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Neuronal oscillations are ubiquitous in the brain and contribute to perception and attention. However, most associated evidence derives
from post hoc correlations between brain dynamics and behavior. Although a few recent studies demonstrate rhythms in behavior, it
remains largely unknown whether behavioral performances manifest spectrotemporal dynamics in a neurophysiologically relevant
manner (e.g., the temporal modulation of ongoing oscillations, the cross-frequency coupling). To investigate the issue, we examined fine
spectrotemporal dynamics of behavioral time courses in a large sample of human participants (n � 49), by taking a high time-resolved
psychophysical measurement in a precuing attentional task. We observed compelling dynamic oscillatory patterns directly in behavior.
First, typical attentional effects are demonstrated in low-pass (0 –2 Hz) filtered time courses of behavioral responses. Second, an unin-
formative peripheral cue elicits recurring �-band (8 –20 Hz) pulses in behavioral performances, and the elicited � pulses for cued and
uncued conditions are in a temporally alternating relationship. Finally, ongoing �-band power is phase locked to ongoing �-bands (3–5
Hz) in behavioral time courses. Our findings constitute manifestation of oscillations at physiologically relevant rhythms and power-
phase locking, as widely observed in neurophysiological recordings, in behavior. The findings suggest that behavioral performance
actually consists of rich dynamic information and may reflect underlying neuronal oscillatory substrates. Our data also speak to a neural
mechanism for item attention based on successive cycles (�) of a sequential attentional sampling (�) process.
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Introduction
Neuronal oscillations are ubiquitous in brain signals at disparate
spatial scales and have been proposed to be closely associated
with various cognitive functions (Buzsaki, 2006). For example,
converging evidence from neurophysiological recordings dem-
onstrate that neuronal �-band (30 –70 Hz) rhythms subserve
attention and perception processes, by means of binding-by-
synchronization or communication-by-coherence (Desimone
and Duncan, 1995; Singer and Gray, 1995; Siegel et al., 2008).
Moreover, numerous electroencephalography (EEG) studies and
neurophysiological recordings reveal prominent �-band (8 –13
Hz) rhythms and disclose its suppressive nature in selective visual

attention (Worden et al., 2000; Ward, 2003; Thut et al., 2006;
Händel et al., 2007; Klimesch et al., 2007; Palva and Palva, 2007;
Bollimunta et al., 2008, 2011; Mo et al., 2011; Rohenkohl and
Nobre, 2011). In addition, �-band (3– 8 Hz) rhythms have been
suggested to mediate perception, memory, and attention (e.g., Lis-
man and Idiart, 1995; Landau and Fries, 2012; Luo et al., 2013).
Importantly, oscillatory phase mediates perception (Busch and
VanRullen, 2010), sensory stream processing (Luo and Poeppel,
2007, 2012; Luo et al., 2010; Kayser et al., 2012; Ng et al., 2012),
attention (Schroeder and Lakatos, 2009), and memory formation
(Luo et al., 2013) by modulating cortical excitability in a cyclic
manner (Thut et al., 2012) and segmenting inputs into appropri-
ate chunks in time (Giraud and Poeppel, 2012).

On the other hand, because of the inherent temporal limita-
tions of conventional psychophysical methods, most behavioral
studies assess attentional processes at a much coarser temporal
scale and therefore cannot access possible rapid fluctuations in
behavioral performance. Indeed, most associated evidence sup-
porting the central role of brain oscillations is built upon post hoc
relationships between recorded brain oscillations and behavioral
performances. Recently, a few studies have demonstrated rhythms in
psychophysical measurements (Fiebelkorn et al., 2011; VanRullen
and Dubois, 2011; Landau and Fries, 2012; de Graaf et al., 2013)
and suggested that the underlying neuronal oscillations may have
direct consequences on behavior. However, it still remains largely
unknown whether behavioral performances manifest spectro-
temporal dynamics in a neurophysiologically relevant manner
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(e.g., the temporal modulation of ongoing oscillations, the cross-
frequency coupling). Motivated by a psychophysical method
probing behavioral performance using a high time-resolved mea-
surement (e.g., Landau and Fries, 2012), we directly examined
the fine-grained time course, particularly the spectrotemporal
profile, and the rhythmic characteristics of behavioral perfor-
mance in covert attention.

Specifically, we used a precuing paradigm (Posner and Cohen,
1984; Klein, 2000) to examine the temporal course of covert spa-
tial attention. As illustrated in Figure 1A, subjects were asked to
covertly attend to two peripheral boxes. An uninformative (cue
validity: 50%) peripheral cue appeared near to one of the two
boxes. After a varying interval (cue-to-target stimulus-onset
asynchrony [SOA]: 0.2–1.1 s) from the onset of the cue, a target
occurred in one of the two peripheral boxes. Subjects were
requested to discriminate the target shape as fast as possible
and the reaction time (RT) was recorded. The cue and the
target occurred either in the same (valid) or opposite locations
(invalid). Critically, to investigate the fine temporal structure
of spatial attention, we used a time-resolved measure by rang-
ing the cue-to-target SOA from 0.2 s to 1.1 s in steps of 0.02 s (see
Fig. 1A), corresponding to a 50 Hz sampling frequency.

Materials and Methods
The study was approved by the ethics committee of the Institute of Bio-
physics at Chinese Academy of Sciences, Beijing. Fifty subjects (24 fe-
males, all right handed, average age 23 years) participated in peripheral
cuing. All subjects had normal or corrected-to-normal visual acuity and
provided informed consent. They were paid as compensation for their
time. One subject was excluded from further analysis because of poor
shape discrimination performance.

Behavioral tasks. Subjects sat in a dark room 84.5 cm in front of a CRT
monitor (100 Hz), and their heads were stabilized in a chin rest. Their
responses were recorded through a parallel port response keypad. In
each trial, subjects were requested to maintain fixation at a central
cross (0.46° � 0.46°) and covertly attend to two peripheral boxes
(2.46° � 2.46°) presented 5.45° on either side of the fixation cross.
After 1.3–1.8 s, a cue was briefly presented for 0.1 s; and 0.2–1.1 s after the
cue onset (cue-to-target SOA), a target (a white square or a circle, 1.85° �
1.85°) was presented for 0.15 s, within either the left (LVF) or the right
(RVF) peripheral boxes. Subjects were asked to report the shape of the
target as fast as possible while maintaining high discrimination accuracy.
The peripheral boxes and fixation cross were medium gray (14.1 cd/m 2);
the background was gray (4.3 cd/m 2); the cue and target were white (30.4
cd/m 2). A peripheral bar cue was presented 7.7° on either side of the
fixation cross, and the target randomly and with equal likelihood ap-
peared on either the same side (valid) as the cue or the opposite side
(invalid), corresponding to an uninformative 50% cue validity. Subjects
were informed of the cue validity before the experiment. Eye movements
were monitored using an eyetracker (SMI RED120, 120 Hz) on a subset
of subjects and results showed that they maintained good fixation on the
central cross (within 1°) throughout the experimental trials (data not
shown). Notably, to achieve a dense temporal assessment of behavioral
performance, we used a time-resolved measure, such that the target
could appear at one of 46 temporal intervals, in steps of 20 ms, from 0.2 s
to 1.1 s after cue onset, corresponding to a sampling frequency of 50 Hz.
To achieve a more prominent effect of cue resetting, the number of trials
for SOA of 200 ms was 10 times of that for other SOAs (Fiebelkorn et al.,
2011). Each subject completed 880 trials in total, in four separate blocks
interleaved with 5 min breaks. The SOA of each trial was pseudorandom
from 0.2 s to 1.1 s, balanced across trials to have exactly the same likeli-
hood (except more trials at 0.2 s, the shortest cue-to-target SOA, for
reasons specified above).

Data analyses. Behavioral RT data were analyzed with MATLAB
(MathWorks) partly using functions from the EEGLAB toolbox (Delo-
rme and Makeig, 2004), wavelet toolbox, and CircStat toolbox (Berens,
2009). For each subject, RTs that were �4 SDs across all trials were

excluded from further analysis. The remaining RTs were then normal-
ized within each subject separately, to remove the large variance between
individuals in overall motor responses. Specifically, in each subject, RTs
in all trials under all conditions (different SOAs, valid and invalid con-
ditions, etc.) were regarded as the RT distribution for that subject. The
z-score for each trial’s RT was then computed by demeaning and then
dividing by the SD of the RT distribution. It is worth noting that, after the
within-subject normalization, the relative relationship among RTs of all
trials in each subject was kept intact, although the RT values were nor-
malized �0. For each of the four conditions (valid vs invalid for target at
LVF, valid vs invalid for target at RVF), the temporal profile of the nor-
malized RTs was calculated as a function of cue-to-target SOA from 0.2
to 1.1 s, in steps of 0.02 s (50 Hz sampling frequency).

Our main goal was to examine the fine spectrotemporal dynamics of
behavioral time courses. To do so, we analyzed the RT temporal courses
within different frequency bands (Filtering analysis), the time-frequency
contents of RT profiles (Time-frequency analysis), the phase relationship
between different conditions (Phase lag analysis), and the cross-
frequency modulation (Power-phase locking analysis). Finally, to re-
move the classical effects of attention and expectancy, we detrended RT
profiles (Analysis of detrended RT time courses).

Filtering analysis. To investigate the RT profiles within different fre-
quency bands, the RT temporal profile for each condition (valid vs in-
valid for LVF, valid vs invalid for RVF) was zero-padded (50 points
before and after the RT temporal profile), multiplexed by a Hanning
window, and then filtered (two-pass least-squares FIR filtering, 10th or-
der, EEGLAB toolbox) within different cutoff frequency bands (0 –2,
2–5, and 8 –20 Hz), in each subject separately.

Time-frequency analysis. To assess the RT profiles as a function of time
(cue-to-target SOA) and frequency, the RT temporal profile for each
condition was transformed using the continuous complex Gaussian
wavelet (order � 4; e.g., FWHM � 1.32 s for 1 Hz wavelet) transforms
(Wavelet toolbox, MATLAB), with frequencies ranging from 1 to 25 Hz
in steps of 2 Hz. The power profile of RTs (squared absolute value) as a
function of time and frequency was then extracted from the output of the
wavelet transform. Differences in power profile between valid and in-
valid conditions were calculated. This time-frequency analysis was per-
formed for each condition and for each subject separately. The grand
mean of time-frequency power was then averaged across subjects.

We further performed a randomization procedure to assess the statis-
tical significance of the difference between the power profiles for valid
and invalid conditions, by shuffling the RT time series across valid and
invalid conditions within each subject. After each randomization, the
same time-frequency analysis was performed on the surrogate signals, as
that performed in the original RT data analysis, and the time-frequency
power difference profile between valid and invalid conditions was recal-
culated. This procedure was repeated 200 times and resulted in a distri-
bution of valid–invalid power difference at each time-frequency point,
from which the p � 0.05 threshold (uncorrected) was obtained. Two
methods of multiple-comparison correction were then further applied to
the uncorrected randomization threshold time-frequency map: within-
frequency correction and cross-frequency correction. For within-
frequency correction, the maximum or the minimum values across all
time bins within each frequency were set as the threshold for the fre-
quency. For cross-frequency correction, the maximum or the minimum
across all time and frequency bins were set as the threshold.

Phase lag analysis. To examine the � phase relationship between valid
and invalid conditions within the time range (cue-to-target SOA: 0.4 –1.1
s), as observed in 2–5 Hz bandpass filtered RTs (see Fig. 3A, middle), we
extracted the unfiltered temporal profile of RTs within this time range
(0.4 –1.1 s), which were zero-padded, Hanning tapered, and then 128-
point Fourier transformed. The phase difference within 2–5 Hz between
valid and invalid conditions was calculated and averaged (CircStats tool-
box) for each subject separately. Nonuniformity for valid–invalid phase
differences across subjects was then tested using circular statistics (Ray-
leigh test for nonuniformity for circular data in CircStats toolbox).

Power-phase locking analysis. The RT temporal profiles were zero-
padded (50 points before and after the RT temporal profile) and multi-
plexed by a Hanning window in each condition and each subject
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separately. The power time series was then calculated by bandpass filter-
ing (two-pass least-squares FIR filtering, 10th order, EEGLAB toolbox)
the zero-padded RT time courses � 2 Hz of frequencies from 4 to 19 Hz
in steps of 1 Hz and extracting the power time course from the Hilbert
transform of the bandpass filtered signals. The phase time series was
calculated by band-passing filtering (two-pass least-squares FIR filtering,
10th order, EEGLAB toolbox) the same zero-padded RT time courses �
1 Hz of frequencies from 2 to 16 Hz in steps of 1 Hz but extracting the
phase time course from the Hilbert transform of the bandpass filtered
signals. Furthermore, to avoid possible power edge effects after bandpass
filtering (weak power around onset and offset of time series), the tempo-
ral epochs from 0.3 to 1 s (instead of original 0.2–1.1 s) in power time
series and phase time series were used for further power-phase locking
analysis.

To assess the strength of the power-phase locking, for each power
frequency (4 –19 Hz in steps of 1 Hz) and phase frequency (2–16 Hz in
steps of 1 Hz), a vector of power-phase time series (power as the length,
� phase as the angle) was constructed, from which the mean resultant
vector throughout all time points and all conditions was calculated for
each subject. The length of the mean vector was defined as the strength of
the power-phase locking for this specific power frequency and phase
frequency. To test the statistical significance of locking strength, the time
series of power was shuffled and the strength of power-phase locking was
recalculated 200 times, resulting in a permutation distribution for each
power frequency and phase frequency, based on which the p � 0.05
threshold map (as a function of phase frequency and power frequency)
was determined. Further multiple-comparison corrections were per-
formed by setting the maximum values across the whole threshold map
as the power-phase locking threshold, which was then compared with the
original power-phase locking map.

To specifically assess the relationship between �-band (2–5 Hz) phase
and the power at other frequencies, the �-band phase time series was
calculated by 2–5 Hz bandpass filtering (two-pass least-squares FIR fil-
tering, 10th order, EEGLAB toolbox) the zero-padded RT time courses
(50 points before and after the RT temporal profile, then multiplexed by
a Hanning window) and extracting the phase time course from the Hil-
bert transform of the bandpass filtered signals. The phase values were
then binned into 8 ranges from �� to 	�. The corresponding power at
other frequencies (2–20 Hz) in each of the value ranges of the � phase was
then averaged, resulting in a power-phase locking matrix as a function of
� phase (�� to 	�) and frequency (2–20 Hz) for each subject. This
analysis was performed for each condition and each subject separately.

Analysis of detrended RT time courses. In each
subject, a simple model representing the classi-
cal attentional effect time course as well as the
expectation trend was first constructed, by cal-
culating the 300 ms (in steps of 20 ms) moving
average of the RT time courses for each condi-
tion (valid and invalid). These trend signals
were then subtracted from the corresponding
RT time courses to obtain the detrended RT
time courses for each condition. The same
time-frequency analysis as described earlier
was then performed on the detrended RT time
courses. Furthermore, spectrum analysis was
performed on the RT time courses before and
after detrending for comparison.

Results
Low-frequency RT time courses
demonstrate patterns that resemble the
classical effects of attention
Subjects performed well in the task (per-
centage correct: 0.98 � 0.0014), and only
a small number of trials were discarded
because of either no response or out-of-
range RTs (trial discarding percentage:
0.007 � 0.0004). Figure 1B illustrates the
raw normalized RT time courses (normal-

ized across all trials within each subject separately) as a function
of cue-to-target SOAs (top) under valid (red) and invalid (black)
conditions. Interestingly, although the raw normalized RT time
courses were noisy and fluctuated largely, our results matched
well with classical findings (Posner and Cohen, 1984; Klein, 2000)
when the RT time courses were 0 –2 Hz low-pass filtered (Fig. 1B,
bottom). Specifically, early enhancements (SOA � 0.4 s) and
subsequent sustained reductions (“inhibition of return,” Klein,
2000) were found for the valid condition (cue and target occurred
at the same location) compared with the invalid condition (cue
and target occurred at the opposite location). The demonstration
of typical attentional effects in the low-pass filtered RTs is not the
result of filter ringing effects, and we obtained the same results
from 10-point moving averaged RT time courses. These results
thus confirmed that our approach, despite using a much higher
time-resolved measure than previous studies, was reliable and
effective in reproducing effects of attention. It is noteworthy that
those typical attention effects were manifested only in the low-
frequency range here, consistent with previous studies that had
probed behavioral performance at SOAs every several hundred
milliseconds, equivalent to an assessment of low-pass filtered
psychophysical data. Moreover, although having more trials for
the shortest SOA here (Fig. 1A; see Materials and Methods), we
observed similar attentional time course patterns as in classical
findings of attentional effects, suggesting little influences of the
present design on the classical attentional behavior.

Rhythmic � pulses in RT time courses
Next, we performed a spectrotemporal analysis on RT time
courses to examine their fine dynamic structures after cue onset,
as a function of frequency (0 –25 Hz) and time (cue-to-target
SOA: 0.2–1.1 s). Surprisingly, � band (�8 –20 Hz) showed inter-
esting power response profiles. Specifically, as shown in Figure
2A, the valid condition manifested stronger � power in RT time
courses than the invalid condition, in a pulsed manner (at �0.5 s
and �0.8 s), for both LVF and RVF in which the target was
presented, but more prominent for the LVF (Fig. 2A, top). More-

Figure 1. Experiment paradigm and replication of typical behavioral results in 0 –2 Hz RT time courses. A, Subjects fixated a
central cross and covertly attended to two peripheral boxes. After a varying interval (cue-to-target SOA: 0.2�1.1 s) from the onset
of the cue (an uninformative bar near one of the two peripheral boxes), a target (a circle or a square) occurred within either the cued
box (valid) or the uncued box (invalid). Subjects were requested to determine the target shape, and the RT was recorded. To achieve
a more prominent effect of cue resetting, the number of trials for SOA of 0.2 s was 10 times of that for other SOAs. B, RT time courses
(normalized within-subject across all trials) as a function of cue-to-target SOA (N � 49). Grand average unfiltered RT time courses
(top, mean � SEM) and 0 –2 Hz low-pass filtered RT time courses (bottom, mean � SEM), for valid (red) and invalid (black)
conditions.
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over, the initiated intermittent �-pulse
profiles by valid and invalid cues were in a
type of out-of-phase relationship (switch-
ing between negative and positive values
in Fig. 2A). As illustrated in Figure 2B, the
switching relationship in elicited � pulses
between the valid and invalid conditions
could be clearly seen for the LVF (left) but
were much weaker for the RVF (right).
Therefore, after attention on one of the
two peripheral locations was reset by a
cue, RT time courses in cued and uncued
locations underwent pulsed �-rhythm
fluctuations, modulated at approximately
a � rhythm (3–5 Hz, every �300 ms), in an
alternating manner. The findings thus
disclose rich spectrotemporal dynamics in
behavioral performance and suggest a
close link between �-band activity and at-
tention processes, consistent with previ-
ous electrophysiological studies (Ward,
2003; Thut et al., 2006; Klimesch et al.,
2007; Bollimunta et al., 2008, 2011; Hän-
del et al., 2011; Mo et al., 2011; Rohenkohl
and Nobre, 2011; Romei et al., 2012).

To test whether the classical effects of
attention (early facilitation and late inhi-
bition) or the effects of expectancy (de-
creased RT as SOA increases) could
explain the observed time-frequency pro-
files (i.e., the alternating � pulses), we fur-
ther conducted analysis with detrended
RT time courses (Fig. 3A). The spectro-
temporal dynamics were reexamined after
removing the classical attentional and ex-
pectancy effects, which mainly occurred
in low frequencies instead of in �-band
(spectrum analysis, Fig. 3C). As illustrated
in Figure 3B, the detrended RT time
courses (Fig. 3A, bottom) showed similar
spectrotemporal profiles, suggesting that
our findings in the �-band could not be
explained by the classical effects of atten-
tion and expectancy.

Cued-uncued phase lag in �-band
Based on the findings that � pulses initiated in valid and invalid
conditions were modulated at a � rhythm (3–5 Hz) and were in a
type of switching relationship, one might predict that RT time
courses in the � range, although showing no effects in power (Fig.
2A), demonstrate certain valid–invalid phase relationships. This
�-band phase hypothesis also derives from a recent study that
revealed phase lagged 4 Hz fluctuations in detection perfor-
mance (Landau and Fries, 2012). We therefore further inves-
tigated the � range, by bandpass (2–5 Hz) filtering the RT time
courses. As shown in Figure 4A (middle), after early facilita-
tion (SOA � 0.4 s), the �-band filtered RTs for the invalid con-
dition started to lag behind that of the valid condition
consistently at LVF, a signature of a valid–invalid phase relation-
ship. Further phase analysis on the unfiltered RTs during this
temporal range (Fig. 4A, middle, square) demonstrated that the
valid–invalid phase lag within � range (2–5 Hz) was not uni-
formly distributed across subjects (Fig. 4B; Rayleigh test, N � 49,

p � 0.049) and clustered around a mean of �100°. Such a phase
relationship was observed neither in RVF (Rayleigh test, N � 49,
p � 0.46) nor in � band (Rayleigh test, N � 49, p � 0.39). Thus,
in the LVF, in addition to intermittent �-band pulses, cuing ini-
tiated 4 Hz RT fluctuations that had a consistent phase lag be-
tween cued and uncued locations.

� power is locked to ongoing � phase in RT time courses
Figure 4A summarized the RT profiles within different frequency
bands. First, 0 –2 Hz filtered RTs demonstrated typical peripheral
cuing results consisting of early facilitation and late inhibition
(top). Second and most critically, the spectrotemporal analysis
revealed prominent roles of � phase (middle) and � power (bot-
tom) in exogenous attention modulation, reflected in behavioral
measurements. Notably, � power seemed to be modulated by a �
rhythm (Fig. 2). Therefore, it is natural to ask whether the ongo-
ing � power was locked to � phase in the present behavioral data
of fine-scale temporal resolution, as widely revealed in electro-

Figure 2. Time-frequency power profile for RT time courses as a function of cue-to-target SOA (0.2–1.1 s) and frequency (0 –25
Hz). A, Left, Grand average time-frequency plots (n � 49) for valid–invalid power difference when target was presented on LVF
(upper) or RVF (lower). Right, Valid–invalid power difference time-frequency plots thresholded by permutation test. *Uncorrected
p � 0.05 (within-frequency multiple-comparison correction). **p � 0.05 (within-frequency multiple-comparison correction).
***p � 0.05 (across-frequency multiple-comparison correction). Red represents positive valid–invalid power difference values;
blue represents negative difference. B, Grand average time-frequency power (n � 49) for valid (top) and invalid condition
(bottom), when target was presented on LVF (left) or RVF (right).
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physiological data (Canolty et al., 2006). To avoid possible power
edge effects that may affect the power-phase locking result, we
extracted power and phase values of the middle part of RT time
courses (0.3–1.0 s; Fig. 4A, bottom, square) for further power-
phase locking analysis. As illustrated in Figure 4C (middle), �
power was indeed locked to � phase, such that stronger � power
occurred at the � phase centered �0°. We further calculated the
cross-frequency power-phase locking in a wide range of frequen-
cies, and only the � band was found to be phase locked to � power
(Fig. 4C, left, dotted box; permutation test with multiple-
comparison corrected, p � 0.05). Moreover, the �-� power-
phase coupling was a rather general phenomenon. It was found
for both valid and invalid conditions in both LVF and RVF (Fig.
4C, right). The results thus implicate that the � pulses, taking
turns to occur at cued and uncued locations, might be indeed
phase modulated by the � rhythms, through a phase-amplitude
coupling manner.

Discussion
We examined the fine spectrotemporal dynamics of covert atten-
tion in a classical precuing paradigm, by probing behavioral per-
formance at 50 Hz. Typical peripheral precuing effects (Posner
and Cohen, 1984; Klein, 2000), including early facilitation and
late inhibition, were observed in 0 –2 Hz RT time courses. Most
importantly, we demonstrated that an uninformative peripheral
cue initiated recurring � (8 –20 Hz) pulses in RT time courses
alternatively at cued and uncued locations, at a � (2–5 Hz)
rhythm. Furthermore, ongoing � power was phase locked to �
band (2–5 Hz), consistent with previous results of neurophysio-
logical recordings (Canolty et al., 2006), suggesting a �-mediating

�-sampling process in exogenous atten-
tion. Our findings present evidence for
the manifestation of oscillations at multi-
ple physiologically relevant rhythms in
behavior (e.g., �, �), implicating a neural
mechanism for multi-item attention
based on successive cycles (�) of a sequen-
tial attentional sampling (�) process.

It is well established that brain oscilla-
tions are associated with sensory process-
ing, perception, and attention (Desimone
and Duncan, 1995; Singer and Gray, 1995;
Ward, 2003; Buzsaki, 2006; Klimesch et
al., 2007; Siegel et al., 2008; Fries, 2009;
Schroeder and Lakatos, 2009; Giraud and
Poeppel, 2012; Jensen et al., 2012; Thut et
al., 2012). Accumulating evidence, in-
cluding our own (Luo and Poeppel, 2007,
2012; Luo et al., 2010, 2013), suggests that
brain oscillatory dynamics act as an inter-
nal temporal context, based on which
neural ensembles are dynamically formed
and dissolved to mediate sensory process-
ing, perception, memory, consciousness,
and attention (Lisman and Idiart, 1995;
Klimesch, 1999; Buschman and Miller,
2009; Doesburg et al., 2009; Schroeder
and Lakatos, 2009; Thut et al., 2011, 2012;
Buschman et al., 2012; Giraud and Poep-
pel, 2012; Jensen et al., 2012; Kayser et al.,
2012). However, unlike neurophysiologi-
cal and EEG/MEG studies, most behav-
ioral studies only examine attentional
processes at a much coarser temporal

scale and therefore cannot access possible rapid fluctuations in
behavioral performance. The manifestation of oscillations in be-
havioral performance is somewhat only recent in its origin (Van-
Rullen et al., 2007; Fiebelkorn et al., 2011; VanRullen and Dubois,
2011; Landau and Fries, 2012; de Graaf et al., 2013). For example,
a recent study showed that, after resetting attention to one of two
spatial locations, visual detection performance at these two loca-
tions underwent a 4 Hz fluctuation in an antiphase manner (Lan-
dau and Fries, 2012). Here, we also observed a phase lag
relationship in � band, thus consistent with previous studies in
supporting the central role of � oscillations in mediating rhyth-
mic attention sampling. However, instead of RVF dominance in
the out-of-phase effect found in a previous study, we mainly
observed the effect in LVF, which might be due to several aspects.
For example, LVF and RVF were sorted in the previous study
based on the location of cue, whereas we followed previous pre-
cuing behavioral paradigms (Posner and Cohen, 1984; Klein,
2000) to compare valid and invalid conditions according to the
side on which the target was presented. Meanwhile, it is notewor-
thy that, although the alternating � pulses occurred only in LVF
in the present study, we observed a similar but much weaker
trend in RVF. Therefore, further studies need to be performed to
systematically compare the oscillatory performances between
LVF and RVF.

Moreover and more critically, there are two distinct and novel
aspects of the present findings. First, previous studies observed
fluctuations mainly in low-frequency bands (e.g., �, �, low-�)
and examined the rhythm in a more stationary way (e.g., presence
of specific frequency or estimating parameters from computa-

Figure 3. Time-frequency power profile and spectrum for detrended RT time courses. A, Grand average RT time course (n � 49)
as a function of cue-to-target SOA before (upper) and after detrending (lower). The detrended RT time course (bottom) showed a
rather flat fluctuating pattern lacking classical attentional and expectancy effects. B, Grand average time-frequency plots (n � 49)
for valid–invalid power difference for the detrended RT time courses, when target was presented in LVF (upper) or RVF (lower). The
detrended RTs showed a similar valid–invalid power difference profile as in Figure 2A. C, Grand average spectrum (n � 49) for RT
time courses before (black) and after detrending (red). After detrending, the RT time courses manifested decreased power mainly
in low frequencies.
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tional modeling) or used rhythmic sen-
sory stimulation to drive �-band rhythms
in visual behavior. Here, we directly ex-
amined the dynamic profile of attentional
behavioral performance (e.g., the tempo-
ral modulation of ongoing oscillations,
the cross-frequency coupling) and dem-
onstrated �-band pulses mediated by a �
rhythm in RT time courses. This provides
new evidence suggesting that the widely
observed � rhythms in human EEG re-
cordings may have direct functional con-
sequences in behavior and play a causal
role in spatial attention. Second, the pres-
ent study is the first, to our knowledge,
to reveal the power-phase nesting rela-
tionship between high-frequency and �
rhythms in behavioral performances, al-
though this relationship has been widely
observed in neurophysiological and EEG/
MEG recordings (e.g., Canolty et al.,
2006). The findings thus further support a
cross-frequency dynamic framework un-
derlying attentional behavior. Our results
may take us one step further beyond the
traditional correlational approach to
assess the role of brain oscillations in be-
havior, by directly assessing the spectro-
temporal dynamics of behavioral results.

Furthermore, a key aspect of our ob-
servations concerns the �-band pulses in
behavioral performances modulated by
attention. Notably, posterior � activity is
the strongest spontaneous signal widely
observed in human EEG recordings and
has been linked to functional inhibition
during attention, such that the unat-
tended visual stream is associated with
strong � power (Worden et al., 2000; Thut
et al., 2006; Klimesch et al., 2007; Händel
et al., 2011; Rohenkohl and Nobre, 2011).
Recent thanslaminar animal recordings,
investigating the physiological mecha-
nisms generating �, have demonstrated cortical origins of
�-band activities and their close association with attentional
modulation (Bollimunta et al., 2008, 2011; Mo et al., 2011).
Moreover, � activity has been suggested to exercise a phasic force
on neuronal excitability by generating pulses of inhibition
(Ward, 2003). The phase of the �-band EEG activities that oc-
curred before stimulus onset modulates the detection of the sub-
sequent stimulus (Busch and VanRullen, 2010; Thut et al., 2011;
Romei et al., 2012). During task rule changes, �-band activity in
monkey prefrontal cortex was enhanced on task-irrelevant neu-
ronal ensembles before increased high-frequency synchrony on
task-relevant populations (Buschman et al., 2012), indicating the
inhibition function of �-band rhythms in rule selection. Re-
cently, it has also been proposed that the periodic inhibitory na-
ture of � oscillation may provide a mechanism for prioritizing
unattended stimuli based on salience (Jensen et al., 2012). In our
study, the invalid condition showed stronger � pulses than the
valid condition at short SOAs when attention was actually cap-
tured to the cued locations, thus providing further support to the
inhibitory nature of � rhythm. Therefore, our results are in line

with the critical role of � rhythm in attention inhibition and its
pulsed manner.

It is also worth pointing out that a recent study revealed close
association between microsaccades and covert visual attention,
such that typical attention effects could be largely accounted for
by microsaccades (Hafed, 2013). Therefore, although subjects
were able to maintain gaze fixation at the central fixation cross
(within 1°) in the present study, microsaccades may be function-
ally relevant to our findings, given the intimate link between
microsaccades and exogenous attention (for a review, see
Martinez-Conde et al., 2009). Future studies (e.g., record fine
dynamics of microsaccades in a covert attention task) may be
needed to investigate the rhythmic property of microsaccades
and its possible relationship with the observed time-frequency
profile of behavioral performances.

Finally, in the present study, the shortest SOA was designed to
have more trials than other SOAs to enhance the cue resetting
effect (Fiebelkorn et al., 2011). This is slightly different from
other previous studies that had the same number of trials for all
SOAs. Although using a somewhat different design, we argue that

Figure 4. �-band phase lag and �-� power-phase coupling in RT time courses. A, Top, The 0 –2 Hz filtered RT time courses as
a function of cue-to-target SOA for valid (red) and invalid (black) conditions. Middle, �-band (2–5 Hz) filtered RT time courses in
LVF, with dotted box indicating the time range (0.4 –1.1 s) for further phase lag analysis. Bottom, Power response for �-band
(8 –20 Hz) filtered RT time courses in LVF, with dotted box indicating the time range (0.3–1.0 s) for further phase-power locking
analysis. B, Polar plots for the distribution (n � 49) of �-band (2–5 Hz) phase lag between valid and invalid conditions in the RT
time courses in LVF during the time range (A, middle, dotted box, 0.4 –1.1 s). Red line indicates the mean valid–invalid � phase
difference. C, Phase-power locking in RT time course during the time range (A, bottom, dotted box, 0.3–1.0 s). Left, Grand mean
cross-frequency phase-power locking (n � 49). Middle, Grand mean power response (n � 49) as a function of frequency (4 –20
Hz) and �-band phase (�180° to 180°). Dotted line indicates the upper and lower boundary for �-band range (8 –20 Hz). Right,
Grand mean (n � 49, mean � SEM) �-band power (8 –20 Hz, range between two dotted lines in left panel) as a function of
�-band (2–5 Hz) phase (�180° to 180°) for valid (red) and invalid (black) conditions, when target was presented in LVF (upper)
or RVF (lower).
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the current findings cannot be accounted for by the difference of
trial probability at the shortest SOA. First, a recent study with
balanced numbers of trials for all SOAs also demonstrated rhyth-
mic behavior (Landau and Fries, 2012). Second, although having
more trials for the shortest SOA, we observed a similar attentional
time course pattern as in classical findings of attentional effects,
suggesting little influence of the present design on the classical
attentional behavior. Therefore, having more trials for the short-
est SOA may not be a key factor for whether a cue could phase
reset perception and drive oscillations in behavior as demon-
strated here. It awaits future studies to investigate if having im-
balanced numbers of trials for different SOAs may lead to other
behavioral effects.

Most importantly, our findings suggest a neural mechanism
for attending to multiple spatial locations or items (i.e., when all
of them are behaviorally relevant and therefore attended to si-
multaneously). Different from the biased competition model for
selective attention (attending to one amid many) that is presum-
ably mediated through neuronal �-band synchronization by way
of “communication-through-coherence” (Desimone and Duncan,
1995; Singer and Gray, 1995; Siegel et al., 2008), attending to multi-
ple items would require unconfused and dissociated neural repre-
sentation for each individual item. It has been postulated that �
rhythm constitutes the cycle of selection, by making and then
breaking �-band synchronization for selecting one item at a time
within a cycle, thus enabling sampling for every relevant item and
resulting in a rhythmic sampling of multiple items (Fries, 2009).
In support, here we observed an alternation of � pulses between
the two simultaneously attended spatial locations, mediated at an
approximate � rhythm, also consistent with pervious neurophys-
iological recordings revealing low-frequency oscillations associ-
ated with visual stimuli competition (Rollenhagen and Olson,
2005) and sensory selection (Schroeder and Lakatos, 2009). Al-
though �-band was not observed because of the limited sampling
frequency here (50 Hz), the observed power-phase locking rela-
tionship between � and � is conceptually commensurate with the
proposed framework for attention to multiple items. Interest-
ingly, similar synchrony-based dynamic formation, breaking,
and reformation of distinct neuronal ensembles, to allow for
population competition, have also been proposed and demon-
strated in covert attention spotlight shifting (Buschman and
Miller, 2009), working memory (Lisman and Idiart, 1995),
consciousness (Doesburg et al., 2009), and task rule switching
(Buschman et al., 2012). Moreover, our results are commensu-
rate with the periodic sampling view in attention, positing that
multiple items are processed in a serial manner, even when the
attention is focused on a single target (VanRullen et al., 2007;
Busch and VanRullen, 2010). In summary, combined with the
known inhibitory nature of � power, our behavioral findings
suggest that multiple items are explored in a temporally dissoci-
ated manner, such that each item or location is periodically sam-
pled at a � rhythm, by producing recurring inhibitory � pulses on
nonrelevant neuronal ensembles.
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