyses. If
it is possible for humans, it should also be possible for
CNNs to learn how to infer phylogeny from morphology
documented in images.

It is important for systematists to encourage and
accelerate the collection and publishing of accurately
labeled digital image sets, as the shortage of suitable
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training data is one of the major hurdles today
for the development of computer-assisted taxonomic
identification. The large museum digitization efforts that
are under way in several countries will clearly benefit the
development of automated identification systems, but
more such projects are needed. The new identification
systems, in turn, will help to significantly increase the
impact of these imaging projects by using them to
generate novel discoveries in taxonomy and systematics.

Clearly, morphology-based taxonomy and systematics
are facing a period of transformative changes. By taking
advantage of the new opportunities that are opening up
thanks to developments in computer vision, systematists
and taxonomists could accelerate the discovery of the
planet’s biological diversity, free up more time to
sophisticated research tasks, and facilitate the study of
classical evolutionary problems, such as the evolution of
morphological characters and the dating of divergence
times using fossils.
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Mikšić R. 1982. Monographie der Cetoniinae der Paläarktischen
und Orientalischen Region (Coleoptera, Lamellicornia). Band 3.
Forstinstitut in Sarajevo. 530 pp.

Murray N., Perronnin F. 2014. Generalized max pooling. Available
from: arXiv:1406.0312.

Nilsback M.E., Zisserman A. 2008. Automated flower classification
over a large number of classes. 2008 Sixth Indian Conference on
Computer Vision, Graphics Image Processing. Bhubaneswar, India:
IEEE. p. 722–729.

ONeill M.A. 2007. DAISY: a practical tool for semi-automated species
identification. Automated taxon identification in systematics:
theory, approaches, and applications. Boca Raton, FL: CRC
Press/Taylor & Francis Group. p. 101–114.

Oquab M., Bottou L., Laptev I., Sivic J. 2014. Learning and
transferring mid-level image representations using convolutional
neural networks. Proceedings of the IEEE conference on computer
vision and pattern recognition. Columbus: IEEE. p. 17171724.

http://www.fao.org/emergencies/emergency-types/plant-pests-and-diseases/en/
http://www.fao.org/emergencies/emergency-types/plant-pests-and-diseases/en/
http://www.iucngisd.org/gisd/100_worst.php
http://www.iucngisd.org/gisd/100_worst.php


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[17:17 23/9/2019 Sysbio-OP-SYSB190016.tex] Page: 895 876–895

2019 VALAN ET AL.—AUTOMATED TAXONOMIC IDENTIFICATION OF INSECTS 895

Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel
O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas
J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay É.
2011. Scikit-learn: machine learning in python. J. Mach. Learn. Res.
12:2825–2830.

Plotly Technologies, I. 2015. Collaborative data science. Montral, QC:
Plotly Technologies Inc.

Qian Q., Jin R., Zhu S., Lin Y. 2014. Fine-Grained visual categorization
via multi-stage metric learning. Available from: arXiv:1402.0453.

Rabinovich A., Vedaldi A., Belongie S.J. 2007. Does image segmentation
improve object categorization? San Diego: UCSD CSE Department.
Tech. Rep. CS2007-090. p. 1–9

Razavian A. S., Azizpour H., Sullivan J., Carlsson, S. 2014. CNN features
off-the-shelf: an astounding baseline for recognition. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition
Workshops. Columbus: IEEE. p. 806–813.

Rodner E., Simon M., Brehm G., Pietsch S., Wägele J.W., Denzler J.
2015. Fine-grained recognition datasets for biodiversity analysis.
Available from: arXiv:1507.00913.

Russakovsky O., Deng J., Su H., Krause J., Satheesh S., Ma S., Huang
Z., Karpathy A., Khosla A., Bernstein M., Berg A.C., Fei-Fei L. 2015.
ImageNet large scale visual recognition challenge. Int. J. Comput.
Vis. 115:211–252.

Sabatinelli G. 1981. Le Oxythyrea Muls. del Mediterraneo: studi
morfologici sistematici (Coleoptera, Scarabaeoidae). Fragm.
Entomol. 16:45–60.

Schröder S., Drescher W., Steinhage V., Kastenholz B. 1995.
An automated method for the identification of bee species
(Hymenoptera: Apoidea). Proc. Intern. Symp. on Conserving
Europe’s Bees. London (UK): Int. Bee Research Ass. & Linnean
Society, London. p. 6–7.

Scriven J.J., Woodall L.C., Tinsley M.C., Knight M.E., Williams P.H.,
Carolan J.C., Brown M.J.F., Goulson D. 2015. Revealing the hidden
niches of cryptic bumblebees in Great Britain: implications for
conservation. Biol. Conserv. 182:126–133.

Simonyan K., Zisserman, A. 2014. Very deep convolutional networks
for large-scale image recognition. Available from: arXiv:1409.1556.

Schmidhuber J. 2015. Deep learning in neural networks: an overview.
Neural Netw. 61:85–117.

Steinhage V., Schröder S., Cremers A.B., Lampe K.-H. 2007.
Automated extraction and analysis of morphological features for
species identification. In: MacLeod N, editor. Automated taxon
identification in systematics: theory, approaches and applications.
Boca Raton, Florida: CRC Press. p. 115–129.

Stallkamp J., Schlipsing M., Salmen J., Igel C. 2011. The German
Traffic Sign Recognition Benchmark: a multi-class classification
competition. The 2011 International Joint Conference on Neural
Networks. San Jose: IEEE. p. 1453–1460.

Sun Y., Liu Y., Wang G., Zhang H. 2017. Deep learning for plant
identification in natural environment. Comput. Intell. Neurosci.
2017:7361042.

Szegedy C., Ioffe S., Vanhoucke V., Alemi A. 2016a. Inception-
v4, Inception-ResNet and the impact of residual connections on
learning. Available from: arXiv:1602.07261.

Szegedy C., Vanhoucke V., Ioffe S., Shlens J., Wojna Z. 2016b. Rethinking
the inception architecture for computer vision. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. Las
Vegas: IEEE. p. 2818–2826.

Tofilski A. 2004. DrawWing, a program for numerical description of
insect wings. J. Insect Sci. 4:17.

Tofilski A. 2007. Automatic measurement of honeybee wings. In:
MacLeod N, editor. Automated taxon identification in systematics:
theory, approaches and applications. Boca Raton, Florida: CRC
Press. p. 277–288.

Van Horn G., Branson S., Farrell R., Haber S., Barry J., Ipeirotis P.,
Perona P., Belongie S. 2015. Building a bird recognition App and
large scale dataset with citizen scientists: the fine print in fine-
grained dataset collection. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Boston: IEEE. p. 595–
604.

Vapnik V.N. 1999. An overview of statistical learning theory. IEEE
Trans. Neural Netw. 10:988–999.

Vapnik V., Chapelle O. 2000. Bounds on error expectation for support
vector machines. Neural Comput. 12:20132036.
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