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Errors Involve Common Neural Resources? Evidence from a
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Execution Errors
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In humans, electrophysiological correlates of error processing have been extensively investigated in relation to decision-making theories.
In particular, error-related ERPs have been most often studied using response selection tasks. In these tasks, involving very simple motor
responses (e.g., button press), errors concern inappropriate action-selection only. However, EEG activity in relation to inaccurate
movement-execution in more complex motor tasks has been much less examined. In the present study, we recorded EEG while volunteers
performed reaching movements in a force-field created by a robotic device. Hand-path deviations were induced by interspersing catch
trials in which the force condition was unpredictably altered. Our goal was twofold. First, we wanted to determine whether a frontocentral
ERP was elicited by sensory-prediction errors, whose amplitude reflected the size of kinematic errors. Then, we explored whether
common neural processes could be involved in the generation of this ERP and the feedback-related negativity (FRN), often assumed to
reflect reward-prediction errors. We identified a frontocentral negativity whose amplitude was modulated by the size of the hand-path
deviations induced by the unpredictable mechanical perturbations. This kinematic error-related ERP presented great similarities in
terms of time course, topography, and potential source-location with the FRN recorded in the same experiment. These findings suggest
that the processing of sensory-prediction errors and the processing of reward-prediction errors could involve a shared neural network.
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Introduction
Decision-making theories and motor-control models have been
developed as two separate fields of research. Although prediction
error plays a central role in driving behavioral adaptation in both
theoretical frameworks, its nature and the neural substrates in-
volved in its processing are assumed to be different. On the one
hand, reinforcement learning theory of decision-making stipu-
lates that behavioral adaptation relies on the maximization of
numerical reward signals (Sutton and Barto, 1998). The mesen-
cephalic dopamine system carries reward-prediction error-
signals used by the anterior cingulate cortex (ACC) as a training
signal to adjust the behavior in subsequent trials (Schultz et al.,
1997; Schultz, 1998). On the other hand, it is commonly assumed

in motor-control theories that the nervous system predicts the
sensory consequences of motor commands on the basis of inter-
nal models (Miall and Wolpert, 1996), and that adaptation is
driven by sensory-prediction errors (Wolpert, 1997; Tseng et al.,
2007; Berniker and Kording, 2008). The cerebellum and the pa-
rietal cortex would be central in the processing of sensory-
encoded kinematic-errors (Bastian, 2006; Tanaka et al., 2009).

In humans, the electrophysiological correlates of error-
processing have been extensively investigated in research on de-
cision making. In particular, two evoked responses (ERP) have
been thoroughly studied: the error-related negativity (Ne/ERN;
Falkenstein et al., 1991; Gehring et al., 1993) and the feedback-
related negativity (FRN; Miltner et al., 1997). Both are negative
potentials characterized by a frontocentral topography, with
common neural generators suggested to be located in the ACC
(Dehaene et al., 1994; van Veen and Carter, 2002; Gentsch et
al., 2009) and/or in the supplementary motor area (SMA; De-
haene et al., 1994; Vidal et al., 2000). However, these two ERPs
critically differ in the internal or external nature of the processed
error signal. Whereas the Ne/ERN is observed �90 ms after pro-
ducing an erroneous response and would reflect an internal pre-
dictive error signal, the FRN peaks �250 ms after an external
performance feedback, and is often assumed to reflect reward-
prediction errors.
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So far, error-related ERPs have been almost exclusively ex-
plored in cognitive tasks requiring elementary motor responses
(e.g., button press). That is, in situations in which errors concern
inappropriate action selection only, and the evaluation of the
performance is discrete (e.g., failure or success). In contrast, ERP
correlates of error processing have been studied less in more
complex motor tasks in which inaccurate movement-execution
produces kinematic errors that vary continuously in magnitude
within a single movement and across trials (Krigolson et al., 2008;
Anguera et al., 2009; Vocat et al., 2011).

In the present study, we compared an ERP elicited by exter-
nally produced kinematic errors with an FRN evoked by a dis-
crete performance-feedback signal. In this purpose, we recorded
EEG while volunteers performed reaching movements in a force-
field created by a robotic device. Hand-path deviations of differ-
ent sizes were induced by interspersing catch trials in which the
force condition was unpredictably altered. In the same experi-
ment, we provided our participants with a visual feedback about
their movement-duration in all trials with unchanged force-
field (in which no hand-path deviation was produced). Our
goal was twofold. First, we tested whether an ERP could be
observed that is parametrically modulated by the magnitude
of the error itself. Then, we explored whether the processing of
sensory- and reward-prediction errors could involve common
neural resources.

Materials and Methods
Participants. Fifteen male participants aged 21–35 years (mean, 24.6
years) volunteered for the experiment. Fourteen of them were right

handed and one ambidextrous, as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971). All participants had normal or corrected-to-
normal vision and were free of neurological or psychiatric disorders, and
gave informed consent according to a protocol approved by the Ethics
Board of the Institut de Neurosciences de la Timone.

Experimental setup. Participants performed reaching movements us-
ing a robotic exoskeleton (KINARM, BKIN Technologies) that permits
flexion and extension of the elbow and shoulder in the horizontal plane,
and can apply mechanical loads to each of these two joints. Participants
were comfortably seated with their right arm supported against gravity
by the robotic device (Fig. 1A). The height of the chair was adjusted so
that the shoulder was abducted by �70°. The reaching movements al-
ways started from the same initial position with the elbow joint ante-
flexed 90° and the shoulder horizontally abducted 45°.

Throughout the task, participants maintained the right hand in a fist
with the index extended in a pointing position. Using a semisilvered
mirror, direct vision of the hand was prevented throughout the task,
while a cursor representing the position of the index finger tip and the
visual display were projected onto the same plane as the (not visible)
hand. Head position was restrained using a chin rest.

Task. To be able to relate EEG activity to error processing, independent
of motor correction, we used a task in which participants experienced
kinematic errors without having the opportunity to correct their move-
ments. Participants performed a “shooting” task (Tseng et al., 2007) in
which they were required to make reaching movements with no on-line
corrections. The starting position was indicated by a 1.5 cm diameter
white circle located at the center of a large outer ring (10 cm radius). A
0.5-cm-diameter donut was projected 5 cm away from the starting posi-
tion, along the body midline (Fig. 1D). Participants were instructed to
make “shooting” movements in its direction and to reach the outer ring.
As detailed below (see Experimental protocol), catch trials (20%) were

Figure 1. Experimental setup. A, EEG was recorded while participants performed reaching movements in a force-field created by a robotic exoskeleton. B, The field was produced by applying
mechanical loads to the shoulder and elbow joints through two torque-motors (M1 and M2). C, Using the transformation from joint torque to endpoint force, a clockwise curl-field was created in
which the force applied to the hand was proportional and acted perpendicular to the velocity of the hand. D, The robotic device was coupled with a virtual 2D reality display (data not shown here)
that permit to project visual stimuli in the same horizontal plane as the hand. Participants had to make “shooting” movements in the direction of the donut, and cross the outer ring within 375 �
50 ms. At the time their index reached the ring, the donut changed color providing feedback about movement duration.
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interspersed in which kinematic errors of different sizes were produced
by changing the force environment unexpectedly, using a robotic device.
The task of the participants was to reach the outer ring, within a given
duration; specifically, their index finger-tip had to cross it within 375 �
50 ms (ending their movement �3 cm beyond it). They were informed
that they would not be penalized for not moving precisely through the
donut, but that moving always in the same direction (that is, producing
as much as possible the same movement throughout the trials) was very
helpful to keep movement duration constant. Movement duration was
computed on-line and corresponded to the duration between the time at
which the speed of the hand exceeded 0.07 m/s and the time at which the
fingertip cursor reached the outer ring. Throughout the task, participants
had to keep their eyes fixed on the donut. At the time their index reached
the ring, the participants received a visual feedback about the duration of
their movement: the donut turned green, red, or remained white to
indicate that the movement was too slow (duration � 375 � 50 ms), too
fast (duration �375–50 ms) or performed at the correct speed (375–50
ms � duration � 375 � 50 ms), respectively.

To initiate a trial, participants had to maintain their index finger in the
start circle for 500 ms before it disappeared to warn them to get ready
(READY). Following a 1500 ms delay, the donut was filled in white to
indicate that the movement could be initiated (GO). Participants were
informed that they were not performing a reaction-time task and should
take all the time they needed to plan their movement. To avoid on-line
movement correction, the fingertip cursor was turned off when reaching
the outer ring (Fig. 1D). Upon the end of movement, as the index finger-
tip was �3 cm beyond the ring, the robot brought their arm passively
back to the start position. The fingertip cursor and the starting-position
circle reappeared only when the hand was back in its initial position. Each
trial lasted �5 s.

Experimental protocol. To examine electrophysiological correlates of
movement-execution error-processing, we applied mechanical pertur-
bations to the movement using a clockwise curl-field in which the force
was set to f � B � v, where f � (fx, fy) depends on the velocity of the hand
v � (vx, vy), and B � (0, 	�, �, 0) N�sec�m 	1, with � the force-
amplitude parameter (Fig. 1C). Four different force-field amplitudes
were used by setting � � 0, 3, 6, or 9. The field was produced by the
torque-motors of the robotic exoskeleton, using the transformation from
endpoint force to joint torque: t � J
 � f, where J � [l1 � sin�1 � l2 �
sin(�1 � �2), l2 � sin(�1 � �2); l1 � cos�1�l2 � cos(�1��2), l2 �
cos(�1��2)] is the configuration-dependent differential transformation
matrix (Jacobian matrix).

In this experiment, we opted for an experimental design in which
participants first adapted to the strongest force-field (� � 9; Fig. 2A) and
then performed an experimental phase in which movement perturba-

tions were obtained by unpredictably reducing
the intensity of the field in a small number of
trials (catch trials with � � 0, 3, 6; Fig. 2B). This
design was chosen so as to maximize the am-
plitude of the small hand-path deviation typi-
cally observed in the “unperturbed” trial (n �
1) that follows a perturbed trial (n; Thorough-
man and Shadmehr, 2000). Indeed, the small
kinematic-error observed on trial n � 1 is ex-
pected to be larger when it is produced by an
unlearning process (induced by removing a
learned force-field in trial n) than when it re-
flects to a learning process (induced by intro-
ducing a new force-field in trial n; Kitago et al.,
2013). These (n � 1) trials will be analyzed in a
separate paper.

The experiment included two phases: (1) A
preliminary phase, in which participants
learned the task while the motors of the robot
were turned off (� � 0), and then adapted to
the force-field (� � 9). (2) An experimental
phase, in which 80% of the movements were
performed in the force-field (� � 9), whereas
in 20% of catch trials the force was unexpect-
edly reduced (� � 0, 3, 6). EEG signals were

recorded during the experimental session only and the total experiment
lasted �3.5 h.

Preliminary phase (familiarization and force-field adaptation). First, the
participants sat in the KINARM for calibration and received verbal in-
structions about the task requirements. Then they learned the shooting
task, performing three blocks of 30 reaching movements in the “null
field” (Blocks 1–3, � � 0). During the first two blocks of trials, they had
full vision of their limb, whereas it was occluded in the third block, in
which only a cursor figured the position of their fingertip. During a
fourth block of 30 trials, the strongest force-field (Block 4, � � 9) was
applied. Although hand-paths were clearly deviated in the first trials (Fig.
2A), all participants quickly (within 10 –15 trials) adapted to the new
dynamic condition; by the end of the block they moved straight ahead
again (Fig. 2A).

Experimental phase. The experimental phase consisted of 10 blocks of
120 trials, including 96 trials (80%) performed in the strongest force-
field (Block 5–14, � � 9), to which they previously adapted, interspersed
with 3 � 8 catch trials (20%) in which the amplitude of the force-field
was unpredictably reduced to � � 6, 3, or 0. Because participants had
adapted to the strongest force-field (� � 9) during the previous phase,
movements performed in this field were not perturbed and thus corre-
sponded to unperturbed trials in which no systematic kinematic error
was observed. In contrast, reduced force-field catch trials, with � � 6, 3,
or 0, produced usually small, medium or large kinematics errors, respec-
tively (see Figs. 2B, 3 B, C). To maintain adaptation to the strong force-
field (� � 9), two catch trials were always separated by at least three
unperturbed (� � 9) trials. Each block lasted �10 min and breaks of �2
min were allocated between blocks. At the end of each block, participants
were verbally informed about the percentages of too slow, too fast, and
correct movement-duration trials they performed.

Here, we have to emphasize that the trial sequence was specifically
designed to avoid an overlap (within the same trial) of the FRN evoked by
the movement-duration feedback and the ERP related to the kinematic
error produced by the mechanical perturbation. The visual feedback on
movement duration was provided only in the trials where no unex-
pected change in the force condition was applied (unperturbed trials);
in trials where the hand-path was perturbed (by an unexpected dim-
inution of the amplitude of the force-field), the donut remained white
regardless of the duration of the movement. The visual feedback was
used to induce a FRN, which will be used in the present study for
comparison purposes. Therefore, for data analysis, the FRN was cal-
culated using the EEG signal recorded during the unperturbed trials,
whereas the ERP related to the kinematic error was computed from
the perturbed trials.

A B

Figure 2. Representative hand-paths along with vectors (arrows) with schematic representations of the forces applied by the
robot (light gray) and the force applied by the participant’s hand (dark gray). The dotted arrow indicates the direction of the
movements. A, Preliminary familiarization and force-field adaptation phase. Before adaptation, movements performed in the null
field (� � 0) were roughly straight. Upon initial exposure to the force-field (� � 9), hand paths were clearly deviated. However,
participants quickly (within 10 –15 trials) adapted to the new dynamic condition, and by the end of the adaptation block they
moved straight ahead again. B, After adaptation, during the experimental phase, movements performed in the strongest force-
field (� � 9) were not perturbed anymore and thus corresponded to unperturbed trials. In contrast, reducing the force-field
amplitude in catch trials to � � 0, 3, or 6 produced usually large, medium, and small kinematics errors.
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Behavioral data recording and analysis. The angular position and ve-
locity data of the motor resolvers were collected at 1000 Hz. Off-line
signals were resampled at 100 Hz then filtered with a second order, zero
phase-shift Butterworth filter (cutoff frequency of 10 Hz). Finger posi-
tion and velocity were calculated from these angular data. Kinematic data
were analyzed using MATLAB (MathWorks). All the trials in which the
maximum velocity was reached after crossing the outer ring were ex-
cluded from the analyses (�5% of the trials).

To quantify kinematic errors, we computed the perpendicular devia-
tion (PD) at maximum velocity; that is, the deviation from the straight
line that connects the starting position to the donut, measured at peak
velocity. To take into account “natural” hand-path curvatures that might
characterize individual baseline-unperturbed reaching movements, we
quantified the kinematic error in the catch-trial n as the difference:
(PDn 	 PDn-1). As reaching movement, errors were reflected by in-
creased hand-path lengths and durations also, we computed these mea-
sures. As shown in Figures 2B, 3 A, B, different force amplitudes
produced kinematic errors of different sizes. However, for a given level of
perturbation, quite variable PDs were observed for the different trials and

the PD distributions corresponding to the different force diminutions
(� � 9, 6, 3, or 0) were partially overlapping (Fig. 3A, black, dark gray,
light gray, and white dots). Because our primary focus was on the kine-
matic errors, we resorted trials into four equal-effective categories ac-
cording to the observed PD: No_PD, Small_PD, Medium_PD, and
Large_PD trials (Fig. 3 A, different color bands). Only the unperturbed
trials n-1 that preceded directly a catch trial n were retained. First, this
ensured that unperturbed trials included only movements that could not
have been influenced by a perturbation occurring on a preceding trial.
Second, this allowed computing ERPs based on comparable numbers of
trials for all conditions.

In addition to the amplitude of the deviation (PD), the duration of the
movements as well as the lengths of the hand paths were calculated for the
different types of trials (No_PD, Small_PD, Medium_PD, and Large_PD
trials).

EEG recording. EEG activity was recorded continuously at 1024 Hz
using a 64-channel Biosemi ActiveTwo system (BioSemi) referenced to
the Common Mode Sense-Driven Right Leg ground. Electrodes were
embedded into an elastic cap and evenly distributed over the scalp ac-

A

B C

Figure 3. Behavioral data. A, For a representative participant, PD of the last 60 trials of the familiarization phase (Blocks 3 and 4) and the 1200 trials of the experimental phase. Trials were binned
into four categories according to their PD (color bands): No_PD, Small_PD, Medium_PD, and Large_PD. B, For the same participant, hand paths for all individual trials of the experimental phase;
colored stars show hand positions at movement ends. The mean hand-paths for the different categories of trials are plotted in thick lines mean hand-positions at velocity-peak and movement-end
are shown by crosses and squares, respectively. The eye-fixation donut (visual feedback) is also indicated in gray. C, Box plots indicating for each categories of trials, the 25 th, 50 th, and 75 th

percentiles, as well as the extreme values of the mean PD of all trials.
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cording to the extended 10 –20 EEG system. For each participant, elec-
trode locations and nasion and preauricular points were recorded by an
infrared camera (Rogue Research). EOG activity was recorded with sur-
face electrodes placed near both outer canthi (saccades) as well as under
and above the left orbit (blinks). Electrode impedance was kept �5 k�.

EEG preprocessing. Data were cleaned from nonstereotyped artifacts
(e.g., electrode drift or movement artifacts and spurious muscle activity)
using the free software ELAN (http://elan.lyon.inserm.fr/; Aguera et al.,
2011). The continuous EEG signals were re-referenced to the average of
the mastoids and bandpass filtered between 0.1 Hz and 30 Hz (Butter-
worth order 2). First, changes in signal amplitude exceeding 100 �V/500
ms were automatically detected. Then data were visually inspected for
remaining nonstereotyped artifacts; corresponding channels and signal
segments were excluded from further analysis. Stereotyped eye-
movement artifacts (e.g., blinks) were kept in the data to be removed in a
later step by means of independent component analysis (ICA).

Data were further preprocessed using custom routines and functions
from the free and open source EEGLAB toolbox (v9, http://sccn.ucsd.
edu/eeglab/; Delorme and Makeig, 2004) written in MATLAB (Math-
Works). Signals were cut into time-segments from 	1000 to 2000 ms
with respect to reaching-movement onset and then downsampled to 256
Hz to be submitted to a temporal ICA using the infomax algorithm (Bell
and Sejnowski, 1995). The resulting 64 independent components (ICs)
corresponding to the 64 input channels were visually screened to identify
(based on their topographies and time courses) the ICs corresponding to
eye-blinks. New EEG signals, exempt from these stereotyped artifacts,
were obtained by backprojecting the ICs into the channel space removing
the identified ICs; the latter data were used to compute the ERPs.

ERPs. For each participant, two types of ERPs were computed: (1)
deflections induced by the kinematic error (ERP-K), obtained by time
locking EEG activity to the movement onset, and (2) waveforms related
to the visual feedback about movement-duration time locked to the color
change of the donut. The ERPs were analyzed in a time window from
	500 to 1000 ms relative to the selected time locking point. ERP-Ks were
computed for each trial category, No_PD, Small_PD, Medium_PD, and
Large_PD, and feedback-related waveforms were obtained for too fast
and correct duration trials, from which the FRN (difference wave be-
tween punishments and reward) was computed. Because eight partici-
pants produced very few too slow movements (�15 trials), we excluded
this type of trials from the analyses. On average, to compute the individ-
ual ERP-Ks, 75 No_PD, 75 Small_PD, 73 Medium_PD, and 71 Large_PD
trials were retained. The FRNs were obtained based on 132 fast and 145
correct trials on average. For both kinds of ERPs, the baseline value was
computed from the 200 ms preceding the respective onset point. As a
control, we also calculated the FRN using the 200 ms before movement
onset as baseline. Because very similar results were obtained for both
baseline windows, we present only the FRN computed using the 200 ms
before the visual feedback (donut color change) as baseline.

As a control, we also computed the ERP-K using a different time
locking procedure. Indeed, it seems reasonable to assume that the time at
which a kinematic error signal is issued varies with the amplitude of the
hand-path deviation; the larger the PD the earlier the hand-path devia-
tion should be perceived. In addition, the time at which the hand is
deviated to a given x-position and an error-signal is issued should be
more variable for small than for large perturbations (Fig. 3B). To discard
the possibility that this underlied the variation in amplitude of the ERP-K
across conditions (a better signal-alignment achieved for the large per-
turbation conditions), we computed ERP-Ks locked to the time at which
the hand was deviated to the x-position 	 mean PD of the unperturbed
trials � 0.5 cm. The results were very similar to those obtained when time
locking the EEG signals on movement onset, and therefore will not be
presented here.

ERP analysis. We tested whether the amplitudes of the ERP-K were
modulated by the size of the kinematic error. Statistical ERP analyses
were restricted to the activity recorded at electrode FCz, where the max-
imum of the negative component was recorded. For each perturbed con-
dition (Small_PD, Medium_PD and Large_PD), in a time window from
200 to 350 ms after movement onset, we identified the time-point at
which the associated ERP became significantly different from the wave-

form corresponding to the No_PD trials. Specifically, on the individual
ERPs and for each condition Small_PD, Medium_PD, and Large_PD, a t
test comparing the perturbed with the No_PD condition was computed
at each time-point. The first time-point for which the p value was �0.05
for at least 20 consecutive sampling points (�19.5 ms) was selected
(Luck, 2005) as the start of a 30 ms window over which the signal-
amplitude was averaged. In Figure 4A, the topographies are shown for the
center of the averaging windows indicated by arrowheads. The mean
amplitudes were submitted to a repeated-measures ANOVA with type of
trials (Small_PD, Medium_PD, and Large_PD) as within-subject factor.
Huyn–Feldt correction was applied whenever appropriate.

For each participant, difference waves were also obtained by subtract-
ing the activity observed in the No_PD trials from the ERP-Ks observed
for the perturbed trials. For these waveforms, mean amplitudes were
computed in 30 ms windows centered on the negativity peak identified
on the grand average curves (see Figs. 4B, 5B, arrowheads) and analyzed
as previously described.

In addition, to investigate the relationship between the ERP-K and the
FRN, we looked at the correlations between the latencies of the negative
and positive components of the two types of ERPs across all 15 partici-
pants. In this purpose, we considered the difference waves Large_PD 	
No_PD and Fast 	 Correct obtained for each participant (Fig. 4D).

For all tests, significance threshold was set at 0.05; for post hoc t tests a
Bonferroni correction was applied. The same analyses were applied to the
independent component identification (IC-ERPs) computed as de-
scribed below.

IC-ERPs. ICA was used to perform a blind source separation of the
signal (Makeig et al., 1997). Our aim was to first identify for each indi-
vidual the IC(s) that would account for a substantial part of the ERP-K
profiles, and then to quantify the proportion of the FRN that could be
accounted for by the selected ICs. This procedure was intended to inves-
tigate the similarities between the ERP-K and the FRN (Makeig et al.,
2004; Debener et al., 2005a,b; Onton et al., 2006; Gentsch et al., 2009;
Roger et al., 2010; Wessel et al., 2012). In this purpose, we used the
automated ICs selection procedure proposed by Wessel and Ullsperger
(2011) and implemented as the free and open source MATLAB toolbox
COMPASS (http://jrw.lima-city.de/e_compass.htm).

Before being submitted to the COMPASS algorithm, ICs (that were
obtained from the EEG-preprocessing step) were screened as recom-
mended by Wessel et al. (2012, 2013). Namely, in addition to ICs repre-
senting eye-blink artifacts already removed, components unlikely to
represent meaningful event-related activity were excluded from the se-
lection process. Using the DIPFIT2.2 plug-in for EEGLAB, all ICs with
dipole solutions outside the brain, and with a residual variance larger
than 15% for both one and two dipole solutions were identified. Further,
ICs corresponding to electrode artifacts, characterized by maps with ex-
tremely focal activity, were identified using the Grubbs’ iterative test for
outliers implemented in COMPASS with a threshold set to p � 0.0001.
The results of these automatic classification procedures were visually
checked for inaccuracies (no manual rectification was needed). The re-
maining nonartifactual ICs were subjected to the COMPASS routine.

To identify the IC(s) driving substantial portion of the ERP-K profiles,
we derived spatiotemporal templates from the difference wave obtained
by subtracting the ERPs observed for the unperturbed (No_PD) trials
from the ERPs for the most perturbed (Large_PD) trials (see Wessel and
Ullsperger, 2011). Specifically, for each individual we input a 300-ms-
wide time window centered about the peak of negativity. The ERP topog-
raphies observed at the window-center time-point was used to identify
electrode sites of maximal activity, from which the relevant time courses
were extracted (Wessel and Ullsperger, 2011). On average, 1.6 ICs (range,
1–3) were identified per participant. We also proceeded to the selection
of the ICs using as template the ERP observed in the most perturbed
(Large_PD) trials (centering the time-range about the same time-point as
the windows used for the ERP-profile statistical analyses). In this case, 1.7
ICs per participants were selected. (63% of independent components
were selected for both templates).

New individual EEG signals were obtained based on the activity ac-
counted for by the selected ICs by backprojecting the IC(s) into channel
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space. From the reconstructed EEG, IC-ERP-K and IC-FRN were com-
puted by proceeding in the same way as for the original ERPs.

Source reconstruction. We used an imaging approach to reconstruct the
sources of the evoked responses. We performed a distributed cortical
source reconstruction for the ERP-K difference-waveforms and the FRN.
Inversion was performed on the individual curves; for each participant,
for the two types of ERPs and for both negative and positive components,
a 300 ms time-window centered on the peak of activity was used. We used
head meshes describing the boundaries of different head compartments
(scalp, inner skull, and cortical sheet) based on the MNI template pro-
vided with SPM8 (Mattout et al., 2007). The EEG data and the MNI
templates were coregistered using the nasion and preauricular fiducials,
as well as the recorded electrode locations. Group inverse solutions were
obtained using the empirical Bayesian approach implemented in SPM8
(Mattout et al., 2006), using the multiple sparse prior model (Friston et
al., 2008). For the ERP-Ks, inversion for all three difference curves (cor-
responding to the different types of trials) was performed together; only
the results for the Large_PD 	 No_PD curve will be presented here.

Following inversion, for each individual and each ERP type a 150-ms-
wide time window (centered in the inversion window) was extracted. For
each time sample, we identified the cortical points (cortical sheet vertices
or dipolar sources) where activation exceeded some specified threshold,
given the data, according to the posterior probability maps provided by
the Bayesian inversion (Friston and Penny, 2003). This method that was
originally defined for transepithelial potential and fMRI processing has
been transposed to M/EEG only recently (Albouy et al., 2013). As the data
were difference curves, we considered a zero-value threshold. This ap-
proach presents two main advantages: First, it provides inference at the
3D cortical surface of each individual, as a result of the Bayesian inver-
sion; second, it is not submitted to the multiple-comparison problem
because the probability that an activation has occurred, at any particular
cortical vertex, is the same, irrespectively of whether only that vertex or
the entire brain is analyzed (Friston and Penny, 2003). For each time
sample of the time windows of interest, we used PPMs with a threshold of
5% of false positive at most, Bonferroni-corrected across participants.

This step provided for each participant and each time sample a list of
cortical dipoles (vertices) significantly activated. For each participant, we
identified the vertices with activity emerging for at least 26 consecutive
sampling time-points (�25.4 ms). We retained the vertices that showed
significant activation in at least 10 of 15 participants. For visualization
purposes, the individual meshes were then converted into 2 � 2 � 2 mm
voxel images.

Results
In the present study, we wanted first to determine whether move-
ment execution errors, induced by unpredictable changes in the
force condition, were associated with a frontocentral activity
whose amplitude was modulated by the size of the kinematic
error. In addition, to investigate its properties, we compared this
kinematic-error-related ERP with another frontocentral ERP
well described in the literature: the FRN.

Behavioral performance
Data from a representative participant are plotted in Figure 3A.
During the adaptation phase, upon initial exposure to the new

A
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D

Figure 4. ERPs related to the kinematic errors (ERP-K) and to the movement-duration feed-
back (FRN). A, Grand average ERP-Ks for the four categories of trials, No_PD, Small_PD, Medi-
um_PD, and Large_PD, at the FCz electrode. Topographies are shown at the center of the 30 ms

4

signal-amplitude averaging-windows indicated by arrowheads (see Materials and Methods). B,
Grand averages of the ERP-K difference-waveforms corresponding to the three categories of
perturbed trials, Small_PD, Medium_PD, and Large_PD conditions. In each case, the topogra-
phies are shown at the peak of the negativity (arrowheads). For the Large_PD 	 No_PD
difference curve, the topography at the positivity peak is also presented. C, Grand averaged of
the FRN (fast 	 correct difference curves). Topographies are shown at the negativity- and
positivity-peak latencies (arrowheads). D, Scatter plots showing the relation between the la-
tencies of the negative and positive components of the two types of ERPs. Within-subject
correlations have been calculated between the peak latencies identified on the difference
waves Large_PD 	 No_PD (ERP-K) and fast 	 correct (FRN).
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force environment, movements were substantially perturbed.
However, participants easily learned to compensate for the force-
field, and rapidly (within 10 –15 trials) their hand paths became
straighter. During the experimental phase, all participants made
kinematic errors of variable sizes when the force-field was unex-
pectedly reduced to � � 6, 3, or 0. No sign of movement on-line
correction was observed, as illustrated by the individual hand
paths plotted in Figure 3B. Amplitudes of the induced hand-path
deviations observed at the group level for the different conditions
(No_PD, Small_PD, Medium_PD, Large_PD) are presented in
Figure 3C.

The trial categories differed as for hand-path length and du-
ration, measures that also reflect kinematic error (F(3,42) � 5.41,
p � 0.003 and F(3,42) � 11.2, p � 0.001, respectively). Large_PD
trials presented longer hand paths than Medium_PD trials
(t(14) � 	3.74, p � 0.001), and Medium_PD longer hand-paths
than Small_PD trials (t(14) � 	2.9, p � 0.02). Increased dura-
tions were observed for Large_PD relative to Medium_PD trials
(t(14) � 	3.81, p � 0.001), and Medium_PD relative to Small_PD
trials (14) � 	3.11, p � 0.02).

ERP data
The analyses of the ERPs time locked to movement onset (ERP-
Ks) revealed that kinematic errors elicited a frontocentral nega-
tive potential (Fig. 4A). This deflection was clearly visible in the
Large_PD and Medium_PD trials, reaching its maximum at FCz
�270 ms and 305 ms after movement onset, respectively. Note
that to localize the negativity peaks, we considered a 150-ms-wide
window from 200 ms to 350 ms after the movement onset (see
Materials and Methods). For the Small_PD trials, however, activ-
ity was clearly lateralized between C1 and C3, as for the unper-
turbed movements (No_PD trials). The topographies shown in
Figure 4A for the Large_PD and Medium_PD conditions corre-
spond to the center of the 30 ms averaging time-windows defined
for the comparison tests (see Materials and Methods). As there
was no significant difference between the No_PD and the
Small_PD trials, an averaging-window could not be defined in
the same way; for this latter condition we chose to use the same
time window as for the Medium_PD condition.

To test whether the amplitude of the ERP-K was modulated by
the size of the kinematic error, we compared the mean ampli-
tudes (averaged over the 30 ms windows) for the three levels of
deviation; 	6.9 �V (window � 263 � 15 ms), 	5.4 �V (300 �
15 ms), and 	3.8 �V (300 � 15 ms) for the Large_PD, Medi-
um_PD and Small_PD conditions, respectively. A repeated-
measures ANOVA revealed a significant effect of error
magnitude on the ERP-K amplitude (F(2,28) � 8.14, p � 0.0016).
Post hoc comparisons indicated that ERP-Ks were larger in the
Large_PD than in the Small_PD condition (t(14) � 	4.02, p �
0.001). The difference between Large_PD and Medium_PD was
marginally significant (t(14) � 	2.33, p � 0.051), while the am-
plitude of the ERP-K did not differ between Medium_PD and
Small_PD (t(14) � 	1.69, p � 0.2).

As can be seen in the grand average curves presented in Figure
4A, the ERP-K presented a large negative wave akin to a slow-
moving negative potential that has been shown to be associated
with the preparation and execution of a movement (movement-
monitoring potential; Grünewald-Zuberbier and Grünewal,
1978). To remove this component, present in all trials regardless
of kinematic error, we considered difference waves obtained by
subtracting the activity observed in the No_PD trials from the
ERP-Ks observed for the perturbed trials (Fig. 4B). The difference
waves observed at FCz showed that movement-execution errors

were associated with a negative deflection, followed by positivity.
Comparing the topographies in Figure 4A,B, one sees how com-
puting the difference waves resulted in recentering the scalp dis-
tributions. The two components were the most marked in the
grand average Large_PD 	 No_PD difference curve, with a neg-
ative deflection peaking at FCz �290 ms (	3.0 �V) and a posi-
tivity maximum at Cz at 472 ms (peak amplitude � 3.5 �V). For
the Medium_PD and Small_PD conditions, the difference curves
presented a negativity peaking at 308 ms (	1.7 �V) and 380 ms
(	0.3 �V), and a positive deflection �490 ms (1.6 �V) and 544
ms (1.7 �V), respectively. The amplitude of the negativity dif-
fered significantly across the three conditions (F(2,28) � 4.711,
p � 0.017), with a larger amplitude for the Large_PD condition
than for the Small_PD condition (t(14) � 	2.99, p � 0.008, other
pairwise comparisons did not reach significance). For most par-
ticipants, positivity peaks could not be identified for all condi-
tions, and thus were not submitted to the same analysis. Figure
4C shows the profiles of the grand-average ERPs corresponding
to the difference waveform fast– correct (see Materials and Meth-
ods). The latter presented a profile consistent with previous de-
scriptions of the FRN, with a negativity peaking �310 ms (	2.7
�V) followed by a large positivity reaching its maximum �455
ms (9.8 �V) after the visual feedback. Both positive and negative
components had central topographies peaking at Cz and FCz,
respectively.

Comparing the ERP-K (Fig. 4B) with the FRN (Fig. 4C), one
sees the similarity between the two types of waveforms; in both
cases, a frontocentral negativity was followed by a positive deflec-
tion. Examining the topographies, one may notice however slight
differences; the ERP-K presenting a slightly more anterior nega-
tivity (around FCz) than the FRN (around Cz), whereas the pat-
tern was reversed for the positivity (more anterior for the FRN).
In addition, whereas the time courses of the two ERPs were quite
similar, the positivity was substantially larger for the FRN than
the ERP-K. In addition, a second negative peak was visible in the
ERP-K that was absent in the FRN waveform. Considering the
two difference waveforms Large_PD 	 No_PD (Fig. 4B, violet
curve) and fast– correct (Fig. 4C) for the 15 participants, a signif-
icant correlation between the negativity-peak latencies was ob-
served (r � 0.53, p � 0.04; Fig. 4D, left), whereas the positivity
latencies were not correlated (r � 	0.11, p � 0.69; Fig. 4D, right).

In addition, as our aim was to compare two ERPs both elicited
by an external error signal (the FRN evoked by a discrete perfor-
mance feedback, and the ERP-K elicited by kinematic errors vary-
ing continuously in magnitude) it was important to ensure the
external nature of the error signal driving the FRN. In this pur-
pose, we computed additional ERPs. We regrouped the per-
turbed trials (in which movement-duration feedback was
uninformative, kept constant), according to movement duration:
perturbed–fast (duration � 375–50 ms), perturbed– correct
(375–50 ms � duration � 375 � 50 ms) and movement-trials
performed too slowly (duration � 375 � 50 ms) discarded here.
We locked the corresponding EEG signals to the time at which the
fingertip of the participant reaches the outer ring (corresponding
to the time of the movement-duration feedback in the unper-
turbed trials), and computed the ERP-difference perturbed–fast-
perturbed– correct. The resulting difference wave did not present
any significant negative deflection (t(14) � 0.81, p � 0.43) in
contrast to the FRN (t(14) � 	6.16, p � 0.001). (The same 30 ms
time-window was used for both tests, centered on the negativity
peak present in the FRN). These results permit to rule out the
possibility of the FRN to be driven by an internally generated
error signal.
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IC-ERP data
The profiles of the IC-ERP-K were highly
similar to those of the ERP-Ks (compare
Figs. 4A, 5A), accounting for 96.3, 97.4,
94.2, and 97.8% of the variance of the
original ERPs for the No_PD, Small_PD,
Medium_PD, and Large_PD condition,
respectively; suggesting that the ICs were
properly selected.

The error-related negative deflection
was clearly visible for the Large_PD and
the Medium_PD condition (Fig. 5A),
reaching its maximum at FCz, 254 ms
(	2.9 �V), and 297 ms (	2.3 �V) after
the movement onset, respectively. In Fig-
ure 5A, the topographies of the IC-ERP-K
are presented at the center of the averag-
ing window (see Materials and Methods).
Importantly, as for the original ERP-Ks,
the amplitude of the IC-ERP-K fronto-
central negativity was modulated by the
size of the kinematic error; a repeated-
measures ANOVA revealing a significant
effect of kinematic-error magnitude on
the amplitude of the negativity at FCz
(F(2,28) � 3.7, p � 0.03). Post hoc compar-
isons showed that Large_PD trials were
associated with significantly larger nega-
tivity than Small_PD trials (t(14) � 2.81,
p � 0.013; other pairwise comparisons
did not reach significance).

One may notice that the large left-
lateralized negativity starting before move-
ment onset, that characterized the original
ERP-Ks, was also partly reproduced. In-
deed, as the ICA decomposes the raw EEG
signal into a set of temporally maximally
independent components, expectedly dis-
tinct ICs were not obtained accounting re-
spectively for the negativity related to the
kinematic-error and the negativity related
to movement production (movement-
monitoring potential). Indeed, these two
events are here intrinsically temporally
correlated. Thus, as for the original
ERP-K, we computed difference waves,
which again resulted in recentering the
scalp distributions and highlighting a neg-
ative wave, peaking at 293 ms followed by
a positive deflection, maximal at 437 ms,
for the Large_PD condition (compare Fig.
4B and Fig. 5B). For the Medium_PD and
the Small_PD conditions, the negative de-
flection was also observed, maximum at
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Figure 5. IC-ERPs obtained from the EEG signals reconstructed from the ICs related to the processing of the kinematic errors (see
Materials and Methods). IC-ERP-Ks were calculated by time locking the new signals on the onset of movement and IC-FRNs were
obtained by time locking on the presentation of the movement-duration feedback. A, Grand average IC-ERP-Ks for the four
categories of trials, No_PD, Small_PD, Medium_PD, and Large_PD, at the FCz electrode. Topographies are shown at the center of
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the 30 ms signal amplitude averaging-windows indicated by
arrowheads (see Materials and Methods). B, Grand averages of
the 15 individual IC-ERP-K difference waveforms for the three
categories of perturbed trials. Topographies are shown at the
peak latencies (arrowheads). C, Grand averaged of the IC-FRN
(fast 	 correct difference curves). Topographies are shown at
the negativity- and positivity-peak latencies (arrowheads).
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301 ms and 367 ms, respectively, whereas the positive component
could not be clearly identified (Fig. 5B).

To quantify the portion of the FRN that could be accounted
for by the ICs related to the processing of the kinematic errors, we
time locked the reconstructed EEG signals on the movement-
duration visual feedback (donut color change) and computed new
IC-FRNs. The grand-average of the difference curve fast–correct, ob-
tained by subtracting for each participant the ERP related to the
correct movement-duration trials from the wave associated with
the too fast trials, is depicted in Figure 5C at the FCz electrode. A
negative deflection peaks at 328 ms after the presentation of the
feedback; followed by a positive deflection at 457 ms. Interest-
ingly the IC-FRN is very similar to the original FRN, accounting
for 91% of the variance of the original ERP. In addition, as for the
original FRN, activity estimated over a 30 ms window centered on
the negativity peak differed significantly from baseline (t(14) �
	3.048, p � 0.008).

Localization
For each participant, we performed a distributed cortical source
reconstruction for the difference-waveforms Large_PD 	
No_PD (ERP-K) and fast– correct (FRN). No spatial constraint or
assumption was applied. Figure 6 shows, for each type of ERPs,
the regions that showed increased activity for at least 10 of the 15
participants; the coordinates of the centroids of the clusters are
listed in Table 1. Results suggest that common sources were in-

volved in the generation of both ERPs;
almost all consistent with previous litera-
ture reports about Ne/ERN and FRN gen-
erators (Walsh and Anderson, 2012;
Hauser et al., 2014). Namely, shared
sources might be located in the pre-SMA
(Dehaene et al., 1994; Wessel et al., 2012),
as well as in the IFG (Wessel et al., 2012;
Hauser et al., 2014) in the right hemi-
sphere. Also, activity in medial precentral
regions (Wessel et al., 2012, Hauser et al.,
2014) and areas located at the junction of
the paracentral lobule and the precuneus
(Hauser et al., 2014) might contribute to
the generation of both ERPs. In addition
to frontal structures, our findings also
suggest the involvement of occipital re-
gions (Roger et al., 2010). Given the
clearly different nature of the error sig-
nals, differences in the source patterns
were also expected. In particular, different
patterns of activation of visual regions
could be noticed. Activations that appear
to be specific to each ERP are listed in Ta-
ble 1(middle and bottom).

Discussion
We identified a frontocentral waveform
(ERP-K) whose amplitude is modulated
by the size of hand-path deviations in-
duced by unpredictable mechanical per-
turbations. A strong similarity in timing
and source-location between the ERP-K
and the FRN elicited by the feedback
about movement-duration points to
common sources involved in the process-
ing of sensory-prediction errors and in the
processing of reward-prediction errors.

Two different interpretations can be proposed. The first interpre-
tation is that sensory-prediction errors constitute negative feed-
backs for the nervous system (as defined in reinforcement
learning theories). Another possibility is that sensory- and
reward-prediction errors both constitute surprising events, inde-
pendent of a valence dimension.

A frontocentral ERP modulated by the magnitude of
kinematic errors
The spatial and temporal constraints of the reaching task ensured
that participants experienced kinematic errors without having the
opportunity to correct their movements (Tseng et al., 2007). This
allowed us to demonstrate unambiguously that the amplitude
of the ERP-K was related to the size of kinematic errors, and
not to online movement-corrections (Anguera et al., 2009).
Indeed, visual inspection of the hand trajectories revealed no
corrective submovements, even in the late part of the reaches.
Additionally, we precluded adaptation to develop over trials
by using unpredictable, interspersed catch trials. Our purpose
was to dissociate variation in the size of the kinematic errors
from any adaptive error-reduction process, as this confound
would have complicated the interpretation of the results (Vo-
cat et al., 2011).

Our results are consistent with previous work, suggesting that
the performance-monitoring system classically investigated in

Figure 6. For the difference waves Large_PD 	 No_PD (ERP-K) and fast 	 correct (FRN), regions showing significant
activation in at least 10 of the 15 participants (see Materials and Methods). Areas are indicated in violet for the ERP-K, in
green for the FRN, and regions overlaps are indicated in brown. The coordinates of the centroids of the clusters are listed in
Table 1. IFG, Inferior frontal gyrus; LOC, lateral occipital cortex; PG, precentral gyrus; PL, paracentral lobule; SFG, superior
frontal gyrus.

Torrecillos et al. • Sensory and Reward-Prediction Errors Processing J. Neurosci., April 2, 2014 • 34(14):4845– 4856 • 4853



cognitive tasks does not function according to an all-or-nothing
rule. In their seminal study, Gehring et al. (1993) already showed
that the amplitude of the Ne/ERN was modulated by the speed-
versus-accuracy emphasis. The influence of several other factors
has since been demonstrated, among which are response-
similarity (Gehring and Fencsik, 2001) and response-accuracy
judgment (Scheffers and Coles, 2000). Parametric modulation
has also been demonstrated for the FRN. According to the rein-
forcement learning theory, the amplitude of this potential
changes as a function of the size of the reward-prediction errors;
the difference between the values of actual and expected out-
comes (Schultz, 2007). In agreement with this assumption, many
studies have found that FRN amplitude is inversely related to
outcome likelihood (Walsh and Anderson, 2012), but the rela-
tionship between reward magnitude and FRN amplitude has not
been demonstrated yet. It has been suggested that separate brain
systems represent reward probability and reward magnitude
(Walsh and Anderson, 2012).

It is central to note that the response itself remained categor-
ical in nature (e.g., success or failure) in these previous studies
and the amplitude of the negative wave did not reflect the mag-
nitude of the error (inaccuracy of the response) itself. In contrast,
the amplitude of the ERP-K in the present study is directly mod-
ulated by the size of the sensory encoded kinematic-error.

Are sensory-prediction error signals processed as
negative feedbacks?
The reinforcement learning theory accounts for the FRN in terms
of reward-prediction error-signals that arise from the dopamine
system and arrive at the anterior cingulate (Holroyd and Coles,
2002). In this framework, the similarities between the ERP-K and
the FRN would indicate that discrepancies between intended and
actual movements are processed as negative feedbacks by the
nervous system. In our experiment, the explicit goal of the task
was to execute movements with correct durations. Interestingly, a
negative potential (ERP-K) akin to the FRN was evoked by the
mismatches between the predicted and the observed sensory con-
sequences produced by the mechanical perturbation, even
though participants were not penalized for not moving straight
ahead. It is therefore possible that the neural mechanisms in-
volved in the processing of sensory-prediction errors and driving
motor learning overlap with the mechanisms implicated in learn-
ing from reward-prediction errors.

Decision-making theories and motor-control models have
long remained blind to each other. Only recently have theoretical
frameworks been developed that integrate concepts issued from
both fields (Trommershäuser et al., 2008; Friston et al., 2009,
2011; Rigoux and Guigon, 2012). In particular, until very recently
most studies in motor learning have almost exclusively focused
on adaptation driven by sensory-prediction errors and have been
assumed to occur regardless of motivation factors (Shadmehr et
al., 2010).

Recent work has started exploring different forms of motor
learning (Huang et al., 2011; Izawa and Shadmehr, 2011). Izawa
and Shadmehr (2011) showed that participants can adapt to a
visuomotor perturbation based solely on a binary feedback (suc-
cess or failure) without experiencing sensory-prediction errors
(no visual feedback on hand trajectory). They also observed that
binary error signals alone do not induce sensory remapping.
From these findings, these authors concluded that distinct neural
mechanisms are engaged in learning from sensory-prediction
and reward-prediction errors. However, although their findings
confirm that different types of error-signals induce different pat-
terns of sensorimotor adaptation (that sensory mismatch is nec-
essary to induce sensory remapping), they are not incompatible
with the idea that a common neural network might be involved in
the processing of sensory-prediction errors and reward-
prediction errors. Indeed, their findings allow for the notion that
discrepancies between intended and actual movement may in
themselves be experienced as unpleasant events (may be related
to a feeling of losing control), even if they are not directly related
to the explicit goal of the task.

Do the kinematic-error related ERP and the FRN reflect a
common surprising event detection system?
An alternative interpretation of the similarity between the ERP-K
and the FRN is that both potentials reflect the effect of surprise
evoked by all outcomes, positive or negative, violating expecta-
tions. In our task, this could be the case for the large FRN that
follows negative feedbacks on movement duration, as well as for
the ERP-K that could reflect the surprise evoked by the sudden
introduction of a mechanical perturbation in a catch-trial.

This would fit with an increasing number of studies contra-
dicting the assumption by Holroyd and Coles (2002) that the
FRN amplitude reflects signed reward-prediction error (Oliveira
et al., 2007; Alexander and Brown, 2011; Chase et al., 2011; Talmi
et al., 2012). In a seminal study, Oliveira et al. (2007) showed that
the FRN is elicited by unexpectedness rather than by negative

Table 1. Coordinates of the centroids of the clusters showing significant activation
(see Materials and Methods) for at least 10 of 15 participants

Anatomical region Hemisphere X Y Z

Regions activated for the ERP-k and the FRN
Inferior frontal gyrus pars triangularis R 45 36 6
Superior frontal gyrus (pre-SMA) L 	15 16 59
Precentral gyrus R 25 	22 58
Precentral gyrus L 	31 	24 58
Paracentral lobule / precuneus R 11 	36 73
Paracentral lobule / precuneus L 	10 	36 73
Lateral occipital cortex inferior R 41 	81 	10
Lateral occipital cortex inferior L 	30 	93 	18
Lateral occipital cortex superior R 14 	96 18
Lateral occipital cortex superior L 	12 	96 22

Regions activated for the ERP-K only
Superior frontal gyrus (vmPFC) R 19 61 10
Superior frontal gyrus (dmPFC) R 16 32 50
Superior frontal gyrus (dmPFC) L 	13 31 49
Superior frontal gyrus (pre-SMA) R 16 18 54
Inferior frontal gyrus pars triangularis L 	47 34 5
Inferior frontal gyrus pars opercularis L 	55 4 6
Superior temporal gyrus L 	59 	40 10
Inferior temporal gyrus R 55 	29 	27
Inferior temporal gyrus L 	52 	29 	30
Superior parietal lobule R 28 	52 64

Regions activated for the FRN only
Superior frontal gyrus (vmPFC) L 	16 60 10
Superior frontal gyrus (SMA) R 16 9 69
Superior frontal gyrus (SMA) L 	16 	7 68
Middle frontal gyrus (dlPFC) R 36 9 54
Middle frontal gyrus (dlPFC) L 	35 10 54
Prencentral gyrus R 57 7 30
Superior temporal gyrus R 60 	11 	5
Superior temporal gyrus L 	56 	9 	5
Supramarginal gyrus R 60 	26 35
Supramarginal gyrus L 	58 	26 33

Top, For both the ERP difference waves. Middle, For the Large_PD 	 No_PD (ERP-K) wave only. Bottom, For the
fast 	 correct (FRN) difference curve only. vmPFC, Ventro-medial prefrontal cortex; dmPFC, dorso-medial prefrontal
cortex; pre-SMA, pre-supplementary motor area; SMA, supplementary motor area; dlPFC, dorso-lateral prefrontal
cortex.
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feedback. Recently, Hauser et al. (2014) investigated localization
of the FRN generators using concurrent EEG-fMRI recording.
Their findings contradict earlier theories about the network or-
ganization of the FRN and are in line with a recent theory that
dopamine neurons also encode surprise-like saliency signals
(Matsumoto and Hikosaka, 2009; Bromberg-Martin et al., 2010a,
2010b), which are most probably also projected to the ACC
(Bromberg-Martin et al., 2010b).

Alexander and Brown (2010, 2011) proposed a computational
model that generalizes the standard reinforcement learning the-
ory and successfully simulates the FRN deflection based on
surprise-signals. These authors intend to offer a unifying frame-
work robust enough to reconcile and account for the diversity of
medial prefrontal cortex (mPFC) effects that have been observed
with a broad range of methods. In their model, the mPFC, and
especially dorsal regions, may be central to forming expectations
about actions and detecting surprising outcomes.

In this framework, the ERP-K and the FRN that we observed
could both arise from a similar network implicated in the gener-
ation of the frontocentral negativities commonly described as the
Ne/ERN, correct-related negativity (Vidal et al., 2000), FRN, and
N2. Recently, a parsimonious interpretation proposed that be-
hind the specific spatio-temporal features of these ERPs, they all
reflect a single frontal midline theta-rhythm sensitive to mis-
match signals in the service of behavioral adaptation (Cavanagh
et al., 2012).

Further research
A central issue still remains open: how do frontocentral negativi-
ties relate to learning? Concerning the FRN in particular, findings
remain ambiguous. For instance, it has been shown that the size
of the FRN following negative outcomes correlates with the prob-
ability that participants will not repeat the punished response in
the next trial (Yasuda et al., 2004; Cohen and Ranganath, 2007;
van der Helden et al., 2010). However, these results do not dem-
onstrate a direct relation between the FRN and learning pro-
cesses; the system that generates the FRN might be influenced by
expectation, which shapes behavior. Also, not all studies report
concomitant electrophysiological and behavioral variations; the
FRN sometimes remains constant throughout learning as re-
sponse accuracy increases (Holroyd and Coles, 2002; Eppinger et
al., 2009; Bellebaum et al., 2010).

In the present study, the experimental design we used was
intended to allow dissociating error-processing from motor-
correction mechanisms. Based on our results we cannot deter-
mine whether the error-related ERP (ERP-K) reflects the coding
of the importance of the action failure (the amount of the dis-
crepancy between intended and actual movement) or if it rather
corresponds to a content-free unspecific alert signal proportional
to the degree of surprise. In particular, we found no significant
difference between the ERP-K observed in the slightly perturbed
trials (Small_PD trials) relative to the unperturbed trials. As it has
been shown that sensory-motor adaptation occurs even if errors
are too small to be consciously noticed (Malfait and Ostry, 2004),
this raises the issue of the involvement of this ERP in motor
learning processes. Further research is needed to establish
whether this frontocentral negativity scales with the necessary
motor-command adjustment; that is, whether it carries informa-
tion used in the selection of muscle-activation patterns in forth-
coming movements.

Consistent with previous research, unpredictable changes in
the force-field amplitude, in addition to kinematic errors in the
catch trials, induced adaptive responses observable in subsequent

trials (data not shown) visible as slight hand-path deviations in
the opposite direction (Thoroughman and Shadmehr, 2000). In
future studies, we will need to dissociate the amplitude of the
experienced kinematic-error (prediction-error) from the ampli-
tude of the force-pattern adjustment (learning) observed in sub-
sequent trials (Diedrichsen et al., 2005) to determine whether the
ERP-K relates to motor adaptation processes or corresponds to
an unspecific orienting response.
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