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Indole-3-propionic acid inhibits gut dysbiosis and
endotoxin leakage to attenuate steatohepatitis in
rats
Ze-Hua Zhao1, Feng-Zhi Xin1, Yaqian Xue2, Zhimin Hu2, Yamei Han2, Fengguang Ma2, Da Zhou3, Xiao-Lin Liu4,
Aoyuan Cui2, Zhengshuai Liu2, Yuxiao Liu2, Jing Gao2, Qin Pan1, Yu Li2 and Jian-Gao Fan1,5

Abstract
Microbial metabolites have emerged as critical components that mediate the metabolic effects of the gut microbiota.
Here, we show that indole-3-propionic acid (IPA), a tryptophan metabolite produced by gut bacteria, is a potent anti-
non-alcoholic steatohepatitis (NASH) microbial metabolite. Here, we demonstrate that administration of IPA modulates
the microbiota composition in the gut and inhibits microbial dysbiosis in rats fed a high-fat diet. IPA induces the
expression of tight junction proteins, such as ZO-1 and Occludin, and maintains intestinal epithelium homeostasis,
leading to a reduction in plasma endotoxin levels. Interestingly, IPA inhibits NF-κB signaling and reduces the levels of
proinflammatory cytokines, such as TNFα, IL-1β, and IL-6, in response to endotoxin in macrophages to repress hepatic
inflammation and liver injury. Moreover, IPA is sufficient to inhibit the expression of fibrogenic and collagen genes and
attenuate diet-induced NASH phenotypes. The beneficial effects of IPA on the liver are likely mediated through
inhibiting the production of endotoxin in the gut. These findings suggest a protective role of IPA in the control of
metabolism and uncover the gut microbiome and liver cross-talk in regulating the intestinal microenvironment and
liver pathology via a novel dietary nutrient metabolite. IPA may provide a new therapeutic strategy for treating NASH.

Introduction
The human gut harbors trillions of microorganisms,

most of which are commensal bacteria, collectively
termed the gut microbiota. The gut microbiota is of vital
importance in human health and is involved in multiple
physiological processes, including development, immune
response, and metabolism. Disruption of gut microbiota
homeostasis is closely related to the pathogenesis of sev-
eral diseases, such as autism spectrum disorder1,

inflammatory bowel disease2, and obesity3. The influence
of the gut microbiota on the host is extensive, yet the
mechanism is not fully illuminated. A majority of the
effects are believed to be mediated by the metabolites
produced by the commensal bacteria utilizing dietary
nutrients as precursors. These metabolites are bioactive
and have multiple functions. Among them, short-chain
fatty acids, which are derived from dietary nondigestible
fibers, have been demonstrated to take part in regulating
immune reactions4 and the metabolic state5. Another
microbial metabolite, trimethylamine N-oxide (TMAO),
promotes cardiovascular disease6.
The gut flora can also metabolize dietary tryptophan

into indole and its derivatives, such as indole-3-acetic acid
(IAA), indoleacrylic acid (IA), indole-3-aldehyde (I3A),
and indole-3-propionic acid (IPA). Indole and I3A have
been shown to play an important role in maintaining
intestinal mucosal homeostasis7,8. Likewise, IPA,
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synthesized by the commensal Clostridium sporogenes9, is
capable of regulating gastrointestinal barrier function via
the xenobiotic sensor pregnane X receptor (PXR) and toll-
like receptor 4 (TLR4)10. Recently, two epidemiologic
studies have linked IPA to metabolic disorders. It has
been shown that serum IPA levels are negatively corre-
lated with the risk of type 2 diabetes (T2D) and low-grade
inflammation, which implies that IPA is a protective fac-
tor in T2D11,12. However, the role of IPA in metabolic
diseases and extraintestinal targets remain to be
identified.
Over the past two decades, non-alcoholic fatty liver

disease (NAFLD) has emerged as a major public health
problem worldwide. It has been estimated that approxi-
mately 25% of the world’s population is affected by
NAFLD13 and that the prevalence will continue to
increase14. NAFLD is considered to be a hepatic mani-
festation of metabolic syndrome and is closely related to
insulin resistance and genetic predisposition. The spec-
trum of NAFLD consists of non-alcoholic fatty liver
(NAFL), non-alcoholic steatohepatitis (NASH), NASH-
related cirrhosis, and hepatocellular carcinoma. NASH is a
subtype that can progress to life-threatening situations,
such as cirrhosis and hepatocellular carcinoma. Moreover,
there is no approved drug regimen to treat NASH for
now15. Therefore, exploring potential therapeutic strate-
gies for NASH is of great importance and urgently needed.
In this study, we investigated the role of IPA in a rat

model of high-fat diet (HFD)-induced steatohepatitis.
These in vivo and in vitro studies demonstrate that (1)
IPA improves gut dysbiosis and protects against intestinal
epithelial barrier damage; (2) endotoxin leakage is
reduced in rats in response to IPA treatment; (3) the liver
is a target of IPA actions to improve NASH; and (4)
endotoxin inhibition in the gut may mediate the beneficial
effects of IPA on improving liver function.

Materials and methods
Animal model and diets
Male Sprague-Dawley rats at 6 weeks of age were pur-

chased from Shanghai Laboratory Animal Co., Ltd.
(Shanghai, China). Rats were fed a standard chow diet or
an HFD16,17 (fat 33 kcal%, carbohydrates 50 kcal%, protein
17 kcal%, and cholesterol 2%; TrophicDiet, Nantong,
China) for 8 weeks. Then, the rats fed an HFD were
randomly divided into two groups and treated with IPA
(20 mg/kg/day) or vehicle by gavage once daily for
8 weeks. The IPA solution was prepared as previously
described18. All rats were housed under a 12:12 h light/
dark cycle at a controlled temperature. All animal
experiment protocols were approved by the Institutional
Animal Care and Use Committee of Xinhua hospital
affiliated to Shanghai Jiao Tong University School of
Medicine (approval No. XHEC-C-2017-220).

Gut microbiota analysis
Fecal samples were collected immediately upon defe-

cation and stored at −80 °C. Fecal DNA was extracted
from fecal samples using a TIANamp Stool DNA Kit
(Tiangen, Beijing, China) according to the manufacturer’s
protocols. The quality and quantity of DNA was verified
with a NanoDrop (Thermo Fisher Scientific, Wilmington,
Delaware, USA) and an agarose gel. Extracted DNA was
diluted to a concentration of 1 ng/μL and stored at −20 °C
until further processing. The V4–V5 region of the bac-
terial 16S ribosomal RNA gene was amplified by PCR.
Amplicons were extracted from 2% agarose gels and
purified using an AxyPrep DNA Gel Extraction Kit
(Axygen Biosciences, Union City, CA, USA) according to
the manufacturer’s instructions and quantified using
QuantiFluor™-ST (Promega, Wisconsin, USA). Purified
amplicons were pooled at equimolar concentrations and
sequenced on an Illumina MiSeq platform (Illumina, San
Diego, CA, USA) according to the standard protocols.
Raw sequencing data were in FASTQ format. Paired-end
reads were then preprocessed using Trimmomatic soft-
ware19 to detect and trim ambiguous bases. After trim-
ming, paired-end reads were assembled using FLASH
software20. Clean reads were subjected to primer
sequence removal and clustering to generate operational
taxonomic units (OTUs) using Vsearch software with 97%
similarity cutoff21. All representative reads were anno-
tated and blasted against the Silva database using RDP
classifier (confidence threshold was 70%).

Serum IPA quantification
Serum levels of IPA were quantified using the UPLC-

MS/MS method as previously described9,10. Briefly, 20 μL
of a serum sample was separated using a column (Agilent
Zorbax 300SB-C18). Eluent A was 0.1% (vol/vol) formic
acid in water; eluent B was 0.1% (vol/vol) formic acid in
acetonitrile (Sigma-Aldrich, St. Louis, MO). The flow rate
was 200 μL/min. Then, IPA was quantified using Tandem
mass spectrometry. The source parameters in the positive
ion mode were as follows: capillary voltage 3500 V, frag-
mentor voltage 150 V, and skimmer voltage 65 V. A
standard curve was made by running IPA standards at
concentrations of 0.625, 1.25, 2.5, 5, and 10 μg/mL.

Hematoxylin and eosin and immunohistochemistry
staining
Livers and ilea were fixed in 10% phosphate-buffered

formalin acetate at 4 °C overnight and embedded in par-
affin wax. Paraffin section (5 μm) were cut and mounted
on glass slides for hematoxylin and eosin (H&E) staining
as previously described22. Immunohistochemistry of liver
and ileum sections was performed as previously descri-
bed23,24. Liver sections were incubated with antibodies
against myeloperoxidase (MPO) (1:100; Abcam,
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Cambridge, UK) and F4/80 (1:100; Abcam, Cambridge,
UK), and ileum sections were incubated with antibodies
against zonula occludens 1 (ZO-1) (1:100; Abcam, Cam-
bridge, UK) and Occludin (1:100; Abcam, Cambridge,
UK). Livers embedded in optimum cutting temperature
compound (Laborimpex, Brussels, Belgium) were used for
oil red O staining for assessment of hepatic steatosis. The
procedure was performed as previously described22.

Sirius Red staining and Masson staining
Livers were fixed in 10% phosphate-buffered formalin

acetate at 4 °C overnight and embedded in paraffin wax.
Paraffin section (5 μm) were cut and mounted on glass
slides. Sirius Red staining and Masson staining were
performed according to the standard methods in routine
pathology. The amount of collagen deposition was
quantified by measuring the proportion of Sirius Red-
stained and Masson-stained areas, respectively, using
color thresholding and measurement of area fraction with
ImageJ (National Institutes of Health, Bethesda, MD).

Histological evaluation
Histological alterations were evaluated based on the

SAF score system25. Briefly, steatosis was scored from 0 to
3 based on the quantities of large- or medium-sized lipid
droplets (0: <5%; 1: 5–33%; 2: 33–66%; 3: >66%). Lobular
inflammation was scored from 0 to 2 based on foci of
inflammatory cells (0: none; 1: ≤2 foci per 20×; 2: >2 foci
per 20×). Ballooning was scored from 0 to 2 (0: normal
hepatocytes; 1: presence of clusters of hepatocytes with a
rounded shape and pale cytoplasm, usually reticulated; 2:
same as 1 with some enlarged hepatocytes, at least two-
fold the size of normal cells). Fibrosis was scored from 0
to 4 (0: none; 1: perisinusoidal or periportal/portal fibro-
sis; 2: perisinusoidal and periportal/portal fibrosis; 3:
bridging fibrosis; 4: cirrhosis).

Reagents and antibodies
Indole-3-propionic acid (cat. 220027) and lipopoly-

saccharide (cat. L2880) were purchased from Sigma-
Aldrich (St. Louis, MO). Antibodies against phospho-p65
(cat. 3033), p65 (cat. 8242), phospho-IκBα (cat. 2859),
IκBα (cat. 9242), phospho-IKKα/β (cat. 2697), and IKKβ
(cat. 8943) were obtained from Cell Signaling Technology
(Beverly, MA). Antibodies against ZO-1 (cat. sc-33725),
Occludin (cat. sc-133256), and β-actin (cat. sc-69879) and
horseradish peroxidase-conjugated anti-mouse, anti-rat,
anti-rabbit, and anti-goat secondary antibodies were
obtained from Santa Cruz Biotechnology (Santa
Cruz, CA).

Cell treatment
Mouse J774A.1 cells were purchased from the Cell Bank

of the Chinese Academy of Sciences (Shanghai, China)

and cultured in a humidified incubator at 37 °C and 5%
CO2. The culture medium was high-glucose DMEM
supplemented with 10% heat-inactivated fetal bovine
serum, penicillin (200 U/mL), and streptomycin (200 μg/
mL). Cells were pretreated with different concentrations
of IPA for 1 h, followed by 500 ng/mL lipopolysaccharide
treatment for an additional 30 min.

Immunoblots
Immunoblotting analysis was carried out as described

previously26–28. In brief, rat liver tissues or cultured cells
were homogenized and lysed at 4 °C in lysis buffer
(50 mM Tris-HCl, pH 8.0, 1% (v/v) Nonidet P-40,
150mM NaCl, 5 mM EDTA, 1 mM EGTA, 1 mM sodium
orthovanadate, 10 mM sodium fluoride, 1 mM phe-
nylmethylsulfonyl fluoride, 2 μg/mL aprotinin, 5 μg/mL
leupeptin, and 1 μg/mL pepstatin). Cell lysates were cen-
trifuged at 14,000 r.p.m. for 10min at 4 °C, and the
resulting supernatant was used for immunoblotting ana-
lysis. Protein concentrations in cell lysates were measured
using Bio-Rad Protein Assay Dye Reagent. For immuno-
blotting, 20–50 μg of protein was separated by 8–10%
sodium dodecyl sulfate-polyacrylamide gel electrophor-
esis (SDS-PAGE) and then electrophoretically transferred
to a polyvinylidene difluoride membrane in a transfer
buffer consisting of 25 mM Tris base, 190mM glycine,
and 20% methanol. The membranes were blocked with
5% nonfat milk in Tris-buffered saline with 0.1% Tween
20 (TBST) and incubated with specific antibodies, fol-
lowed by incubation with horseradish peroxidase-
conjugated secondary antibodies. Immunoblots were
visualized by a LumiGLO chemiluminescence detection
kit (Cell Signaling Technology). The intensity of bands
was quantified using ImageJ (National Institutes of
Health, Bethesda, MD).

RNA isolation and quantitative RT-PCR analysis
Liver tissues were homogenized in TRIzol reagent (Life

Technologies, Carlsbad, CA, USA), and total RNAs were
reverse transcribed to cDNA using SuperScript II reverse
transcriptase (Life Technologies, Carlsbad, CA, USA) and
Oligo d(T). The resulting cDNA was subjected to real-
time PCR with gene-specific primers in the presence of
SYBR Green PCR Master Mix (Applied Biosystems) using
the StepOnePlus Real-Time PCR System (Applied Bio-
systems), as described previously22. The following quan-
titative RT-PCR primer sequences were used: TGTGTC
CGTCGTGGATCTGA (forward) and CCTGCTTCACC
ACCTTCTTGAT (reverse) for mouse GAPDH; CGTCA
GCCGATTTGCTATCT (forward) and CGGACTCCGC
AAAGTCTAAG (reverse) for mouse TNFα; TTCGTGA
ATGAGCAGACAGC (forward) and GGTTTCTTGTGA
CCCTGAGC (reverse) for mouse IL-1β; AGTTGCCTTC
TTGGGACTGA (forward) and TCCACGATTTCCCAG
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AGAAC (reverse) for mouse IL-6; GGGCAGCCCAGAA
CATCAT (forward) and CCAGTGAGCTTCCCGTTC
AG (reverse) for rat GAPDH; TGCCTCAGCCTCTTC
TCATT (forward) and GAGCCCATTTGGGAACTTCT
(reverse) for rat TNFα; GAAGTCAAGACCAAAGTGG
(forward) and TGAAGTCAACTATGTCCCG (reverse)
for rat IL-1β; AGTTGCCTTCTTGGGACTGA (forward)
and CCTCCGACTTGTGAAGTGGT (reverse) for rat IL-
6; AGCCAACTCTCACTGAAGC (forward) and GTGAA
TGAGTAGCAGCAGGT (reverse) for rat CCL2; CACC
GTATGACTATGATGATG (forward) and CAGGAGA
GCAGGTCAGAGAT (reverse) for rat CCR2; ATTCCTG
GCGTTACCTTGG (forward) and AGCCCTGTATTCC
GTCTCCT (reverse) for rat TGFβ; TGTGCTATGTCGC
TCTGGAC (forward) and CCAATGAAAGATGGCTG
GAA (reverse) for rat αSMA; GGCAGGGCCAACCACT
GTGC (forward) and CAGTGCACTTGCCTGGATGG
(reverse) for rat CTGF; TGTTCAGCTTTGTGGACCT
(forward) and CAGCTGACTTCAGGGATGT (reverse)
for rat Col1α1; ACCTCAGGGTGTTCAAGGTG (for-
ward) and CGGATTCCAATAGGACCAGA (reverse) for
rat Col1α2; and GGTGGCTTTCAGTTCAGCTATG
(forward) and GTCTTGCTCCATTCACCAGTGT
(reverse) for rat Col3α1.

Statistical analysis
Data are expressed as the mean ± SEM. Statistical sig-

nificance was evaluated using an unpaired two-tailed
Student’s t-test and among more than two groups by one-
way ANOVA. Differences were considered significant at a
P value <0.05.

Results
Gut microbiota dysbiosis in rats fed an HFD is alleviated by
the administration of IPA
To investigate the effects of IPA on the composition of

the gut microbiota during nutrient overload, administra-
tion of IPA in rats fed an HFD was performed. IPA has
shown protective effects against indomethacin-induced
intestinal injury; 10, 20, and 40mg/kg IPA were used to
treat mice via gavage, and no obvious side effects were
observed10. The same doses of IPA (10, 20, and 40mg/kg)
have been used in mice to study the cross-talk between
bacterial and mammalian metabolism9. Therefore,
administration of IPA at 20mg/kg was performed in rats
fed an HFD. Fecal samples were harvested at the end of the
study (i.e., week 16) (Fig. 1a), and 16S rRNA-based gut
microbial profiling was performed. Principal coordinate
analysis (PCoA) and nonmetric multidimensional scaling
(NMDS) analysis revealed that HFD feeding caused a
major change in the overall composition compared with
that in the chow diet-fed group, and 8 weeks of oral IPA
administration led to a significant shift in the gut microbial
profile compared with that of the HFD+ vehicle group

(Fig. 1b, c). Cluster analysis showed that samples from the
HFD+ IPA group differed from those from the HFD+
vehicle group (Fig. 1d). Moreover, Adonis and Anosim
analyses were performed to assess statistical differences
between different groups. The results showed that the
composition of the gut bacteria in rats treated with IPA
was significantly different from that in rats treated with
vehicle (data not shown), suggesting the efficacies of IPA
administration on altering the overall structure of the gut
bacteria. Then, we assessed the gut microbial profile at the
phylum level. An increase in Firmicutes abundance and a
decrease in Bacteroidetes abundance is a hallmark in
obesity29. In accordance with this feature, we found that
HFD feeding caused an increased Firmicutes to Bacter-
oidetes ratio and that IPA treatment could reverse it (Fig.
1e, f). Redundancy analysis was applied to identify the
specific bacterial phylotypes that were altered by HFD
feeding and IPA treatment. A total of 75 OTUs were
identified to be altered by HFD feeding and reversed by
IPA treatment (54 OTUs increased by HFD and decreased
by IPA and 21 OTUs decreased by HFD and increased by
IPA) (Fig. 1g). Due to the technological limits of 16S rRNA
sequencing, bacterial taxa information at the genus and
species level was not fully detailed. Notably, the abun-
dances of two potential pathogenic genera, Bacteroides
and Streptococcus30, were increased by HFD feeding and
decreased by IPA treatment. The abundance of the
Parasutterella genus, which is reported to be associated
with intestinal chronic inflammation31, was also reduced
by IPA treatment. Meanwhile, the abundances of Oscilli-
bacter and Odoribacter, two genera that are implied to be
important for intestinal homeostasis32,33, were decreased
in the HFD+ vehicle group and recovered in the HFD+
IPA group. Taken together, these results demonstrate that
administration of IPA remodels the structure of the gut
flora and alleviates dysbiosis induced by HFD feeding.

Intestinal epithelial barrier damage is diminished by
administration of IPA in rats fed an HFD, leading to the
inhibition of endotoxin leakage
Increased intestinal epithelial permeability and small

intestinal bacterial overgrowth are frequently observed in
several gastrointestinal and metabolic disorders34. Thus,
we explored whether IPA has a beneficial effect on the
epithelial homeostasis of small intestines under HFD
feeding conditions. As shown in Fig. 2a, abnormal mor-
phological alterations characterized by a loss of normal
villus structure of the ileac epithelium can be observed in
rats fed an HFD. Whereas the villus height was decreased,
the crypt depth was barely changed, and the villus-to-
crypt ratio was decreased in the ilea of HFD-fed rats, and
the villus height was restored by IPA treatment (Fig.
2b–d), suggesting that IPA attenuates mucosal lesions
caused by HFD feeding.
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Furthermore, we examined the expression levels of tight
junction proteins, whose loss can lead to increased epi-
thelial permeability, which is also referred to as “leaky
gut”. The protein levels of zonula occluden-1 (ZO-1) and
Occludin were reduced in the ilea of rats fed an HFD
compared to rats fed a chow diet, and IPA treatment
upregulated the protein expression of ZO-1 and occludin,

as demonstrated by immunostaining and immunoblots
(Fig. 2f, g). Moreover, to further examine the effect of IPA
treatment on the function of intestinal epithelial barrier,
we determined the plasma level of endotoxin. As shown in
Fig. 2e, elevated plasma endotoxin levels were observed in
the HFD-fed group, while IPA treatment significantly
reduced plasma endotoxin levels, suggesting an enhanced
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Fig. 2 IPA is able to improve intestinal epithelial barrier damage and consequently inhibit endotoxin secretion in rats fed a high-fat diet.
Six-week-old male rats were fed a high-fat diet for 8 weeks and then gavaged with IPA (20 mg/kg/day) once daily for 8 weeks. Rats were sacrificed at
the end of the 16th week, and ilea were harvested. a Representative hematoxylin and eosin staining of the ilea is shown. The height of the villi (b)
and the depth of the crypts (c) were measured, and the ratio of villus height to crypt depth (d) was calculated. e The plasma level of endotoxin was
measured using a Limulus amebocyte lysate (LAL) chromogenic assay (n= 5). f Representative immunostaining of zonula occluden-1 (ZO-1) and
occludin in the ilea is shown. g Protein levels of ZO-1 and occludin of intestinal epithelial cells in the ilea. Representative immunoblots and
densitometric quantification from three rats in each group are shown. The data are presented as the mean ± SEM. n= 9–10, *P < 0.05, vs. rats fed a
chow diet; #P < 0.05, vs. rats fed a high-fat diet
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intestinal epithelial barrier. These findings indicate a
beneficial role of IPA in maintaining intestinal epithelial
homeostasis, which results in a reduction in endotoxin
leakage from the gut into the bloodstream.

IPA is sufficient to attenuate hepatic steatosis and restore
metabolic homeostasis in rats fed an HFD
THepatic steatosis is a major characteristic in NAFLD.

Hence, we examined the effect of IPA on hepatic steatosis
induced by HFD feeding. First, we applied the PICRUSt
(Phylogenetic Investigation of Communities by Recon-
struction of Unobserved States) method to predict
functional alterations in the gut microbiota of HFD-fed
rats treated with IPA. As shown in Fig. 3a, pathways
related to nutrient and energy metabolism were upre-
gulated by the HFD and downregulated by IPA treat-
ment, suggesting that IPA may affect metabolic processes
through modulating the gut microbiota. Moreover, LC-
MS/MS has been performed to measure serum levels of
IPA. As shown in Fig. 1h, a moderate reduction in IPA
levels was observed in rats fed an HFD compared with
those in rats fed a chow diet. Notably, administration of
IPA caused a significant induction of serum levels of IPA,
suggesting potential roles of IPA in mediating cross-talk
between the gut and extraintestinal organs. Therefore, we
explored the effect of IPA on HFD-induced fatty liver. As
shown in Fig. 3b, in contrast to control rats, HFD-fed rats
developed dramatic liver enlargement and discoloration,
which were partially recovered with IPA intervention.
Strikingly, HFD-induced lipid droplets in the liver were
reduced by IPA treatment, as evidenced by H&E and oil
red O staining (Fig. 3b, f). Lipid quantification demon-
strated that HFD feeding caused a great induction of lipid
accumulation with an increase in triglyceride and cho-
lesterol levels, which were both decreased in the HFD+
IPA group (Fig. 3c, d). Correspondingly, the liver index
was significantly increased in HFD-fed rats, which was
decreased by IPA treatment (Fig. 3e). Moreover, the
steatosis score based on the SAF scoring system was
applied to evaluate the effect of IPA on hepatic stea-
tosis25. As shown in Fig. 3g, IPA could significantly
attenuate hepatic steatosis histologically. These results
indicate that administration of IPA is sufficient to
attenuate HFD-induced hepatic steatosis, possibly
through restoration of metabolic homeostasis with
modulation of the energy metabolism-related gut
microbial profile.

Hepatic inflammation and liver injury are attenuated by
IPA in rats fed an HFD
Although hepatic steatosis can be a benign lesion,

steatohepatitis can progress to cirrhosis, liver failure, and
rarely liver cancer and is a recommended indication for
pharmacological treatments35. To investigate whether

IPA has a beneficial role in steatohepatitis, we next
assessed the effect of IPA on hepatic inflammation and
liver injury induced by HFD feeding. As shown in Fig. 4a,
b, plasma levels of alanine transaminase and aspartate
aminotransferase were greatly elevated in rats fed an HFD
and significantly declined with IPA intervention. More-
over, lobular inflammation and hepatocellular ballooning,
which reflect the activity of steatohepatitis, were evaluated
based on the SAF scoring system25. Strikingly, the
inflammation score and ballooning score were increased
in HFD-fed rats, and both were decreased by IPA treat-
ment (Fig. 4c, d), suggesting that IPA can reduce steato-
hepatitis activity histologically. Enhanced hepatic
infiltration of inflammatory cells is a key feature of stea-
tohepatitis. Therefore, we examined the infiltration of
neutrophils and macrophages using immunostaining of
their specific markers. Neutrophils, whose increase cou-
pled with augmented activity of MPO in the liver is closely
associated with increased degrees of lobular inflammation
in NASH patients36, showed increased infiltration in the
hepatic lobules of rats fed an HFD, and their infiltration
was decreased with IPA intervention (Fig. 4e, g). Similarly,
hepatic macrophages, which have been identified as key
mediators that trigger inflammatory response during
NASH development, were also decreased by IPA treat-
ment compared with those in the HFD+ vehicle group
(Fig. 4f, h). Taken together, these results indicate that IPA
can significantly attenuate HFD-induced hepatic inflam-
mation and liver injury.

Activity of nuclear factor κB signaling and production of
proinflammatory cytokines in response to endotoxin are
inhibited by IPA in macrophages
As hepatic macrophages are exposed to gut-derived LPS

that drains into the portal vein and can initiate an
immune response and cause subsequent inflammatory
injury through the TLR4/NF-κB (nuclear factor κB)
pathway37, we further assessed whether IPA could directly
inhibit inflammatory NF-κB signaling in hepatic macro-
phages. Murine macrophages were pretreated with IPA
and then exposed to LPS stimulation. Strikingly, IPA
inhibited LPS-induced phosphorylation of p65 in a dose-
dependent manner (Fig. 5a). Upstream signaling of NF-κB
was also detected. When exposed to stimuli such as LPS,
IκBα, an inhibitor of NF-κB, becomes phosphorylated,
resulting in polyubiquitination and proteasomal degra-
dation, which allows free NF-κB to translocate to the
nucleus and activate transcription of target genes38.
Increased phosphorylation and degradation of IκBα were
observed in response to LPS stimulation and were sig-
nificantly suppressed with IPA pretreatment (Fig. 5a).
Furthermore, IKKα and IKKβ, two kinases upstream of
IκB, were increasingly phosphorylated with LPS stimula-
tion, which was inhibited by IPA pretreatment (Fig. 5a).
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Moreover, IPA could greatly decrease the expression
levels of proinflammatory cytokines, such as tumor
necrosis factor-α (TNFα), interleukin-1β (IL-1β), and IL-

6, which are NF-κB downstream targets (Fig. 5b), sug-
gesting that IPA can directly suppress LPS-induced acti-
vation of NF-κB signaling in vitro.
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Furthermore, we determined the effect of IPA admin-
istration on the activity of NF-κB signaling in the livers of
rats fed an HFD. Strikingly, phosphorylation of p65, IκBα,
and IKKα/β was induced with HFD feeding and was sig-
nificantly inhibited by IPA treatment (Fig. 5c, d). More-
over, we detected the expression levels of cytokines and
chemokines in the liver. Prominently, mRNA levels of
proinflammatory cytokines, such as TNFα, IL-1β, and IL-
6, and chemokines, such as CCL2 and CCR2, were all
increased in the livers of HFD-fed rats and were decreased
with IPA intervention (Fig. 5e, f). These results indicate
that IPA can inhibit the activity of hepatic NF-κB sig-
naling and the production of proinflammatory cytokines,

which may contribute to the mitigation of HFD-induced
hepatic inflammation and liver injury by IPA treatment.

Administration of IPA inhibits the expression of genes
promoting fibrosis and reduces liver fibrosis in rats treated
with IPA
The liver fibrosis stage is the strongest predictor for

disease-specific mortality in NAFLD39. Therefore, we
determined whether IPA administration had an impact on
HFD-induced liver fibrosis. As shown in Fig. 6a, b, IPA
significantly ameliorated liver fibrosis induced by HFD
feeding, as evidenced by Sirius Red staining and Masson
trichrome staining. We further examined the effect of IPA

0

50

100

150

200

250

300
Chow+Vehicle
HFD+Vehicle
HFD+IPA

*
#

AL
T 

ac
tiv

ity
 (U

/L
)

0

100

200

300

400

500

*

AS
T 

ac
tiv

ity
 (U

/L
)

0

Chow+Vehicle
HFD+Vehicle
HFD+IPA

* #

1

2

In
fla

m
m

at
io

n 
sc

or
e

0

* #

1

2

Ba
llo

on
in

g 
sc

or
e

a b
M

PO
(2

0
)

e

f

M
PO

(4
0

)
dc

F4
/8

0
(1

0
)

F4
/8

0
(2

0
)

gChow HFD
IPAIPAVehicleVehicle

0

50

100

150

200

250 Chow+Vehicle
HFD+Vehicle
HFD+IPA

*
#

M
PO

 P
os

iti
ve

 C
el

ls
 (%

)

0

50

100

150

200

*
#

F4
/8

0 
Po

si
tiv

e 
C

el
ls

 (%
)

h

(Scale bars, 50 μm)

Fig. 4 IPA mitigates hepatic inflammation and liver injury in rats fed a high-fat diet. Plasma levels of ALT (a) and AST (b) were measured.
Inflammation (c) and hepatocellular ballooning (d) were scored based on histological alterations. Representative immunostaining of
myeloperoxidase (MPO) (e) and F4/80 (f) to show infiltration of neutrophils and macrophages, respectively. Arrows denote positively stained cells.
Quantification of MPO- (g) and F4/80-positive (h) cells expressed as a percentage of those in the HFD+ vehicle group. The average numbers of
positive cells were quantified from a randomly selected pool of five fields under each condition. The data are presented as the mean ± SEM. n=
8–10, *P < 0.05, vs. rats fed a chow diet; #P < 0.05, vs. rats fed a high-fat diet
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on liver fibrosis using the fibrosis score based on the SAF
scoring system25. The elevated fibrosis score due to HFD
feeding was significantly decreased by IPA treatment (Fig.
6c). Moreover, the expression levels of genes related to
liver fibrosis were determined. Strikingly, IPA down-
regulated the expression levels of fibrogenic genes, such as
TGFβ, αSMA, and CTGF (Fig. 6d), and collagen synthetic
genes, such as Col1α1, Col1α2, and Col3α1 (Fig. 6e).
These results suggest that oral administration of IPA for
8 weeks markedly reduces HFD-induced liver fibrosis and
prevents the progression of NASH.

Discussion
TAlthough the tryptophan metabolite IPA has been

demonstrated to play a role in maintaining intestinal
epithelial homeostasis in an indomethacin-induced
intestinal injury model10, its other functions and extra-
intestinal targets remain poorly understood. We
demonstrated for the first time that IPA improves gut
dysbiosis, protects against intestinal epithelial barrier
damage under HFD feeding conditions, reduces endo-
toxin leakage, and directly inhibits the activity of NF-κB
signaling and the production of proinflammatory
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Fig. 5 IPA inhibits the activation of NF-κB signaling and the production of proinflammatory cytokines in macrophages in response to
endotoxin. a, b IPA inhibits NF-kB signaling in murine J774A.1 macrophages. Cells were pretreated with IPA (250 μM and 500 μM) for 1 h, followed
by 500 ng/mL LPS treatment for an additional 30 min. a Representative immunoblots are shown. b Expression levels of proinflammatory cytokines
were determined by real-time PCR. Relative expression levels were normalized to those of GAPDH. The data are presented as the mean ± SEM (n= 4).
*P < 0.05 vs. vehicle; #P < 0.05 vs. LPS treatment. c–f IPA inhibits NF-κB signaling in the livers of HFD-fed rats. Representative immunoblots (c) and
densitometric quantification (d) from three rats in each group are shown. Relative phosphorylation levels were normalized to those of endogenous
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cytokines, which contribute to the improvement of
NASH in HFD-fed rats.
Conventionally, gut microbial metabolites are con-

sidered to be mediators in the interaction between the gut
microbiota and the host, and the role of microbial meta-
bolites in regulating physiological and pathological pro-
cesses of the host has been widely studied. However,
regulation of the gut microbiota per se by their metabo-
lites has been less focused. Our previous study found that
butyrate, a short-chain fatty acid produced by commensal
bacteria, can modulate the composition of the gut

microbiota and increase the abundance of beneficial
Christensenellaceae, Blautia, and Lactobacillus, which in
turn increases the production of butyrate, forming a vir-
tuous cycle23. Unlike the ability of short-chain fatty acids
to decrease gut PH and provide a more suitable intestinal
environment for the growth of probiotic bacteria40, tryp-
tophan metabolites may function as signaling molecules
in interspecies communication of gut commensal bac-
teria. It has been reported that indole is a nontoxic signal
that decreases E. coli biofilms by repressing motility,
inducing the sensor of the quorum sensing signal
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autoinducer-1 (SdiA), and influencing acid resistance41.
Therefore, it is likely that tryptophan metabolites,
including IPA, may regulate the composition of the gut
microbiota by influencing quorum sensing phenotypes
and suppressing virulence factor production. In agree-
ment with this conjecture, we observed that oral admin-
istration of IPA could significantly decrease the
abundances of pathogenic Bacteroides and Streptococcus,
which are frequently found to be increased in NAFLD
patients42. These changes likely contribute to the
improvement of HFD-induced steatohepatitis with IPA
intervention.
Furthermore, the modulation of the gut microbial pro-

file by IPA may benefit the intestinal epithelium, as
improved morphology and barrier function were observed
in our study. These results are consistent with the recent
finding that IPA protects against indomethacin-induced
intestinal injury10. Apart from the reported mechanisms
through xenobiotic receptors, the effect of IPA may also
be mediated by the decreased Parasutterella and
increased Oscillibacter and Odoribacter abundances,
which are closely associated with intestinal epithelial
homeostasis31–33.
The most important finding of the present study is the

identification of cross-talk between the gut microbiota
and liver via a novel tryptophan metabolite. IPA is pro-
duced by the commensal bacteria in the intestines, which
have been shown to be a direct target of IPA10. However,
as IPA is absorbed by intestinal epithelial cells and dif-
fuses into the bloodstream9, IPA can be circulated to the
whole body and have multiple targets. In the past two
decades, IPA has been identified to function in the brain
due to its potent neuroprotective properties as a hydroxyl
radical scavenger43. However, the association of the serum
IPA level with metabolic diseases revealed by epidemio-
logical investigations11,12 has provided a cue that the liver
may be a target of IPA.
In agreement with the epidemiological investigations,

we found that IPA can bona fide protect against HFD-
induced steatohepatitis. Herein, we demonstrate that
hepatic steatosis induced by HFD feeding is significantly
attenuated by IPA intervention. This effect may be due to
the regulation of the energy metabolism-related gut
microbial profile by IPA treatment. In addition, it is
possible that IPA directly participates in the regulation of
lipid metabolism. A recent study revealed that another
tryptophan metabolite, I3A, suppressed lipogenesis
in vitro. I3A treatment significantly reduced the expres-
sion of SREBP1c and FAS in murine hepatocytes with or
without fatty acid and/or TNFα preconditioning44. Con-
sidering the structural resemblance of IPA and I3A, they
may share functional similarities. In addition to dysregu-
lation of nutrient metabolism, hepatic inflammation is a
pivotal characteristic in NASH. Our in vivo results show

that IPA treatment can mitigate hepatic inflammation and
liver injury induced by HFD feeding. Meanwhile, IPA
treatment significantly reduces hepatic expression of
proinflammatory cytokines and chemokines, which can
lead to alleviation of systemic low-grade inflammation
and metabolic dysregulation in multiple organs45. The
anti-inflammatory property of IPA is consistent with
previous observations showing that IPA treatment ame-
liorates indomethacin-induced intestinal injury10 and
ampicillin-induced autoimmune encephalomyelitis in
mice46. These studies support the protective or ther-
apeutic effects of IPA in response to different pathological
conditions. Whether IPA treatment affects the production
of cytokines during basal conditions requires further
investigation. In the current study, administration of IPA
at 20mg/kg was performed, and no obvious side effects
were observed. Moreover, an in vitro CCK-8 assay showed
that IPA at a dose range of 20–500 μM has no cytotoxicity
or inhibitory effects on cell growth in HepG2 cells under
basal conditions (data not shown). Further investigation is
needed to examine the effects of IPA on rodents under
basal conditions and to define the minimum effective
doses on NASH. Taken together, our results show that the
liver is a target of IPA actions to improve diet-induced
hepatic dysfunction.
Although the anti-inflammatory property of tryptophan

metabolites has been observed in recent studies, the exact
mechanisms are not fully clarified47. Our data suggest that
IPA can inhibit NF-κB signaling both in vivo and in vitro.
On the one hand, in vivo results demonstrate that IPA can
restore the intestinal barrier by upregulating tight junc-
tion proteins and restrain the leakage of gut-derived
endotoxin into the bloodstream, which is an intense sti-
mulus to activate NF-κB signaling via TLR4. Through this
mechanism, IPA indirectly inhibits hepatic NF-κB sig-
naling. On the other hand, IPA can directly inhibit LPS-
induced activation of NF-κB signaling, as indicated by
in vitro studies. The anti-inflammatory effects of IPA in
different macrophages require further investigation. Col-
lectively, the dual inhibition of endotoxin by IPA results in
the mitigation of inflammatory reactions in the liver.
Endotoxin-mediated TLR4/NF-κB pathway activation

in macrophages has been demonstrated to play a pivotal
role in the pathogenesis of NASH; depletion of hepatic
macrophages or genetic inactivation of TLR4 substantially
blunted NASH development in murine models48. Our
results are in accordance with these previous findings.
Inhibition of hepatic NF-κB signaling can significantly
attenuate hepatic inflammation and liver injury and
decrease the histological activity of NASH. In addition,
LPS/TLR4 signaling is shown to participate in metabolic
regulation, as LPS/TLR4 inhibition in bone marrow-
derived cells improves metabolism and ameliorates diet-
induced fatty liver49. This finding may partially explain the
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beneficial role of IPA in HFD-induced hepatic steatosis.
Likewise, given that TLR4/NF-κB signaling also mediates
the development of liver fibrosis50, inhibition of hepatic
NF-κB signaling by IPA may underlie the amelioration of
liver fibrosis. Based on the above, our findings demon-
strate that sabotage of the endotoxin-mediated proin-
flammatory response by IPA contributes to the remission
of NASH.
In conclusion, the current study demonstrates that the

tryptophan metabolite IPA improves HFD-induced gut
dysbiosis and attenuates intestinal epithelial barrier
damage, leading to a reduction in endotoxin leakage.
Meanwhile, IPA directly inhibits endotoxin-induced
activation of NF-κB signaling and production of proin-
flammatory cytokines (Fig. 7). These functions facilitate
IPA’s protection against HFD-induced steatohepatitis in
rats. Our results highlight the therapeutic potential of IPA
in NASH management.
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