Skip to main content
. 2019 Sep 24;51(9):109. doi: 10.1038/s12276-019-0308-1

Table 1.

Results of regorafenib-based combined treatments in preclinical HCC, CRC and GISTs models

Cancer type Model Regorafenib-combined treatment schedule Global effects Molecular effects Reference
HCC HepG2, Hep3B, and Huh7 cell lines Perifosine, MK2206 or PX-866 Enhanced cell death 32
Sorafenib-resistant HepG2 xenografts Anti-ANXA3 monoclonal antibody

Tumor growth suppression

Apoptosis induction

Reduced autophagosome formation

Inhibition of pro-survival autophagy

↓ ANXA3 and LC3-II 33
Genetically engineered immune-competent sorafenib non-responsive HCC mouse model
HepG2 and Hep3B cell lines Navitoclax (ABT-263) Promotion of mitochondrial caspase-cell death

↓ Mcl-1

↑ Bim, caspase 3 activity, cytochrome c release, PARP cleavage

34
PLC/PRF/5, HLF and HepG2 cell lines VK1 plus GSK1838705A or OSI-906

Enhanced anti-proliferative and pro-apoptotic effects of regorafenib

Cell migration impairment via actin depolymerization

↓ AFP secretion (PLC/PRF/5 and HepG2)

↑ caspase 3/7 activation

Loss of cytoplasm F-actin fibers but redistribution around de nucleus (HLF)

↓ p-ERK, p-AKT, p-p38, p-JNK, p-TSC2, p-S6 (PLC/PRF/5)

35
HCC-PDX with high gankyrin levels 2-DG, BPTES or 10058-F4 Tumor growth repression 36
PLC/PRF/5 cells OA Inhibition of cell growth, migration and invasion 37
PLC-bearing mice Reduction of tumor volume, lung metastasis, EMT, migration and invasion

↑ E-cadherin

↓ Vimentin, MMP-2, MMP-9

PLC/PRF/5 and HepG2 cell lines CGA

Decreased cell proliferation and cell cycle progression from S to G2/M phase

Apoptosis promotion

Cell migration inhibition

↓ Ki-67

↑ Annexin V, Bax, caspase 3/7 activation

↓ Bcl-2, Bcl-xL

↓ p-JNK, p-p38, p-S6, p-TSC2, p-ERK, p-AKT

38
HepG2 and Hep3B cells CDDP Synergistical inhibition of cell growth 28
MHCC97H cells Metformin

Reduction of cell proliferation

EMT suppression

Apoptosis induction

↓ HIF-2α, N-cadherin

↑ TIP30, E-cadherin

39
Orthotopic MHCC97H mouse model

Inhibition of postoperative recurrence and lung metastasis

Apoptosis induction

↓ Ki-67, N-cadherin

↑ TUNEL positive cells

↑ TIP30, E-cadherin

CRC COLO205, HT29, LoVo, HCT15 cells Pimasertib Synergistic effects on growth inhibition 61
HCT15 cells Apoptosis induction

↓ p-MAPK, p-AKT, p-4E-BP1, p-p70S6K, cyclin D1

↑ p27

↑ cleaved caspase 3, PARP

SW620, SW480, HT29, and HCT116 cell lines PX-866 Enhanced cell death 32
HCT116 cells MK2206
HCT116 mouse model MK2206 Suppression of tumor growth
HCT116, SW480, HT29, and HCT116 p53−/− cells 5-FU Reduced cell viability

↓ Mcl-1, Bcl-xL

↑ PUMA (HCT116 p53−/−)

48
5-FU resistant HCT116 (HCT116R) and DLD-1 (DLD-1R) cells 5-FU

Overcoming of 5-FU resistance

Decrease of cell viability and tumor spheres formation

58
DLD-1R mouse model Inhibition of tumor growth and tumor spheres formation

↓ ABCG2, β-catenin, WNT1

↑ Bax

Oxaliplatin-refractory CRC-PDX Irinotecan Tumor growth delay 50
HCT116 cells 5-FU, oxaliplatin or cetuximab Increased percentage of apoptotic cells ↑ PUMA 56
Mice with HCT116 xenograft tumors 5-FU Tumor volume decrease and apoptosis activation ↑ TUNEL positive cells, active caspase 3
HT29, SW620, LoVo, HCT15, SW48, SW480, HCT116, GEO and cetuximab-resistant GEO (GEO-CR), and SW48 (SW48-CR) cells Cetuximab Enhanced growth inhibition and apoptotic cells percentage (HT29, SW480, SW620, HCT116, LoVo, HCT15, SW48-CR, GEO-CR) ↓ p-AKT, p-S6, p-MAPK (SW480, SW620, SW48-CR, GEO-CR, HCT116, LoVo, HCT15) 51
Subcutaneous HCT15, HCT116, GEO-CR, and SW48-CR xenograft mouse models Greater tumor volume reduction
Orthotopic HCT116 xenograft mouse model

Inhibition of tumor growth in the cecum and metastasis formation

Suppression of neovascularization

SW620, HCT116, and HT29 cell lines FTD Inhibition of FTD incorporation into DNA

↓ p-ERK

↓ TS

62
FTD → regorafenib

Higher survival inhibition

Lower FTD incorporation into DNA

Apoptosis induction (SW620)

↑ cleaved PARP (SW620)

↓ p-ERK, TS

SW620 and COLO205 xenograft mouse models FTD/TPI → regorafenib Higher inhibition of tumor growth
HCT116, HCT116 p53−/−, RKO and HT29 cells CRT0066101

Cell growth inhibition

Clonogenic growth inhibition (HCT116 and RKO)

Apoptosis induction (RKO)

↑ cleaved PARP (RKO)

↓ p-HSP27 (RKO)

↓ p-PKD2, p-AKT, p-ERK (RKO)

↓ p-PKD2 (HCT116)

↓ NF-κB activity (HCT116 and RKO)

63
Mitoxantrone-resistant BCRP-overexpressing S1-M1-80 cells Mitoxantrone or SN-38

Reversion of BCRP-mediated MDR

Improvement of cells sensitivity to mitoxantrone or SN-38

Raised [3H]-mitoxantrone cellular retention via BCRP efflux impairment

Interaction with the BCRP transmembrane domain 64
Mitoxantrone-resistant BCRP-overexpressing S1-M1-80 xenografts Topotecan Reduced tumor volume and weight
Doxorubicin-resistant ABCB1-overexpressing SW620 cells (SW620/Ad300) Paclitaxel

Overcoming of ABCB1-mediated MDR

Increased [3H]-paclitaxel cellular accumulation via ABCB1 efflux impairment

↓ ABCB1 ATPase activity

Interaction with the ABCB1 transmembrane domain

65
SW620/Ad300 xenograft mouse model

Synergistic effect on tumor growth inhibition

Higher intratumoral paclitaxel concentration

Increased plasma regorafenib concentration

SW620/Ad300 cells Paclitaxel, doxorubicin or vincristine

Overcoming of ABCB1-mediated MDR

Reduced resistance fold

HCT116 and SW620 cell lines Lapatinib

Decreased survival rate

Cell cycle arrest in G0/G1 phase (↑ G0/G1 phase cells and ↓ G2/M phase cells) (HCT116)

Apoptosis induction

↓ cyclins A, B, D1, E, CDK1, CDK6

↓ p-AKT, p-ERK, Bcl-2, Mcl-1, XIAP, survivin

↑ cleaved PARP, Bax

52
Subcutaneous HCT116 xenograft mouse model

Tumor growth inhibition

Diminished tumor volume and weight

Inhibition of cell growth and angiogenesis

↓ Ki-67, p-AKT, CD34

↑ cleaved caspase 3, Bax

HCT116 and HT29 human cells

CT26 and MCC38 mouse cells

Sildenafil and neratinib

Elevated cell death

Increased toxic autophagosome formation (HCT116 and CT26)

Activation of death receptor signaling (HCT116 and CT26)

Lysosomal disfunction and release of cathepsin B (HCT116 and CT26)

Mitochondrial disfunction and release of AIF (HCT116 and CT26)

Modulation of tumor cells immunogenicity via autophagy-dependent regulation of HDAC proteins (CT26 and MCC38)

↑ p-eIF2α, p-ATM, p-AMPK, p-ULK-1, p-S317, p-ATG13 (HCT116 and CT26)

↓ p-mTOR, p-AKT, p-p70S6K, p-ERK (HCT116 and CT26)

↑ ATG5, Beclin 1 (HCT116 and CT26)

↓ Mcl-1, Bcl-xL (HCT116 and CT26)

↓ p-GSK3, β-catenin (HCT116 and CT26)

↑ Frizzled (HCT116 and CT26)

↑ CD95 plasma membrane levels (CT26)

↓ HDAC proteins (CT26)

↓ PD-L1, IDO-1 (CT26 and MCC38)

↓ PD-L2 (CT26)

↑ MHCA (CT26 and MCC38)

66
Mouse CT26 tumors Enhanced reduction of tumor growth
D5D-knocking down HCA-7 colony 29 and HT29 cells DGLA Improvement of regorafenib inhibitory effect on cell viability and colony formation 67
SW620, SW480, HCT15, HCT116, LoVo, SW48, GEO, SW48-CR, and GEO-CR Silybin Further cell growth suppression 68
HCT15, SW480, SW48 and SW48-CR

Reduced colony formation

Higher ROS generation

Apoptosis induction

↑ cleaved PARP

↑ caspase 3, pro-caspase 9 (SW48, SW48-CR and HCT15)

↓ p-AKT, p70S6K, p-4E-BP1

EpCAM-positive HCT8 xenograft mouse model CAR-modified NK-92 cells with specificity against EpCAM

Lower tumor volume and weight

Increased persistence of NK cells in the tumor

69
GISTs Imatinib-resistant GIST430-654 cells TL32711 or LCL161 Increased pro-apoptotic activity

↓ p-KIT, p-AKT, cIAP1, XIAP, survivin

↑ cleaved PARP

78

4E-BP1 eukaryotic initiation factor 4E binding protein 1, 5-FU 5-fluorouracil, ABCB1 multidrug resistance protein 1, ABCG2 (BCRP) ATP-binding cassette sub-family G member 2, AFP alpha-fetoprotein, AIF apoptosis inducing factor, AKT protein kinase B, AMPK AMP‐dependent protein kinase, ANXA3 Annexin A3, ATG5 autophagy related protein 5, ATG13 autophagy related protein 13, Bax Bcl-2 associated X, Bcl-xL Bcl-2-like protein 1, Bim Bcl-2-like protein 11, CAR chimeric antigen receptor, CD34 hematopoietic progenitor cell antigen CD34, CD95 FAS cell surface death receptor, CDK1 cyclin-dependent kinase 1, CDK6 cyclin-dependent kinase 6, CGA chlorogenic acid, cIAP1 cellular inhibitor of apoptosis protein 1, CRC colorectal cancer, D5D delta-5-desaturase, DGLA dihomo-γ-linolenic acid, eIF2α eukaryotic translation initiation factor 2α, EMT epithelial-to-mesenchymal transition, EpCAM epithelial cell adhesion molecule, ERK extracellular signal-regulated kinase, FTD trifluridine, GISTs gastrointestinal stromal tumors, GSK3 glycogen synthase kinase 3, HCC hepatocellular carcinoma, HDAC histone deacetylase, HIF-2α hypoxia-inducible factor 2α, HSP27 heat shock protein beta-1, IDO-1 indoleamine‐pyrrole 2,3‐dioxygenase, JNK c-Jun N-terminal kinase, Ki-67 proliferation marker protein Ki-67, LC3-II microtubule-associated protein 1 light chain 3 II, MAPK mitogen-activated protein kinase, Mcl-1 induced myeloid leukemia cell differentiation protein, MDR multidrug resistance, MHCA major histocompatibility complex A, MMP-2 matrix metalloproteinase-2, MMP-9 matrix metalloproteinase-9, mTOR mammalian target of rapamycin, NF-ĸB nuclear factor-ĸB, NK natural killer, OA oleanolic acid, p phospho, p38 p38 MAPK, p70S6K ribosomal protein S6 kinase, PARP poly(ADP-ribose) polymerase, PD-L1 programmed cell death-1 ligand 1, PD-L2 programmed cell death-1 ligand 2, PDX patient-derived xenograft, PKD2 protein kinase D2, PUMA p53-upregulated modulator of apoptosis, ROS reactive oxygen species, S6 S6 ribosomal protein, TIP30 30 kDa HIV Tat-interacting protein, TPI tipiracil, TS thymidylate synthase, TSC2 tuberin, TUNEL terminal deoxynucleotidyl transferase dUTP nick end labeling, ULK-1 unc-51 like autophagy activating kinase 1, VK1 vitamin K1, WNT1 Wnt family member 1, XIAP X-linked inhibitor of apoptosis