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Cortical Correlates of Human Motion Perception Biases
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Human sensory perception is not a faithful reproduction of the sensory environment. For example, at low contrast, objects appear to
move slower and flicker faster than veridical. Although these biases have been observed robustly, their neural underpinning is unknown,
thus suggesting a possible disconnect of the well established link between motion perception and cortical responses. We used functional
imaging to examine the encoding of speed in the human cortex at the scale of neuronal populations and asked where and how these biases
are encoded. Decoding, voxel population, and forward-encoding analyses revealed biases toward slow speeds and high temporal frequen-
cies at low contrast in the earliest visual cortical regions, matching perception. These findings thus offer a resolution to the disconnect
between cortical responses and motion perception in humans. Moreover, biases in speed perception are considered a leading example of
Bayesian inference because they can be interpreted as a prior for slow speeds. Therefore, our data suggest that perceptual priors of this
sort can be encoded by neural populations in the same early cortical areas that provide sensory evidence.
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Introduction
Human perception, in particular motion perception, is known to
display consistent biases that are readily apparent when sensory
evidence is weak. For example, although the speed of easily visible
high-contrast stimuli can be estimated accurately, observers re-
port the speed of less-visible, low-contrast stimuli as slower than
their true speed (Thompson, 1982; Stocker and Simoncelli,
2006). Observers are also biased when estimating the rate of tem-
porally flickering stimuli presented at low contrast, but within a
certain range they are biased toward high rates (Thompson and
Stone, 1997; Hammett and Larsson, 2012). Motion perception
(Burr and Thompson, 2011) is a canonical domain of sensory
decision-making for which the evidence linking perception to
cortical responses has been firmly established (Parker and New-
some, 1998). Indeed, speed perception is thought to be tightly
linked with responses in cortical middle temporal area MT be-
cause neural contrast thresholds (Seidemann et al., 1999; Wan-
dell et al., 1999) match those of speed perception rather than
general visibility (Dougherty et al., 1999). However, single-unit
measurements have failed to find neural correlates (Pack et al.,
2005; Krekelberg et al., 2006; Livingstone and Conway, 2007) of

motion perception biases, suggesting a disconnect in this other-
wise well established link.

Motion perception biases are also of particular interest be-
cause of their possible relationship to normative theories of
perceptual inference. Natural environments rarely provide un-
equivocal sensory information; a prominent view of motion per-
ception biases (Weiss et al., 2002; Stocker and Simoncelli, 2006)
suggests that they are not simply the limitations of imperfect
biological systems but instead represent optimal strategies for
dealing with ambiguous sensory evidence. This Bayesian view of
motion speed perception suggests that weakening sensory evi-
dence by reducing image contrast results in perceptual estimates
biased toward a prior for slow speeds. This is appealing because it
explains a number of seemingly unrelated motion-related illu-
sions in a single unified framework (Hürlimann et al., 2002;
Weiss et al., 2002; Hedges et al., 2011). Thus, understanding the
neural basis of motion biases also provides an opportunity to
understand the more general question of how putative priors
interact with sensory evidence to yield biased percepts.

We hypothesized that an examination at the scale of neural
populations would help to resolve the apparent disconnect between
cortical responses and motion perception. We used decoding (Ka-
mitani and Tong, 2005), voxel population, and forward-encoding
techniques (Serences and Saproo, 2012) to analyze functional
magnetic resonance imaging (fMRI) data from human observers,
for whom perceptual speed and temporal frequency biases are
well established and easily measured. We measured speed and
temporal frequency-selective responses using fMRI and found
that, at low contrast, the representation in all cortical visual areas
studied shifted toward slow speeds and faster temporal
frequencies, matching perception rather than the pure sensory
evidence. Voxel population, permutation, and forward-encoding
analyses confirmed that these were not simple consequences of
the reduction in response attributable to reduced contrast, but
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were a genuine shift in the population response toward percep-
tual biases. Our results are the first to find a neural representation
consistent with perceptual biases for speed and temporal fre-
quency, thus offering a resolution to the disconnect between cor-
tical responses and motion perception in humans. They also
suggest that perceptual priors can be incorporated into sensory
evidence in the earliest stages of the visual system.

Materials and Methods
Human subjects. Four healthy adult males were subjects for this study
(24 –31 years old). Each subject participated in multiple psychophysical
experiments to measure sensitivity to speed and temporal frequency as
well as four MRI sessions: one for collecting a high-resolution anatomical
scan and three functional sessions in which we made structural images
and recorded BOLD activity (Ogawa et al., 1990, 1992) in occipital cor-
tex. The RIKEN Functional MRI Safety and Ethics Committee approved
all of the procedures before experimentation, and each subject provided
written informed consent before each imaging session.

Visual stimuli. Visual stimuli were programmed using MGL (available
from http://justingardner.net/mgl) running on MATLAB (MathWorks).
For MRI experiments, stimuli were backprojected onto a screen via an
LCD projector (Silent Vision 6011; Avotec) with a resolution of 800 �
600 and a refresh rate of 60 Hz. Subjects viewed the screen at a distance of
38.5 cm, through a mirror. Images were gamma corrected and had a
maximum luminance of 4 cd/m 2. For psychophysics experiments, stim-
uli were presented on a CRT monitor (Trinitron 21-inch flat screen; Dell
Computer Company) that had a resolution of 1280 � 960 and a refresh
rate of 100 Hz. The monitor was gamma corrected and was placed 50.5
cm from the observer.

All of the psychophysics and functional imaging experiments used
one-dimensional (1D) broadband stimuli (i.e., with many spatial fre-
quency components; Fig. 1) shown at various contrasts that either moved
rigidly at different speeds and directions or flickered at different temporal
frequencies. We created these stimuli by first generating a square image
that contained 1D white Gaussian noise (i.e., the image was constant in
the vertical direction but varied stochastically in the horizontal direc-
tion). To produce a stimulus with gray average luminance and avoid
aliasing on the display, we then bandpass filtered this noise between 0.33
and 2 cycles/°. Finally, stimuli were windowed with a circular aperture.
For speed experiments, these stimuli drifted to the right or to the left at
variable speeds. For the temporal frequency experiments, the stimulus
was static but underwent sinusoidal contrast modulation in time.

Eye movement analyses. We made measure-
ments of eye position in two subjects outside of
the magnet to ensure that they were able to
maintain accurate fixation. Stimuli and task
were the same as the speed functional imaging
experiment and were conducted while we
tracked subject’s eye position using an EyeLink
1000 eye tracker (SR Research). A subject’s me-
dian horizontal and vertical eye position dur-
ing stimulus presentation did not depend on
either the contrast ( p � � 0.71, one-way
ANOVA) or speed ( p � � 0.85) of the stimu-
lus. Moreover, no pairwise comparison of eye
position across conditions was found to be sig-
nificant for speed ( p � � 0.67 all pairwise
comparisons, Hotelling’s T 2 test) or contrast
( p � � 0.47).

Psychophysical measures of perceptual biases
for speed and temporal frequency. Psychophysi-
cal measurements of speed and flicker percep-
tion were collected in two separate experiments
on the same subjects that participated in the
imaging experiments (only three of four sub-
jects were available for the flicker psychophys-
ics experiment). We measured the biases for
speed (degrees per seconds) and flicker (hertz)
with a method-of-adjustment task. In each ex-

periment, subjects were required to maintain fixation in a central loca-
tion while two flanking patches were shown 3° from center (3° circular
aperture; Fig. 1A). A high-contrast (100%) patch was indicated to be the
reference patch by a change in color of one arm of the fixation cross to
blue. The second patch was designated as the test patch (indicated by a
red fixation cross arm) and had a variable contrast (5, 10, 20, or 50%). In
the speed experiment, subjects were instructed to adjust the speed of the
test patch until it matched the speed of the reference patch (0.25, 1, 2, or
4°/s) and were given an unlimited time in which to respond. Likewise, for
the flicker experiment, subjects had to match the temporal frequency of
the reference patch (1, 3, 6, or 9 Hz). The adjusted speed or temporal
frequency was reported as the perceptual matching speed or temporal
frequency.

Stimuli and task for functional imaging experiments. For the speed func-
tional imaging experiment, stimuli drifting either to the left or right at
varying speeds and contrasts were presented while subjects maintained
central fixation. The stimuli were presented in an annular window (3–28°
diameter) at three different speeds (0.25, 1, or 4°/s) and two contrasts (7.5
or 50%) in a pseudorandomized order across trials (Fig. 1B). We note
that, although the range of speeds chosen are slower than those used for
most physiology experiments, we chose them carefully for two reasons.
First, we had to ensure that our display was not aliased given the broad
range of spatial and temporal frequencies that we chose. Second, the
perceptual bias that we sought to study is most apparent at these slow
speeds (Thompson, 1982; Stocker and Simoncelli, 2006). For three of
four subjects, the stimulus was presented for 4.5 s, followed by a 3 s
intertrial interval that consisted of a gray screen. The stimulus presenta-
tion interval for the fourth subject was 7.5 s rather than 4.5 s, but the same
amount of time data from the imaging time series was used for analysis in
every subject, and no qualitative differences were found in the results.

For the temporal frequency experiment, stimuli were identical to the
speed experiment in spatial extent and contrast but underwent temporal
frequency modulation rather than drifting. That is, images were modu-
lated in time by a sinusoid of frequency of 1, 3, 6, or 9 Hz such that their
spatial phase inverted periodically (i.e., flickered). Stimuli were pre-
sented for 7.5 s with a 3 s intertrial interval that consisted of a gray screen.
The temporal frequency experiment was run on different days than the
speed experiment.

For both experiments, subjects fixated a central cross throughout each
scan while performing a task intended to keep their behavioral state
uniform. For the speed experiment, the fixation cross (composed of two
concentric crosses, one light and the other dark; Fig. 1B) matched the
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Psychophysics experiment

Figure 1. Experimental paradigms. A, Schematic of the methods-of-adjustment psychophysics experiment. Stimuli were
broadband 1D textures presented at different contrasts (5, 10, 20, 50, or 100%) and rigidly drifted to the left or the right (indicated
by arrows that were not actually presented with the stimulus) at variable speeds (0.25, 1, 2, or 4°/s) or were modulated at different
temporal frequencies (1, 3, 6, or 9 Hz). On each trial, the left and right arms of the fixation cross changed color to indicate the
location of the reference texture, which was always presented at 100% contrast, and the test texture, which had a variable contrast
(red, test; blue, reference). Subjects were instructed to adjust the speed or temporal frequency of the test texture to match the
speed or temporal frequency of the reference. B, Schematic diagram of the functional imaging experiment. Subjects fixated a
central fixation cross while performing a fixation task. Broadband stimuli moving in different directions (left or right, red arrows
that were not actually presented in the stimulus) and speeds (0.25, 1, or 4°/s) or temporal frequencies (1, 3, 6, or 9 Hz) at different
contrasts were shown (7.5 or 50%) for 4.5 s with a 3 s intertrial interval in which the screen was gray.
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contrast of the stimulus annulus and rotated clockwise or counterclock-
wise as the stimulus drifted to the left or right. During the intertrial
interval, a color change of the fixation cross indicated that subjects were
to report the speed of the outer edge of the rotating cross as moving either
faster or slower than the drifting annulus using a button press. For the
flicker experiment, the cross also flickered, and the subject was to report
the speed of the cross flicker as faster or slower than the stimulus annulus.

Subjects participated in eight or nine consecutive scans of 36 trials each
for the speed and 25 trials each for the temporal frequency experiments.
The scans lasted a little over 4 min each, and subjects were allowed to rest
between the scans. In each scan, unique stimulus parameter combina-
tions (two contrasts, three speeds, and two direction for the speed exper-
iment and two contrasts and four flicker rates for the temporal frequency
experiment) were presented in a pseudorandom order such that each
combination of parameters was shown at least three times per scan. This
paradigm allowed the collection of 24 –27 repetitions for each parameter
combination in one scanning session of the speed experiment and 28
repetitions for the temporal frequency experiment.

MRI methods. All imaging was performed with a Varian Unity Inova 4
tesla whole-body MRI system (now Agilent Technologies) equipped with
a head gradient system. In an initial session, a high-resolution 3D ana-
tomical T1-weighted (MPRAGE; TR, 13 ms; TI, 500 ms; TE, 7 ms; flip
angle, 11°; voxel size, 1 � 1 � 1 mm; matrix, 256 � 256 � 180) and
T2*-weighted (TR, 13 ms; TE, 7 ms; flip angle, 11°; voxel size, 1 � 1 � 1
mm; matrix, 256 � 256 � 180) fast, low-angle shot sequence volumes
were collected with a birdcage radio frequency (RF) coil for each subject.
To reduce inhomogeneities in image contrast, the T1-weighted volume
was divided by the T2*-weighted volume to form the reference high-
resolution 3D anatomical volume (Van de Moortele et al., 2009). In three
subsequent sessions, a volume RF coil (transmit) and a four-channel
receive array (Nova Medical) were used to acquire anatomical (T1-
weighted; MPRAGE; TR, 11 ms; TI, 500 ms; TE, 6 ms; flip angle, 11°;
voxel size, 1.72 � 1.72 � 1.72 mm; matrix, 128 � 128 � 64) and coreg-
istered functional (T2*-weighted) images. The first of these sessions
yielded a retinotopic map and was used to define visual areas. The last
two sessions were used to collect functional responses to moving stimuli
parameterized by speed and temporal frequency.

Functional scans were collected in 21 slices at an angle approximately
perpendicular to the calcarine sulcus. Images had a resolution of 3 � 3 �
3 mm (field of view, 19.2 � 19.2 cm; matrix size, 64 � 64) and were
acquired using echo-planar imaging with two shots per image (inter-
leaved across slices), a TR of 1.57 s, a TE of 25 ms, flip angle of 55°, and
sensitivity encoding (Pruessmann et al., 1999) with acceleration factor 2.
The first five volumes in each scan were discarded to allow longitudinal
magnetization to reach steady state, after which an initial volume without
phase encoding was collected as a reference for correcting phase errors
(Bruder et al., 1992). A navigator echo collected at the beginning of each
segment was used to correct intersegment phase and amplitude varia-
tions (Kim et al., 1996).

The functional images for each scan were registered to the reference
high-resolution 3D anatomical volume of the whole brain. The reference
volume was segmented to generate cortical surfaces using Freesurfer
(Dale et al., 1999). Subsequently, the anatomy volumes taken at the be-
ginning of each session were registered to the reference volume so that
the cortical regions in the functional scans could be identified and aligned
with the retinotopy. For data visualization purposes, 2D flattened repre-
sentations of the visual cortex were created. All analyses were performed
in the original (nontransformed) coordinates before being mapped to
the cortical surface and specific visual regions.

Various measures were taken to reduce artifacts in functional images.
During scanning, respiration was recorded with a pressure sensor, and
heartbeat was recorded with a pulse oximeter. These signals were used to
attenuate physiological signals in the imaging time series using retrospec-
tive estimation and correction in k space (Hu et al., 1995). Head motion
was also estimated and corrected (Nestares and Heeger, 2000). We then
detrended and high-pass filtered with a cutoff frequency of 0.01 Hz the
time series of each voxel.

Visual field definitions. Retinotopic mapping was used to define visual
areas using standard methodology (for details and review, see Gardner et

al., 2008; Wandell and Winawer, 2011). Briefly, in a separate scanning
session, 10 –12 runs of high-contrast sliding radial checkerboard patterns
were either shown as rings that expanded and contracted (two runs each)
in eccentricity or 90° wedges that rotated clockwise or counterclockwise
(three to four runs, each) for 10.5 cycles of 24 s. Time courses were time
shifted two to six frames, runs with opposite direction stimuli time re-
versed and rings and wedges were separately averaged, and the Fourier
transform of the averaged responses was taken. The phase of voxel re-
sponse at the stimulus frequency was displayed on flattened representa-
tions of the cortical surface. These projections were used in reference to
published criteria to define visual areas V1–V3 and hV4 in all subjects.
Area V3A was also defined in three of the four subjects.

Area MT was defined in reference to retinotopic information and a
functional localizer (see: Gardner et al., 2008). At the beginning of each
experimental session, a functional localizer for visual motion-sensitive
responses was run. The localizer consisted of an annulus of dots (0.5–20°
radius) that alternated between coherent and incoherent motion in 10
cycles, each cycle lasting for 16 volumes (25.12 s). Coherent motion
consisted of an optic flow pattern centered at fixation that alternated
between expanding and contracting directions every 2.5 s. Incoherent
motion contained the same distribution of dot directions and motions
but randomly assigned to different positions. These data were analyzed
by computing the coherence of the BOLD response to the stimulus fre-
quency and plotting these on a flattened representation to define motion-
selective visual areas according to published criteria.

Finally, we included a control brain region that was not found to be
visually responsive by hand drawing a bilateral region of interest in the
parietal lobes for each subject. The control brain region was analyzed
identically to the retinotopically defined visual areas and was used as one
estimate of a null effect. Each brain area had a different number of voxels.
V1–V3 averaged 257 voxels each, V3A, hV4, and MT, averaged 96 voxels
each, and the control area averaged 206 voxels.

BOLD response instances for decoding, voxel population, and forward-
encoding analyses. For each stimulus presentation, we computed a BOLD
“response instance” for each visual area that could be used for decoding
and voxel population analyses. Response instances can be thought of as
the pattern of BOLD activity in response to each stimulus presentation.
Response instances consisted of a scalar value for each voxel within a
visual area that represented the stimulus-locked activity that deviated
from the mean across the experiment. For each scan, voxel time series
were divided by their mean response to convert to percentage signal
change. Activity for each voxel was subsequently averaged over time
(four volumes; 6.28 s) for each stimulus presentation with a lag of two
volumes (3.14 s) from stimulus onset. These scalar responses for each
voxel were then converted to be zero mean and unit variance over the
entire dataset. That is, for each response, we subtracted the mean and
divided by the variance across all responses for that voxel. A collection of
these scalar responses for each voxel in a visual area thus formed a re-
sponse instance: a pattern of cortical activity that was associated with a
particular stimulus occurrence. A collection of these response instances
were used to build and test decoders for specific stimulus parameters. For
the data that was used to determine decoder readout shifts between high
and low contrasts, we also removed the mean of each response instance to
minimize any potential general effect of contrast.

Decoding the stimulus from BOLD response instances. Linear stimulus
decoders were used to try to predict the speed or temporal frequency of a
stimulus occurrence from a response instance. Decoders were always
built and tested using fivefold cross-validation. That is, the data were
randomly split into five groups, and prediction performance for each
group of one-fifth of the trials was evaluated with a decoder built using
the remaining four-fifths of the trials. Thus, for each split of the data,
four-fifths of the response instances were compiled into a matrix Rbuild,
that had one row for each response instance and one column for each
voxel. The remaining one-fifth of trials were compiled into an Rtest matrix.
Each of these response matrices were associated with column vectors, stest

and sbuild, containing the stimulus parameter (either speed or temporal fre-
quency) for each corresponding trial in the response matrices.

A linear decoder is specified by a weight vector, w, whose dot product
with each response instance gives a prediction of the stimulus parameter
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of that trial. That is, each element of w represents a weighting of the
corresponding voxel response. A positive weight value indicates that the
voxel response tends to linearly increase with the stimulus parameter
(e.g., increasing response with increasing speed), and a negative value
indicates the opposite (e.g., decreasing response with increasing speed),
written in matrix form (matrices are capitalized and vectors are in bold):

Rbuildw � ŝbuild, (1)

where the circumflex over the s indicates that it is the predicted stimulus
parameters for the decoder whose weights are specified by w based on the
response instance matrix Rbuild. Note that this equation does not include
an offset term, which is appropriate for our normalized data (zero mean,
unit variance).

We used a regularization method to compute the weight vector w. The
ordinary least-squares solution can be used to solve Equation 1 to com-
pute a w that minimizes the squared error of the predicted stimulus
parameter from the actual stimulus parameter, sbuild. However, because
there are typically many voxels of data with very few repetitions of each
response instance, this solution can be underconstrained. So, instead, we
used least angle regression with a least absolute shrinkage and selection
operator (LARS–lasso; Efron et al., 2004) to compute w. This method
includes a term that penalizes the sum of absolute weights (L1 term):

w � w
argmin[(ŝbuild � Rbuildw) 2 � ���w��1]. (2)

Therefore, this L1 regularization favors solutions to w in which voxels
that do not contribute to accurate decoding get weight values of 0 (rather
than small idiosyncratic weights distributed around 0 that tend to add
noise to the estimates), thus leading to a more robust solution. The LARS
method is an incremental algorithm for solving this equation very effi-
ciently, and it also provides a cross-validated fit for the sparsity parame-
ter, �. That is, � is not chosen arbitrarily but is fit so that the decoding
vector is optimally sparse given the data. This results in a decoding vector,
w, that does not suffer heavily from overfitting and therefore generalizes
well to holdout data that were not used to fit the decoder.

Decoder performance was evaluated by determining how well the pre-
dicted stimulus parameter for each trial in the test set correlated with the
actual stimulus parameter. Thus, the correlation coefficient, r, was cal-
culated between the holdout set of stimulus values, stest, and the pre-
dicted set, ŝtest. Chance performance for this measure should be 0. We
further determined the significance of the performance of each decoder
by building decoders 1000 times with different tranches of the data held
out for testing, which we refer to as a permutation test. That is, we built
1000 fivefold decoders, each one with a different random subset of the
data (on average, each subset should have an equal representation of all
stimulus parameters). We calculated empirical confidence intervals on
this distribution and compared them with a null hypothesis distribution
that was obtained by another 1000 decoders built with randomly per-
muted data labels.

We found that limiting the number of non-0 weights using the regu-
larized computation of the weight vectors w resulted in better decoding
accuracy. Decoding accuracy (measured as r values) for the decoder with
the sparse constraint outperformed the decoder calculated with an ordi-
nary least squares solution by an average of 75% across the visual areas
and outperformed the simple region-of-interest average by 262%.

To compute how much the prediction of the decoder shifted with
reductions in contrast in the proper units (degrees per seconds or tem-
poral frequency), we needed to apply a correction factor to the output of
the decoders. One characteristic of sparse decoders is that they shrink the
overall range of output toward the mean value of all responses. Although
this result is desirable for decoding because this shrinkage actually pro-
vides for minimal mean square error between the data and decoded
output, we had to correct this shrinkage to report decoder shifts in units
of degrees per seconds. This correction factor, c, is calculated as follows:

c � �� �Ŝtest�, �S�� �Ŝtest

�S
, (3)

where the �s� is the condition-averaged stimulus speed or decoded speed,
� is the SD of the stimulus speed or the decoded speed, and � indicates a

correlation operation. Here, the quotient effectively normalizes response
range, and the correlation value reapplies the slope of the relationship,
approximating the effect of a decoder without shrinkage. Note that the
correlation between two univariate variables with unit variance is also the
weight, w, calculated with ordinary least squares.

Voxel population analyses. Population plots of voxel activity (see Figs.
4A, 5A) were used to visualize voxel response as a function of their
preferred speed or temporal frequency. To compute the tuning prefer-
ence of each voxel, we determined whether there was a high-contrast
stimulus speed or temporal frequency that drove activity levels signifi-
cantly higher than any other speed or temporal frequency (one-tailed
t test, p � 0.05). Voxels that had significantly high activity for more than
one speed or temporal frequency (uncommon) or none at all (more
common) were not used in the subsequent analyses. The use of this
particular method for defining voxel tuning preference was chosen for
clarity but was not critical to the results. We also performed this analysis
using methods that forced a continuous-valued tuning preference on
every voxel, such as using the sparse-decoder weights w as a measure of
tuning preference (a voxel with slow preference would have a negative
weight and a voxel with fast preference would have a positive weight) or
the normalized voxel-by-voxel correlation of response magnitude with
speed or temporal frequency (positive and negative correlation indicate
fast and slow preference, respectively) but found no qualitative difference
in the results. The tuning preference and activity levels were computed
using cross-validation such that four-fifths of the data were used to com-
pute the tuning weight and the remaining one-fifth of the data used to
compute the response of the voxel to each stimulus speed or temporal
frequency and contrast. Each voxel contributes to six different regions of
the plots for a given visual area (eight for temporal frequency data): 2
stimulus contrasts � 3 stimulus speeds. The relationship between the
tuning preference and the response was summarized with a linear fit
across voxels, and Figures 4B and 5B show the average fit line for all
subjects, with error bars depicting the SEM across subjects.

Forward-encoding speed channel model. We fit a forward-encoding
model (Dumoulin and Wandell, 2008; Kay et al., 2008; Brouwer and
Heeger, 2009; Serences and Saproo, 2012) to our BOLD data. This al-
lowed us to examine the contrast sensitivity of a hypothetical slow-tuned
and fast-tuned input channel to each visual area and to make predictions
for how single-unit responses should change with contrast. In the model,
we assumed that each voxel represented a population of neurons that
weighted and summed hypothetical inputs tuned for slow or fast speeds,
which we called speed channels. The specific weighting of inputs from
these speed channels determined the speed preference for each voxel. The
contrast sensitivity of each channel determined how the modeled voxels
will change their response with contrast. We fit the parameters of the
channels (speed, contrast sensitivity, and offset) to our measured BOLD
responses.

In the model, voxels (or more generically “units”) each received input
from two hypothetical stimulus-driven input channels: one channel was
linearly tuned to slow speeds and one was tuned to fast speeds. The response
of each unit, Ri, was computed according to the following equation:

Ri � (1 � �i) � cslow 	 �i � cfast, (4)

where �i is a number between 0 and 1 that described the channel weight
for voxel i that controlled how much input the unit received from the
response of the slow and fast input channels, cslow and cfast. A fast tuned
unit having a large �i would get most of its input from the fast input
channel by definition. We compute �i for each voxel by regressing its
activity with the stimulus speed.

The responses of the slow and fast input channels were modeled as
linear functions of the “speed” and “contrast” of the stimulus:

cslow � mslow � speed 	 sslow � contrast 	 bslow, (5)

cfast � mfast � speed 	 sfast � contrast 	 bfast,

where mslow and mfast are the speed tunings of the channel. A positive
value indicated a tuning for fast speed and a negative value tuning for
slow speeds. sslow and sfast were the contrast sensitivities of the channels in
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which a large value indicates a large change in
response with a change in contrast. bfast and
bslow were offset terms that defined the baseline
response of the channel.

The six free speed channel parameters
(mslow, mfast, sslow, sfast, bslow, and bfast) were fit
for each visual area and subject to best predict
the data from all of the voxels (nvoxels) in each
visual area for each subject. That is, once the
channel weights �i were set for each voxel, for
each of the six stimulus types (3 speeds � 2
contrasts), there was a response vector of
length nvoxels that contained the mean response
to each stimulus type. The six free channel pa-
rameters were fit via linear regression to these
response vectors using Equations 4 and 5.
Thus, for each visual area in total, there were 6
� nvoxels parameters (where the nvoxels param-
eters correspond to the channel weights, �i)
being fit to 6 � nvoxels responses. We deter-
mined goodness-of-fit of the model using
cross-validation. We first used the fitted model parameters for each area
to determine the average response to each of the six stimulus types in the
one-fifth validation set for every voxel. We could then calculate the av-
erage error for each stimulus condition (3 speeds � 2 contrasts) across
every voxel.

Using the model fit, we estimated the size of the shift in speed readout
between high and low contrast for both the population and the individual
units. For the population readout, we first used the channel outputs to
compute a predicted speed. The population readout is

P � pslow � cslow 	 pfast � cfast, (6)

where P is the predicted population readout speed, and pslow and pfast are
weights fitted using regression to produce the best estimate of the actual
speed of the stimulus for both contrasts. We then computed the difference
between the readout speed P between high- and low-contrast stimuli.

To compute the speed tuning shift of individual units, we examined a
hypothetical unit tuned to 1°/s that received equal amounts of input from the
slow and fast channels at high contrast (i.e., �i � 0.5). We then examined the
balance of inputs at low contrast by computing a new tuning weight:

ti
new � (cfast � cslow)/(cfast 	 cslow). (7)

Here, cfast and cslow are the channel inputs computed for a stimulus of 1°/s
and contrast of 7.5% using Equation 5. Completely balanced inputs (no
change in speed tuning) would result in a ti

new value of 0; a complete shift of
the input balance toward the faster channel would equal 1, and a complete
shift toward the slower channel would equal 	1. These values were then
mapped back into the log range of speeds and the difference of this value and
the original tuning of 1°/s reported as the voxel tuning shifts.

We also estimated tuning shifts for single units by extrapolation
from published electrophysiology data by Krekelberg et al. (2006).
Their Figure 5A shows the preferred speed for each neuron when
contrast was 70% versus the preferred speed at lower contrasts of 20,
10, and 5%. We assumed that decreasing contrast resulted in the same
percentage shift in speed preference for all neurons regardless of their
speed tuning. This relationship means that the data for each contrast can
be fit by a line that passes through the origin of the data and that the slope of
that line is the estimate of percentage change in speed preference. Thus, we
could calculate the percentage shift in speed preference from 70% contrast to
each of the contrast measured in their experiment. With contrast on a log
scale, we found that the percentage speed tuning shift to percentage contrast
decrement had a linear relationship. When extrapolating this linear relation-
ship to an 85% decrement in contrast for our experiment (reduction in
contrast from 50 to 7.5% contrast), we found that the expected speed pref-
erence shift was approximately 	42%. Thus, a unit tuned to 1°/s at high
contrast in our experiment would shift its preference to 0.58°/s at low
contrast.

Results
Perceptual biases for speed and temporal frequency
We examined perceptual biases at low contrast for spatially
broadband moving and flickering stimuli by using a psychophys-
ical matching procedure and found perceptual biases similar to
previous reports (Thompson, 1982; Stone and Thompson, 1992;
Müller and Greenlee, 1994; Gegenfurtner and Hawken, 1996;
Thompson and Stone, 1997; Snowden et al., 1998; Blakemore and
Snowden, 1999; Brooks, 2001; Hürlimann et al., 2002; Anstis,
2003; Stocker and Simoncelli, 2006; Thompson et al., 2006; Ham-
mett and Larsson, 2012; Pretto et al., 2012). Subjects adjusted the
speed or temporal frequency of a low-contrast stimulus until it
appeared perceptually identical to a simultaneously presented
full-contrast reference stimulus (Fig. 1A). For speed, subjects
consistently produced perceptual estimates for the low-contrast
stimulus (Fig. 2A, ordinate) that were slower than the speed of the
full-contrast reference (Fig. 2A, abscissa). On average, we mea-
sured a perceptual bias of 	0.49°/s (biases at 5% contrast were
significantly less than 0 for all subjects; p � 0.05, one tailed t test).
For temporal frequency, the bias at low contrast was predomi-
nantly in the opposite direction, toward faster temporal frequen-
cies (Thompson and Stone, 1997; Hammett and Larsson, 2012).
On average, we measured a perceptual bias of 0.23 Hz (Fig. 2B),
although there was some heterogeneity in the perceptual shift
across temporal frequencies, in line with previous studies
(Hammett and Larsson, 2012). In particular, shifts toward
faster temporal frequencies dominated at the higher temporal
frequencies for which we ran the fMRI experiment (perceptual
biases at 5% contrast were significantly above 0 for all but one
subject at 5 and 10 Hz; p � 0.05, one-tailed t test), but, at low
temporal frequency, there was an apparent shift toward slower
temporal frequencies (Fig. 2B, see in particular the log–log
axis inset that highlights changes at lower frequencies; biases
at 5% contrast were significantly below 0 at 0.5 Hz and 2 Hz for
all subjects; p � 0.05, one-tailed t test). Although this may
represent a frequency dependency of the perceptual bias, it
could also be attributable to possible changes in strategies of
the subjects. At very slow temporal frequencies, subjects can
be more sensitive to matching the temporal phase of the con-
trol and test stimuli rather than their perception of the fre-
quency. Overall, the bias toward slow for speed and fast for
temporal frequency as contrast is lowered replicated previous
reports from the psychophysical literature.
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Decoding visual motion speed and temporal frequency from
BOLD activity
We used BOLD imaging to ask whether human occipital cortex
represents the veridical speed or temporal frequency of stimuli at
low contrast or the biased perceptual estimates. We had human
subjects view spatially broadband 1D textures similar to the psy-
chophysical experiment (Fig. 1B) as they performed a fixation
task and measured BOLD activity from the occipital lobe. The
visual stimuli were presented at either high (50%) or low (7.5%)
contrast and moved at different speeds and directions or flickered
at different rates (speed and temporal frequency measurements
were conducted in separate scanning sessions; see Materials and
Methods, Stimuli and task for functional imaging experiments).
We collected the pattern of voxel activity associated with each
stimulus presentation in each retinotopically defined visual area
(V1–V3, V3A, hV4, and MT, as well as a control region located in
the parietal cortex) and asked whether we could build decoders
on one portion of the data that could predict what stimulus was
shown on the left out dataset. We began with decoding tech-
niques because they provided a first-order analysis that allowed
us to assess both whether there was a representation of speed and
temporal frequency that we could measure with BOLD imaging
and whether that representation shifted with contrast. We later
analyzed voxel populations to determine how the changes in rep-
resentation could underlie the decoding results.

We reconstructed a continuous estimate of the speed or tem-
poral frequency of stimuli from observed patterns of BOLD re-
sponse. We used linear decoders, in which each voxel is assigned
a tuning weight that correlates with its selectivity for speed (pos-
itive weights correspond to fast tuning and negative weights to
slow tuning) or temporal frequency. Summing over the weighted
response of each voxel produced a continuous readout of speed
or temporal frequency. We defined decoder accuracy as the cor-
relation between the actual stimulus speed or temporal frequency
and the predicted estimate of the decoder. Note that this is dif-
ferent from a “percentage correct” performance measure that is
used for decoders that treat each stimulus type as a separate cat-
egory and reports how often the category was correctly predicted
(Kamitani and Tong, 2005, 2006). This decoding strategy would
not have been able to tell us how the represented speed changes
with contrast, because it can only predict which one of a set of
predetermined categories of presented stimuli was shown and is
therefore not sensitive to subtle shifts in representation.

Speed was accurately and significantly decoded from all of the
visual areas and shifted toward slower speeds with lower contrast.
We built decoders using all data regardless of contrast and found
a strong correlation of the cross-validated decoder output and the
actual speed presented (r values in axes; �r� � 0.52 across all visual
areas, p � 0.05, except for V3A in one subject, permutation test).
Splitting the decoder output for high (Fig. 3A, black) and low
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(Fig. 3A, red) contrast, we found that the representation shifted
toward slower speeds when contrast was lowered. On average, the
decoders were biased by 	0.32°/s (Fig. 3B, dark bars), which was
significantly p � 0.05 over 1000 cross-validated decoders built
with unique “build” datasets, except for V1, V2, V3, and hV4
in one subject each) and similar to the perceptual bias (Fig. 3B,
gray line).

The decoder shift toward slower speeds was not an artifact of
differences in signal/noise ratio between contrast conditions. It
might be that, as contrast was lowered, responses become weaker,
leading to a drop in decoding accuracy; this would severely com-
promise our ability to conclude anything about the speed repre-
sentation at low contrasts. However, we found that speed was
decoded equally well regardless of contrast (�rlow� was higher than
�rhigh� for exactly half of the subject areas), indicating similar sig-
nal/noise ratios for low-contrasts trials, despite being less visible.
We also found that the decoder weights were similar for high-
and low-contrast trials (�r� � 0.27; p � 0.05 except for V3 in
one subject and V3A for two subjects, Spearman’s rank-order
correlation; p � 0.1 for the control region), suggesting that the
same readout weights could be used to decode speed across
both conditions.

Although we built decoders using all of the available data
across contrast conditions, the shift toward slower speed was not
heavily dependent on this aspect of our analysis. We also built
decoders for the high-contrast conditions and tested the output
for the low-contrast stimuli and vice versa. This method severely
decreased the statistical power of the decoder because it used only
40% of the data to predict a holdout set of 50% (compared with
80/20 build/test sets described above). Nevertheless, we found
that the shift in both cases was primarily in the same direction as
the more powerful decoder (average bias for both decoders was
	0.04°/s for all visual areas and 	0.08°/s for only the visual areas
with shifts that were significantly different from 0 in either direc-
tion; p � 0.05, permutation test). For build-high, test-low decod-
ers, 15 of the 22 subject visual areas showed a significant
downward decoding shift. Ten visual areas showed this signifi-
cant shift for the build-low, test-high decoders. Notably, for the
build-high, test-low condition, only V1 in one subject showed a
significant shift 0 (p � 0.05) and for the build-low, test-high
condition, only V1 in two subjects and V2 in one subject showed
this contrary shift (p � 0.05).

The bias toward slow was not a confound with how contrast
affects visual cortical responses. Contrast reductions reduce re-
sponses in human visual cortex (Tootell et al., 1995; Boynton et
al., 1999; Logothetis et al., 2001; Gardner et al., 2005), and if, for
example, all voxels decreased their activity with speed, then de-
coders would necessarily shift toward slower speed as contrast
was reduced. However, we found that linear decoders performed
262% better in terms of r value at predicting speed than the
simple mean of BOLD activity within each area, indicating that
voxels do not all change response in the same way with speed. In
particular, we found both positive and negative voxel weights
from our analysis (the average distance from 0, 
/�, of the weight
distribution for each area and subject was only 0.086), indicative
of tuning for fast and slow speeds, respectively. Thus, decreasing
speed does not uniformly decrease BOLD responses, and a reduc-
tion in speed readout was not a confound with reduced responses
with speed. Moreover, in our analysis, we explicitly removed the
mean activity from each cortical activity pattern to avoid artifacts
with contrast reduction. Furthermore, had reducing response
with contrast artificially reduced the speed readout, we would
expect artificial reduction in readout even for decoders with per-

muted weights (permutation retains the precise balance of posi-
tive and negative weights). Instead, this manipulation eliminated
the shifts toward slow, yielding average shifts of 0.039°/s (Fig. 3B,
light bars) that were not significantly different from 0 (p � 0.05
for all areas and subjects, permutation test).

Temporal frequency could also be decoded from BOLD re-
sponses but showed the opposite shift from speed representation
toward faster temporal frequencies, thus matching perception
and not the veridical stimulus properties. In general, temporal
frequency was more difficult to decode than speed (Fig. 3C),
although this may have been a partial effect of sample size; for the
speed experiment, we collected 
315 trials over three speeds, but
we collected only 225 trials over the four temporal frequencies for
the flicker experiment. Decoding was significantly different from
0 for all subjects in hV4 and MT (�rhV4� � 0.42, �rMT� � 0.43; p �
0.05, permutation test) but significant for only two or three sub-
jects in the other visual areas (�r� � 0.29 in V1, V2, V3, and V3A).
As with speed, the decoders performed much better than the
simple average of activity for each area, which had no consistent
correlation with temporal frequency (exactly half of the subject
areas had a positive correlation, whereas half had a negative cor-
relation). Decoder bias was measured as the average difference
between the readouts for the high- and low-contrast stimuli for
decoders built on both sets of stimuli (Fig. 3D). The magnitude of
the bias was largest for areas V3 and hV4 (0.68 and 1.08 Hz,
respectively; significantly 0, p � 0.05 except for V3 in one subject,
permutation test). The other early visual areas displayed much
smaller biases (0.16 Hz on average), and they were not signifi-
cantly different from 0 (p � 0.05). Despite this lack of signifi-
cance, we note that the shift is predominantly in the opposite
direction to the speed decoder. This shift toward fast (rather than
slow) for flickering stimuli also further argues against the pos-
sibility that contrast reduction could simply explain the speed
effect.

Voxel population activity exhibits both population shifts and
general reduction with lowered contrast
The decoding results provide strong first-order evidence that the
cortical representation of speed and temporal frequency reliably
shifts to match perception rather than the veridical stimulus
properties at low contrasts, but it gives little insight into why it
shifts. Therefore, we visualized the activity of voxel populations
for each visual area to learn how stimulus contrast affects voxel
responses as a function of their tuning preference. The popula-
tion plots display the average activity of each voxel as a function
of its preferred speed or temporal frequency, summarized across
the whole population of voxels with a linear fit (Figs. 4A, 5A for
speed and temporal frequency, respectively). Here, we call a voxel
“tuned” for a particular stimulus speed or temporal frequency if
its activity at high contrast is significantly higher for that speed or
temporal frequency versus all others (however, this particular
definition of voxel tuning is not critical for the conclusions ob-
tained; for other ways of identifying selectivity that all gave
similar results, see Materials and Methods, Voxel population
analyses). Voxel activity is independently computed as the aver-
age response to a stimulus of given speed or temporal frequency
and contrast. The activity for each voxel is reported as a z-score,
normalized across all stimulus presentations to have 0 mean and
unit variance (see Materials and Methods, Voxel population
analyses). Ideally, population activity tilts upward to the right for
a high speed or temporal frequency stimulus (right column) and
up to the left for a slow stimulus (left column). Note that this
basic effect, apparent in representative data from V1 and MT
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(Figs. 4A, rows 3 and 4, 5A, rows 1 and 2), is not simply attributable
to bias in how voxels were selected for the analysis. Rather, it dem-
onstrates true population selectivity, because the estimates of voxel
preference and activity were computed with separate sets of data.

Examination of the population activity plots at each contrast
can help to dissociate the effects of a general reduction in re-
sponse from a speed or temporal frequency-specific shift. A pure
general contrast effect that does not change the population read-
out would cause the population activity to rise or fall uniformly
regardless of the preference of each voxel (hypothetical offset; Fig.
4A, top row). A pure speed or temporal frequency-specific con-
trast effect would shift the population activity toward voxels
tuned for slow speeds or fast temporal frequencies and result in a
shift of the population readout to match perception. That is,
lowering contrast should behave as if the stimulus speed or tem-
poral frequency actually changed, which should tilt the popula-
tion curve in the appropriate direction. This would be evident as
a clockwise rotation (counterclockwise for temporal frequency)
of the population curves (hypothetical rotation; Fig. 4A, second
row). These two effects are not mutually exclusive; the popula-
tion response could undergo both a vertical shift and a rotation
simultaneously and exhibit both a general reduction in contrast
gain and a population shift.

Plotting the contrast-dependent rotation of the population
curve against the vertical offset (Figs. 4B, 5B) revealed that a
contrast reduction yields speed and temporal frequency-specific
population shifts along with a general reduction across all visual
areas in all subjects. V1 stood out for the speed data as having the
largest general reduction of activity as a function of contrast. All
visual areas, including V1, were distinguished from the control
area that showed a small general response decrease but no signif-
icant population shift (all data to the left of 0; Fig. 4B, black

−0.2 0

−0.4

−0.2

0

P
op

ul
at

io
n 

of
fs

et
 (

z-
sc

or
e)

Population rotation (  slope)

ctrl
V3A

V3

hV4

MT

V2

V1

slower - faster

Population readout

0.5

-0.5

0

1/4 1

V

V
ox

el
 a

ct
iv

ity
(z

-s
co

re
)

4

V1

MT

cntl

offset

high

low

rotation

1/4 1 4
A

B

Figure 4. Voxel population analysis of speed shifts. A, Normalized voxel response is plotted as a
function of voxel tuning preference for two hypothetical cases (top 2 rows) and three areas averaged
across all subjects (bottom 3 rows). Each columns shows activity at one of three different stimulus
speeds at high (dark lines) or low (light lines) contrast. The arrow indicates a slow, medium, or fast
stimulus speed. Data are cross-validated and averaged across all trials and subjects, reported as
z-scores. Error bars are SEM across subjects. A hypothetical general decrease in contrast would shift
population activity vertically without changing the slope (first row: “offset”), whereas a hypothetical
population shift to slower speeds at low contrasts should result in a rotation of the population re-
sponse (second row: “rotation”). B, Plot of vertical offset against rotation of population activity lines,
averaged across subject for each visual area. Ellipses are SEM across subjects. Clockwise (negative)
rotations of the population activity lines as a result of low-contrast stimuli can be interpreted as a shift
in the speed representation toward slower speeds. Counterclockwise (positive) rotations can be inter-
preted as a shift toward higher speeds. cntl, ctrl, Control.

1 3 6 9
-0.5

0

0.5

1 3 6 9 1 3 6 9 1 3 6 9

Voxel tuning (Hz)

Vo
xe

l a
ct

iv
ity

(z
-s

co
re

)

V1

MT

ctrl

high

low

1 3 6 9 Hz

−0.1 0 0.1 0.2

−0.4

−0.2

0

P
op

ul
at

io
n 

of
fs

et
 (

z-
sc

or
e)

Population rotation (  slope)

ctrl
V3A

V3

hV4

MT

V2

V1

slower - faster
Population readout

A

B

Figure 5. Population plot analysis of temporal frequency shifts. All conventions follow Fig-
ure 4. ctrl, Control.

Vintch and Gardner • Cortical Correlates of Perceptual Motion Biases J. Neurosci., February 12, 2014 • 34(7):2592–2604 • 2599



vertical line). Similarly for the temporal frequency data, the ma-
jority of the data plotted to the right of 0, indicating a rotation in
the population response in the opposite direction to the speed
data (Fig. 5B), matching the perceptual effect toward high tem-
poral frequencies. Thus, changes in the representation of speed
and temporal frequency showed both general reductions of ac-
tivity with contrast as expected from previous studies (Albrecht
and Hamilton, 1982; Tootell et al., 1995; Boynton et al., 1999;
Logothetis et al., 2001; Gardner et al., 2005) and shifts in the
population activity that represented the perceptual biases at low
contrasts.

Forward-encoding model can reconcile population and
single-unit speed shifts
We used a forward-encoding model (Brouwer and Heeger, 2009;
Serences and Saproo, 2012) to ask how hypothetical input chan-
nels tuned to different speeds with different contrast sensitivities
could account for the BOLD measurements from the speed ex-
periment. That is, we modeled the speed selectivity of voxels in
our measurements as arising from the difference in input be-
tween two hypothetical speed-tuned channels whose speed tun-
ing and contrast sensitivity were fit to best account for the BOLD
data (Fig. 6A; cf. Tolhurst et al., 1973; Thompson et al., 2006; for
more details, see Materials and Methods, Forward-encoding
speed channel model) Thus, a voxel tuned for slow would receive
more weight from the slow-tuned channel and a voxel tuned for
fast, vice versa. This analysis allowed us to formalize a simple
model of speed selectivity and examine how the two channels in
the model behave as a function of contrast. It also provided a
possible explanation for why single-unit measurements have
found tuning preference shifts toward slow with contrast reduc-
tion (Pack et al., 2005; Krekelberg et al., 2006; Livingstone and
Conway, 2007), which is a result considered to be at odds with
perceptual shifts (see Discussion; Krekelberg et al., 2006).

Examining the fitted parameters of the two speed-tuned chan-
nels showed that, although both reduced activity with contrast,
the slower channel was more robust to decreased contrast. The
model was well fit to the fMRI data for all voxels in each subject
and visual area (�r 2� � 0.43 on cross-validated data over subjects
and visual areas; p � 0.05 for all visual areas, permutation test).
Both channels decreased response with contrast (contrast sensi-
tivity parameters: sfast and sslow negative), with the largest average
decrease in response across both channels seen in V1 (Fig. 6B,
ordinate, which plots the average of sfast and sslow). This is analo-

gous to the vertical shift in the voxel population analysis (Fig. 4B).
However, the reduction in response of the two channels with
contrast was not equal; the slower channel did not reduce re-
sponse as much as the fast channel (Fig. 6B, abscissa that plots the
difference between sfast and sslow divided by 2). The more robust
response at low contrast for the slow speed channel was analo-
gous to the rotation of the voxel population response (Fig. 4B),
which indicated more robust responses for slow-tuned voxels
(those that get more slow channel input) at low contrast. The
general pattern in reduction in response with contrast for the two
speed channels was similar for all visual areas and was markedly
different from the effect in the control region (Fig. 6B, black). Thus,
the forward-encoding channel analysis complemented the voxel
population analysis (Fig. 4B) by showing that, although there was a
general reduction of response across the two input channels, the slow
channel was more robust to contrast reduction.

The channel model predicted both the shift in population
representation of speed and shifts in tuning for individual neu-
rons. Reading out the representation of speed from the channel
responses showed that, on average, the speed representations
shifted by 	1.11°/s (Fig. 6C, bottom bar graph; see Materials and
Methods, Speed channel model), thus recapitulating the decod-
ing and voxel population analysis of shifts toward slow for the
population representation. At the scale of individual units (Fig.
6A, dots), the model displayed the same paradoxical shifts in
speed tuning toward slow as has been found in single-unit mea-
surements (Pack et al., 2005; Krekelberg et al., 2006; Livingstone
and Conway, 2007). At low contrast, a unit received less input
from the fast channel because the slow channel was more robust
to contrast reduction. Thus, each individual unit become more
influenced by the slow speed channel, and because tuning pref-
erence was determined by the balance of the slow and fast channel
inputs, the individual units preferred speed tuning shifted to
slower speeds. On average, a unit tuned to 1°/s at high contrast
would shift its tuning by 	0.43°/s at low contrast (Fig. 6C, top
row); for similar contrast ranges, we estimate that the single-unit
data, adapted from Krekelberg et al. (2006), predicts a tuning
shift of nearly the same magnitude 	0.42°/s (see Materials and
Methods, Speed channel model). Note that the shift in tuning
preference is much smaller than that observed at the population
level (Fig. 6C, top and bottom histograms have different ordinate
scales). Thus, the model demonstrated that a small shift in tuning
preference toward slower speeds (which should shift the popula-
tion readout in a direction opposite of the perceptual shift) can be
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1°/s at high contrast) from the model. Error bars are SEM over models fit to the four subjects. Note difference in vertical scale for the two plots. ctrl, Control.
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dominated by an overall population effect in which slower tuned
units retain their responses at low contrast, leading to a slower
speed readout from the population.

Discussion
We have shown that biases in human motion perception at low
contrasts are reflected in BOLD activity in early visual cortex.
First, we demonstrated that a distributed representation of speed
is accessible with BOLD measurements by building cross-
validated decoders that reported the speed of drifting 1D textures
at high or low contrast. The decoding results were reliable and
significant, in part due to the use of sparse decoders that are well
known to be robust to noise and sample size (Kay et al., 2008;
Miyawaki et al., 2008). Next we showed that decoder readouts in
V1–V3, V3a, hV4, and MT were biased toward slow speeds at low
contrasts similarly to perception. Permutation and voxel popu-
lation analyses showed that this was a genuine effect of contrast
on speed representation and not a simple non-speed-specific re-
duction in overall response. Moreover, decoders built to readout
the temporal frequency of a flickering stimulus were biased to-
ward high temporal frequencies at low contrasts, also matching
perception. Together, our results resolve a conflict (Pack et al.,
2005; Krekelberg et al., 2006; Livingstone and Conway, 2007;
Hammett et al., 2013) in the well studied link (Parker and New-
some, 1998) between motion perception and cortical responses
by showing that, in humans, cortical visual responses reflect bi-
ased perception of speed and temporal frequency rather than
veridical stimulus attributes. Prominent theoretical and empiri-
cal work has suggested that biases in speed perception represent a
prior for slow (Hürlimann et al., 2002; Weiss et al., 2002; Stocker
and Simoncelli, 2006; Hedges et al., 2011). If so, our results show
that motion perception priors interact with sensory evidence at
the earliest stage of cortical processing.

The representation of speed in visual cortex revealed
by decoding
The fine spatial scale of distributed cortical speed representations
(Liu and Newsome, 2003; Sun et al., 2007) necessitate the use of
adaptation (Lingnau et al., 2009) or decoding techniques (Ham-
mett et al., 2013) for their study. Decoding of speed and temporal
frequency may be possible because of larger spatial-scale bias in
representation, by either biased vasculature signals (Gardner,
2010) or spatial arrangements of tuning preferences (Sasaki et al.,
2006; Freeman et al., 2011; Nishimoto et al., 2011). If large-scale
biases exist, these signals are potentially inappropriate for high
spatial resolution mapping of columnar architecture (Sun et al.,
2007) but may still give valid, indirect measures of tuning prop-
erties for speed and temporal frequency that can be used to com-
pare how a representation changes across conditions. This is
particularly so because there is no evidence that spatial factors
like the retinal position of stimuli substantially change perceptual
biases for speed (Thompson, 1982; Krekelberg et al., 2006;
Stocker and Simoncelli, 2006).

Linking biased motion perception to cortical populations
rather than single units
Single-unit studies have generally found responses in apparent
conflict with speed perception. Neurons in MT (Pack et al., 2005;
Krekelberg et al., 2006) and V1 (Livingstone and Conway, 2007)
shift their speed tuning preference to slower speeds at low con-
trasts. This is paradoxical for a fixed labeled-line readout (Krekel-
berg et al., 2006) in which each neuron “votes” with its firing rate
for its “label,” i.e., preferred speed. The intuition is that, as con-

trast is lowered, neurons shift their tuning to slower speeds and
thus will begin to respond more to stimuli slower than their label.
The winning label (i.e., strongest responding neuron) will then be
for a faster than veridical speed. This disassociation between MT
responses and perception as contrast is lowered (Priebe et al.,
2003; Pack et al., 2005; Krekelberg et al., 2006; Livingstone and
Conway, 2007) is problematic for the predominant view that
neural responses in MT are tightly linked to perception (Parker
and Newsome, 1998; Dougherty et al., 1999; Seidemann et al.,
1999; Wandell et al., 1999; Priebe and Lisberger, 2004; Liu and
Newsome, 2005; Takemura et al., 2012).

It is possible that some experimental factor may account for
this disassociation. For example, perceptual speed biases have
generally been tested at slow speeds, like the ones used in our
study, whereas single-unit physiology has generally used high
speeds (Pack et al., 2005; Krekelberg et al., 2006; Livingstone and
Conway, 2007). Although more natural, broad-brand stimuli,
such as dots (Krekelberg et al., 2006) and textures (Stocker and
Simoncelli, 2006) like ones used in our study have universally
resulted in slow speed perceptual biases, some reports (Thomp-
son, 1982; Gegenfurtner and Hawken, 1996; Blakemore and
Snowden, 1999; Thompson et al., 2006) have suggested little or
even opposite biases for sinusoidal gratings moving fast, particu-
larly at 8 Hz. Another experimental factor is the practice of using
stimuli optimally matched to the receptive field of each neuron
measured at high contrast. At low contrast, receptive fields of MT
neurons increase in size and tend to lose their suppressive sur-
rounds (Pack et al., 2005). For example, if neurons tuned for
slower speeds increase their receptive field size the most, more
slow preferring neurons would be recruited and the population
readout would be biased toward slower speeds.

BOLD and extracellular recordings may also reflect different
aspects of neural activity. For example, BOLD measurements
might be particularly sensitive to synaptic inputs reflecting top-
down feedback and neuromodulation (Logothetis, 2008). Top-
down modulation might carry information about stimulus biases
and adjust sensory representations (Nienborg and Cumming,
2007, 2009), perhaps even as a means to implement hierarchical
Bayesian inference (Lee and Mumford, 2003). However, if BOLD
is more reflective of top-down biasing, it is puzzling why this
modulatory signal we measure would not result in modulated
firing rates of individual neurons.

Alternatively, the single-unit measurements may be unified
with our BOLD measurements by considering differences in the
spatial scale of activity measured. One concrete possibility of this
is presented as our forward-encoding model of population data
(Fig. 6A) in which hypothetical differences in contrast sensitivity
between fast and slow inputs yield both population responses
with biases in agreement with perception and individual units
with shifts opposite to perception. This model form was chosen
for both its simplicity and relationship to previous literature
(Tolhurst et al., 1973; Thompson, 1982), but other models that
share the negative correlation between contrast sensitivity and
speed tuning would behave similarly. Reconciling BOLD and
single-unit measurements through considerations of spatial scale
is appealing because other apparent disassociations, notably dur-
ing perceptual suppression (Wilke et al., 2006; Maier et al., 2008),
also show close links between perception and large-scale mea-
surements, such as BOLD and local field potentials (Boynton,
2011).

Although this model of speed perception can reconcile our
results with single-unit measurements, it still lacks empirical sup-
port. However, it does make a number of testable predictions.
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First, neurons tuned to the fastest speeds should exhibit the larg-
est contrast-induced tuning shift because they receive more input
from fast, highly contrast-sensitive speed channels. Indeed, this
effect is apparent in three independent reports (Pack et al., 2005;
Krekelberg et al., 2006; Majaj et al., 2007). A second, related pre-
diction is that feedforward inputs into speed-tuned cells should
have a predictable tradeoff between contrast sensitivity and tem-
poral frequency preference. The motion pathway primarily re-
ceives M (magnocellular) inputs from the LGN (Blasdel and
Fitzpatrick, 1984; Nakayama and Silverman, 1985; Maunsell et
al., 1990). Speed tuning can arise from the combination of M-like
responses (Adelson and Bergen, 1985) with different temporal
properties (Saul et al., 2005). Whether contrast sensitivity is an-
ticorrelated with temporal frequency within the M-pathway, as
required by the model, is not well established because many of the
best measurements of these properties were conducted under
anesthesia for which temporal frequency tuning is significantly
affected (Alitto et al., 2011). We note that contrast-sensitivity
differences between P (parvocellular) and M pathways (Shapley et
al., 1981; Derrington and Lennie, 1984) are opposite to the expecta-
tions for speed (cf. Thompson et al., 2006) but instead could be the
basis for biases toward faster temporal frequencies (Thompson and
Stone, 1997). Two separate channel mechanisms for speed and
flicker perception may be reasonable because neurons that process
motion signals do not respond well to transparent motion (Qian and
Andersen, 1994), and flickering stimuli are composed of drifting two
transparent objects in opposite directions.

Representation of priors for visual perception
Our results suggest that motion perception biases are encoded
very early in sensory processing. Why might this be the case? A
prevalent normative hypothesis (Knill and Richards, 1996) for
motion perception biases suggests that they represent priors for
Bayesian inference (Weiss et al., 2002; Stocker and Simoncelli,
2006). In this view, perception becomes biased to a prior for slow
motion as sensory signals become weak or ambiguous as when
contrast is lowered. Whether temporal frequency biases can also
be viewed as a part of optimal inference is an open question. For
either case, confirming that biases measured in perception
(Stocker and Simoncelli, 2006; Körding, 2007) match likely esti-
mates from environmental statistics would offer strong support.
However, measuring these environmental statistics is nontrivial,
because self-motion and eye movements as well as the actual
distribution of motion statistics need to be accounted for. Thus,
current evidence is suggestive but not conclusive about whether
the biases reported here are priors that adhere to the expectations
of Bayesian computations.

Although many human behaviors can be described as Bayes-
ian inference (Ernst and Banks, 2002; Körding and Wolpert,
2004), little is known about the neural implementation of priors,
which are a key component of this theory. One model (Ma et al.,
2006) requires two separate populations to encode sensory infor-
mation and priors, which add to yield a population representing
the posterior. However, if biases for slow speed represent a prior,
our results suggest that integration of sensory information and
priors happens early, in or before V1. Models (Ganguli and Si-
moncelli, 2010) based on efficient coding that suggest that priors
are encoded early through the strategic allocation of neural re-
sources for likely stimuli are more closely aligned with our results.
Different neural implementation may be required by priors
learned over different timescales. Some priors, including those
for motion statistics (Sotiropoulos et al., 2011), may be acquired
over a short period of time and require dynamic representation in

neural populations (Kok et al., 2012, 2013). Other priors, such as
perceptual biases around cardinal orientations (Girshick et al.,
2011) that also have early cortical correlates (Furmanski and En-
gel, 2000) or motion perception biases as studied here, are appar-
ent in most subjects without any training. Thus, they may be
neural adaptations to exposure to long-term environmental sta-
tistics and therefore reflected in the earliest parts of the sensory
processing hierarchy as we have found.
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