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The single nucleotide polymorphism (SNP) that leads to a valine-to-methionine substitution at codon 66 (Val66Met) in BDNF is corre-
lated with differences in cognitive and memory functions, as well as with several neurological and psychiatric disorders. MRI studies have
already shown that this genetic variant contributes to changes in cortical thickness and volume, but whether the Val66Met polymorphism
affects the cortical surface area of healthy subjects remains unclear. Here, we used multimodal MRI to study whether this polymorphism
would affect the cortical morphology and resting-state functional connectivity of a large sample of healthy Han Chinese human subjects.
An SNP-wise general linear model analysis revealed a “dosage effect” of the Met allele, specifically a stepwise increase in cortical surface
area of the right anterior insular cortex with increasing numbers of the Met allele. Moreover, we found enhanced functional connectivity
between the anterior insular and the dorsolateral prefrontal cortices that was linked with the dosage of the Met allele. In conclusion, these
data demonstrated a “dosage effect” of BDNF Val66Met on normal cortical structure and function, suggesting a new path for exploring the
mechanisms underlying the effects of genotype on cognition.
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Introduction
Brain-derived neurotrophic factor (BDNF) is strongly expressed
in the CNS, including the hippocampus (Conner et al., 1997) and
cerebral cortex (Hofer et al., 1990) and plays an essential role in
regulating neural development, synaptic plasticity, and dendritic
growth neurogenesis (Poo, 2001; Binder and Scharfman, 2004).
A functional polymorphism in the BDNF gene, specifically, a
valine-to-methionine substitution at codon 66 (Val66Met) in the
5� proregion, has been reported as affecting intracellular process-
ing and activity-dependent BDNF secretion (Egan et al., 2003;
Chen et al., 2004). Impaired memory performance (Egan et al.,
2003; Hariri et al., 2003) and reduced cognitive performance
(Guerini et al., 2009; Schofield et al., 2009) have been associated
with the Met allele. It also has been related to increased suscepti-
bility to a number of neuropsychiatric disorders, including

schizophrenia (Eisenberg et al., 2013) and Alzheimer’s disease
(Voineskos et al., 2011). In addition, diffusion tensor imaging
studies have found the association between this variant and white
matter microstructure (Carballedo et al., 2012; Tost et al., 2013).

Many previous studies have shown that the Met allele contrib-
utes to reduced cortical volume in the hippocampus (Pezawas et
al., 2004; Frodl et al., 2007), prefrontal cortex (Pezawas et al.,
2004), and temporal and occipital lobar regions (Ho et al., 2006),
independent of clinical diagnosis. However, some studies were
not able to detect any genetic impact on cortical volume (Jessen et
al., 2009; Koolschijn et al., 2010), which might be attributed to the
differences in sample size and methodological approaches. It is
also noteworthy that cortical volume comprises both surface area
and cortical thickness, only assessing cortical volume may ob-
scure individual differences. Previous studies suggested that these
two components of cortical volume are genetically and pheno-
typically independent (Panizzon et al., 2009; Eyler et al., 2011).
Hence, separating the analyses of these independent factors may
help clarify the relationship between genetics and the basic struc-
tural elements of the cerebral cortex. To date, the studies have just
focused on genetic effects on cortical thickness, which displayed
BDNF-associated changes in the temporal gyrus and prefrontal
cortex (Lotfipour et al., 2009; Lyoo et al., 2011; Voineskos et al.,
2011), but little research has been performed on BDNF-
associated effects on surface area. The cortical surface area is a
highly heritable trait (Eyler et al., 2011) and has been shown to be
correlated with cognitive performance (Koscik et al., 2009) and
Alzheimer’s disease (Dickerson et al., 2009). The increased size of
the human cortex compared with animals may be driven primar-
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ily by changes in the surface area (Rakic, 2009). Therefore, corti-
cal surface area may be a promising endophenotype for
understanding human brain development.

To elucidate the effects of Val66Met on cortical development
and morphology, we used cortical thickness and surface area
measures to analyze the “dosage effect”s of the Val66Met poly-
morphism. Furthermore, because of the regulating effect of
BDNF on synaptic plasticity, we speculated that this polymor-
phism would mediate the functional connectivity between areas
that vary with BDNF genotype and the rest of the brain.

Materials and Methods
Subjects. We recruited 323 healthy Chinese subjects (157 males and 166
females, mean age 22.7 years, range 18 –31 years) (see Table 1 for addi-
tional demographic details) and provided written informed consent in
accordance with the local Medical Research Ethics Committee of Tianjin
Medical University. All subjects were right-handed and Han Chinese in
origin. The exclusion criteria were the same as those reported in our
previous studies that used this same database (Li et al., 2013). We care-
fully asked subjects to ensure that had no personal or family history of
neurological or psychiatric disease, head injury, psychiatric treatment,
drug or alcohol abuse, hypothyroidism, or other mental diseases and no
contraindications to MRI screening. We used many neuropsychological
tests, including the Chinese Revised Wechsler Adult Intelligence Scale
(Gong, 1982), the Wisconsin Card Sorting Test (Heaton, 1999), and
n-back working memory tasks (Owen et al., 2005) to assess memory and
executive functions. Fifteen subjects were excluded from the structural
MRI analysis, and 43 subjects were discarded in the fMRI analysis due to
missing genotype data and poor imaging quality.

DNA extraction and BDNF Val66Met genotyping. We extracted the
genomic DNA from whole blood using EZgene Blood gDNA Miniprep
Kit (Biomiga) and then genotyped the BDNF Val66Met in all subjects
using the PCR and ligation detection reaction (LDR) method (Thomas et
al., 2004; Yi et al., 2009). The PCR primer sequences of bdnf were de-
signed as follows: forward: 5� ACAAGGTGGCTTGGCCTAC 3�, reverse
5� AGAAGAGGAGGCTCCAAAGG 3�. The three probes used in the LDR
reactions included one common probe (rs6265_modify: P-GTGTT
CGAAAGTGTCAGCCAATGATTTTTTTTTTTTTTTTTTTTT-FAM)
and two discriminating probes (rs6265_A: TTTTTTTTTTTTTTTTTTTT
CCTCATCCAACAGCTCTTCTATCAT and rs6265_G: TTTTTTTTTTTT
TTTTTTTTTTCCTCATCCAACAGCTCTTCTATCAC). Because of missing
BDNF genotype data, 14 subjects were excluded from the following anal-
ysis, leaving 309 subjects in total.

MRI acquisition. T1 images were collected from all subjects using a
single 3T GE scanner (SIGNAHDX3.0 T scanner; GE Healthcare)
equipped with a standard head coil and a high-resolution T1-weighted

brain volume (BRAVO) 3D MRI sequence (TR � 8.1 ms, TE � 3.1 ms,
176 sagittal slices, flip angle � 13°, voxel size � 1 mm � 1 mm � 1 mm)
to obtain 3D datasets across the entire cranium. For the resting-state
scan, a single-shot, gradient-echo, echo-planar-imaging sequence sensi-
tive to blood oxygen level-dependent contrast (TR � 2000 ms, TE � 30
ms, no gap, voxel size � 3.75 mm � 3.75 mm � 4.0 mm, FOV � 240 �
240 mm 2, matrix � 64 � 64, flip angle � 90°, 40 slices, 180 volumes) was
used to acquire fMRI data. Before the resting-state fMRI examination, all
subjects were emphasized to relax, lie still with their eyes closed, and not
to fall asleep. Meanwhile, we further checked whether they had fallen
asleep or not during and after the scanning.

Structural MRI analysis. Each scan was processed using the FreeSurfer
package (which is freely available to the research community at http://
surfer.nmr.mgh.harvard.edu/) to obtain the cortical thickness and local
surface area measurements. In brief, the stripped, intensity-corrected,
subdivided volume was segmented to classify the white matter and to
approximate the gray-white matter boundary for each cortical hemi-
sphere. From this, a topologically correct, gray-white matter boundary
surface triangulation was generated (Dale et al., 1999; Fischl et al., 2001).
Subsequently, a pial surface was generated using a deformable surface
algorithm. After obtaining the pial surface, we obtained a cortical thick-
ness map by using the T-average algorithm (Fischl and Dale, 2000; Han et
al., 2006). Vertexwise estimates of the surface area were calculated by
assigning one-third of the area of each triangle to each of its vertices. For
comparison, all of the individual reconstructed cortical surfaces were
aligned to an average template by using a surface-based registration al-
gorithm. The thickness and area maps were resampled and smoothed
with a heat kernel of 20 mm width. Before statistical analysis, the results
for each subject were visually checked for gross topological differences,
and one subject with major differences was excluded. In the end, 308
subjects were included in the structural MRI analysis (Val/Val � 95;
Val/Met � 156; Met/Met � 57).

fMRI analysis. All the raw fMRI data were inspected by two experi-
enced radiologists who knew nothing about the genotype information.
Fourteen subjects were excluded because of bad imaging quality, such as
apparent signal loss and interslice motion artifacts. Imaging data were
preprocessed using DPARSFA (Data Processing Assistant for Resting-
State fMRI Advanced Edition, http://www.restfmri.net/forum/DPARSF).
The first 10 volumes of each scan were discarded to allow for magnetiza-
tion equilibrium. Subsequent preprocessing included slice timing, head
motion correction, spatially normalizing to the MNI template, resam-
pling to 2 � 2 � 2 mm 3, smoothing with a 4 mm Gaussian kernel to
decrease spatial noise, temporal bandpass filtering, and regressing out
nuisance signals including head motion parameters and white matter,
CSF, and global signals. A further 14 participants who exhibited a maxi-
mum displacement in any of the cardinal directions (x, y, z) of �2 mm, or
a maximum spin (x, y, z) of �2° were excluded. In the end, 280 subjects
were included in the functional connectivity analysis (Val/Val � 89;
Val/Met � 142; Met/Met � 49).

The region with significant group differences in the cortical surface
area analysis was extracted as an ROI. We resampled the ROI mask to 2 �
2 � 2 mm 3 in MNI space and calculated the average time series of the
seed ROI for each subject. Then we computed Pearson correlation coef-
ficients between the mean time series of the ROI and those of all the
voxels throughout the whole brain and converted the correlation coeffi-
cient to z values using Fisher’s r-to-z transformation to improve normal-
ity. Using these values, we generated z-functional connectivity maps for
each subject. To identify the clusters that showed significant functional
connectivity with the ROI, we conducted a one-sample t test on the
z-functional connectivity maps of each individual to detect whether they
were significantly different from zero ( p � 0.05, familywise error [FWE]
correction). SNP-wise univariate general linear models (GLMs) were
used to compute the effects of the BDNF genotype on the functional
connectivity within the gray matter mask, with age and sex as covariates.
All the statistical steps were completed using statistical parametric map-
ping (SPM8, http://www.fil.ion.ucl.ac.uk/spm).

Statistical analysis. A � 2 test was used to see whether the allele frequen-
cies of BDNF Val66Met fell within the Hardy–Weinberg equilibrium.
Vertex-by-vertex analyses of cortical thickness and surface area were

Table 1. Subject demographics for different genotype groups

Met/Met
(N � 57)

Val/Met
(N � 156)

Val/Val
(N � 95)

Mean SD Mean SD Mean SD p value

Male/female 28/29 71/85 50/45 0.545a

Age 22.35 2.50 22.67 2.41 22.97 2.70 0.333b

Education 15.11 3.18 15.48 2.71 15.86 2.04 0.256b

IQ 114.88 11.77 116.60 8.41 115.75 10.18 0.531b

Working memory
2-back_CR 89.13 5.21 88.48 6.02 87.86 8.51 0.567b

3-back_CR 82.30 4.49 81.18 6.89 81.26 9.62 0.689b

WCST
CC 4.98 1.71 4.99 1.74 4.96 1.74 0.997b

RC 70.96 13.33 70.60 11.17 70.24 11.74 0.973b

PRC 68.97 15.88 68.73 14.10 69.17 15.12 0.909b

CR, Correction rate; WCST, Wisconsin Card Sorting Test; CC, categories completed; RC, total correct responses; PRC,
percent correct responses.
ap value (Pearson �2 test).
bp value (ANOVA).
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performed using the SurfStat package (http://www.math.mcgill.ca/
keith/surfstat/). To test dose-dependent genotype effects of the BDNF
gene, we modeled Met allele as additive. Specifically, SNP-wise GLMs
were fitted with morphological phenotypes as the dependent variables
and genotype as the independent variable. And the genotype group was
treated as a linear ordered factor (i.e., Val/Val � 0, Val/Met � 1, Met/
Met � 2) in a GLM. Subsequently, a corrected clusterwise p value was
obtained using random field theory (Hayasaka et al., 2004). The level of
significance for the vertices was set at a conservative, surface-wide p �
0.05 after a multiple comparisons correction. In the same way, we ex-
tracted the significant region in the SNP-wise GLMs based on functional
connectivity and averaged the z-scores in the region for each subject. We
performed the cluster-level FWE correction throughout the whole brain,
and a two-stage procedure was followed: (1) thresholding result image
voxelwise at a certain uncorrected p value (here p � 0.001 was set); and
(2) applying cluster-level inference to keep only those clusters that are big
enough to ensure an overall (familywise) p � 0.05. We then performed
an ANOVA and two-sample t tests with a p value of 0.05 as the threshold
for statistical significance.

Results
Demographic and genetic characteristics
The frequencies of the two BDNF alleles were 0.562 for Val and
0.438 for Met. The genotype frequencies (Val/Val � 0.307, Val/
Met � 0.508, Met/Met � 0.185) were within the Hardy–Wein-
berg equilibrium (� 2 � 0.312, p � 0.856). No genotypic
differences were found for demographic (age, sex, education)
and cognitive variables (IQ, working memory, and executive
function) (all p � 0.05; Table 1).

BDNF Val66Met and cortical morphology
The surface area analysis showed significantly positive correla-
tions between the dosage of the Met allele and the surface area in
the right anterior insular cortex (including a few parts of the
superior temporal gyrus) (p � 0.05, the cluster-based random
field theory correction), whereas no significant correlation was
observed between cortical thickness and the dosage of the Met
allele, no cluster survived even under the threshold of an uncor-
rected p � 0.001. Significant intergroup differences in the mean
surface area of all the vertices in this cluster were also observed
(F(2,307) � 11.53, p � 0.001) (Fig. 1).

BDNF Val66Met and functional connectivity
We further investigated the functional connectivity between the
anterior insular cortex and the whole brain and found that the
anterior insular cortex was significantly positive correlated with
the dorsolateral prefrontal cortex (DLPFC). We also found a pos-
itive correlation between the dose of the Met allele and the func-
tional connectivity between the dorsolateral prefrontal cortex
and the right anterior insular cortex (Val/Val � Val/Met � Met/
Met) (Fig. 2; Table 2). Similarly, we found that the mean Z scores
significantly increased with the number of Met alleles (F(2,279) �
10.51, p � 0.001).

Discussion
This study demonstrated that a functional variation at the
Val66Met locus in the 5� prodomain of BDNF impacted cortical
surface area and resting-state functional connectivity in a large
sample of healthy Chinese subjects. Specifically, the Met allele
was associated with surface expansion in the right anterior insular
cortex, but we did not find significant effects on cortical thick-
ness. We also observed a trend toward increased functional con-
nectivity between the DLPFC and the anterior insular cortex
based on resting-state functional data. Therefore, we have iden-
tified obvious, robust “dosage effects” in both the cortical mor-
phology and the resting-state functional network. These effects
are presumably caused by abnormal intracellular packaging and
regulation of the secretion of BDNF in the presence of Met (Egan
et al., 2003; Chen et al., 2004). These abnormalities cause changes
in the BDNF activity-dependent processes of human brain devel-
opment and cortical plasticity.

We found that Met homozygotes had the significantly largest
surface area in the anterior insular cortex. Previous studies have
reported significant differences between the genotypic groups in
the cortical volume or gray matter volume of the medial temporal
lobe (Pezawas et al., 2004; Frodl et al., 2007), which does not
contradict our results given that a new endophenotype (surface
area) was adopted to assess the allelic effect of the risk Met allele.
Such methodological difference may account for the inconsis-
tency. In addition, several researches on neuropsychiatric disor-
ders, such as schizophrenia, has shown increased cortical surface
area in the temporal and paralimbic regions of patients and their

Figure 1. Association of BDNF Val66Met with cortical surface area in all participants. A, The map shows the region with a significant linear increase in the cortical surface area in which Val/Val �
Val/Met � Met/Met. The color bar indicates p values. The corrected p values were obtained using random field theory. B, Mean � SEM surface area of the survived regions after correction in the
BDNF genotype groups. *p � 0.01 (two-sample t test). **p � 0.001 (two-sample t test).
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healthy relatives (Goghari et al., 2007; Fornito et al., 2008;
Chakravarty et al., 2012). Although these results have not been
entirely consistent, an increase in surface area may provide some
clues to understanding the underlying neurophysiology of the
changes found in such diseases. The reason why surface expan-
sion would be important might be explained by one or more of
the following. First, increased surface area may indicate exagger-
ated normal neurodevelopmental processes during brain growth
(Fornito et al., 2008). Another possibility is that these effects may
reflect more interneurons, larger cells, or less dense cell packing at
the cellular level (Goghari et al., 2007). A third possible explana-
tion is that cortical surface area is related to the degree of cortical
folding (Jubault et al., 2011). The more tension along an axon or
the more shrinkage of white matter fibers, the deeper the sulci
and the more extensive the cortical surface area (Van Essen,
1997). So, to some extent, the dose-dependent cortical surface
area expansion associated with the Met allele might indirectly
mirror changes in the white matter.

Interestingly, in the current study, we found that the BDNF
Val66Met variations were associated with cortical surface area,
but not with thickness. According to a biological study, cortical

surface area and thickness are determined by intermediate pro-
genitor cells and radial progenitor cells, respectively (Pontious et
al., 2008). The radial unit hypothesis related the cortical surface
area to the number of cellular columns, and the cortical thickness
to the number of cells in a column (Rakic, 1988). Furthermore, a
recent twin study indicated that the cortical surface area in the
adult brain may be determined by genes during both early growth
and later development of the brain, including synaptogenesis and
dendritic arborization (Eyler et al., 2011). BDNF, as a neurotro-
phin, plays critical roles in neuronal survival, migration, den-
dritic arborization, synaptogenesis, and synaptic plasticity
(Huang and Reichardt, 2001; Poo, 2001; Binder and Scharfman,
2004). The cortical surface area, which is not only a heritable trait
but also genetically distinct from cortical thickness, is an endo-
phenotype worth using (Panizzon et al., 2009). A previous study
of a different group of Chinese subjects reported different cortical
thinning regions in the Met/Met and the Val/Met when each
allele pair was compared separately to the Val/Val group (Yang et
al., 2012). These findings may suggest that the effects of BDNF
Val66Met on cortical thickness are not dosage dependent. There-
fore, elucidating the dosage effect of BDNF Val66Met on cortical
surface area may yield significant insights.

We also observed a trend toward increased functional connec-
tivity between the anterior insula and the DLPFC that was linked
with the dosage of the Met allele. Indeed, the insula is a brain area
functionally implicated in high-level cognitive control, perfor-
mance monitoring, emotion awareness, and automatic and sen-
sory processes (Allen et al., 2008; Craig, 2009). Specifically, the
anterior insula is a key node in the salience network that unites

Figure 2. Association of BDNF Val66Met with functional connectivity in resting-state networks. A, Resting-state functional connectivity pattern between the significantly associated region of the
cortical surface area and the rest of the brain across all subjects (FWE-corrected p � 0.01). Red color represents positive connectivity; and blue represents negative connectivity. L, Left; R, right. B,
The right DLPFC shows a significant linear increase in coupling with the ROI (Val/Val � Val/Met � Met/Met). The color bar indicates T-scores (FWE-corrected at cluster level, p � 0.05). C, Mean �
SEM functional connectivity between the ROI and the DLPFC in Figure 2 across all subjects. *p � 0.01 (two-sample t test). **p � 0.001 (two-sample t test).

Table 2. The right DLPFC shows significantly increased functional connectivity with
the survived region in cortical surface areaa

Brain region Cluster size t z

MNI coordinates

x y z

Right DLPFC 183 4.16 4.09 40 38 34
aThe brain region in the table was significant at p � 0.05 (FWE-corrected at cluster level).
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internal and extra-personal stimuli to decide the next behavior
(Seeley et al., 2007) and respond to the degree of cognitive, ho-
meostatic, or emotional salience (Critchley, 2005). The anterior
insula also plays a critical role in switching information between
the central executive network (CEN) and the default mode net-
work (Sridharan et al., 2008). In particular, the CEN and the
salience network both show increases in activation during the
performance of cognitive tasks (Greicius et al., 2003; Fox et al.,
2006). Also, the prefrontal cortex expresses large amounts of
BDNF, and the DLPFC, which impacts cognitive control func-
tions, including learning, memory, attention, inhibition, and ab-
stract reasoning throughout life, is a critical node of the CEN
(Weickert et al., 2003; Baquet et al., 2004; Seeley et al., 2007;
Sridharan et al., 2008). In addition, Sridharan et al. (2008) argued
that, during auditory and visual tasks, the anterior insula re-
sponds briefly to the events that are perceived as salient. Menon
and Uddin (2010) posited that the anterior insula sends brief
control signals to brain areasm such as the DLPFC and ventral
medial prefrontal cortex to mediate attention and memory with
higher-order cognitive processes. Increased functional connec-
tivity between the anterior insula and the DLPFC could possibly
be a compensatory modulation that functions by triggering
stronger cognitive control signals via the DLPFC to offset the
affected cortical morphology in the anterior insula. We observed
no significant effects of BDNF Val66Met on the behavioral mea-
surements of cognition that we used, or correlations between the
insular surface area and any of cognitive measure of interest
within each group, but this polymorphism clearly caused struc-
tural and functional changes in cortical areas. This was most
commonly seen in imaging genetics research (Dennis et al., 2010;
Liu et al., 2010), given that the structural and functional changes
in cortical areas, which are considered to be the endophenotypes,
are more incisive and sensitive to the impact of functional genetic
polymorphisms than the behavioral measurements of cognition.

One of the limitations in the current study was that no clinical
tools were used to screen the participants regarding absence of
psychiatric and neurologic disorders. However, we carefully
asked volunteers to exclude some with any history of neurologic
or psychiatric diseases or substance abuse. Previous psychiatric
epidemiological surveys have indicated that the prevalence of any
mental disorder was lower in metropolitan China in general (De-
myttenaere et al., 2004; Shen et al., 2006), whereas the ratio in our
sample should typically be much less than previous studies.
Hence, these results should remain credible and thought to be
obtained in a healthy population, and this study included a large
genetically homogeneous sample to ensure the statistical power.
Moreover, recent studies have found that resting state functional
connectivity is lower in the eyes closed condition compared with
the eyes open condition (Yan et al., 2009; Van Dijk et al., 2010;
Patriat et al., 2013). Although there is no agreed criterion, in-
structing all the subjects with eyes closed during scanning makes
the resting-state fMRI data comparable. In addition, although this is
an interesting finding that BDNF variants have effects on the surface
area of the insular cortex, there is still no direct evidence to support
this finding because the influence of BDNF variant on surface area is
a complex process. Future studies are warranted to discover the
BDNF-related changes of neurons of the insular cortex, which may
be helpful to validate our interpretation.

In conclusion, we demonstrated a “dosage effect” of BDNF
Val66Met on the cortical surface area and the related resting state
functional network in a group of healthy Chinese subjects. The
anterior insula and DLPFC are both engaged in cognitive control,
and the anterior insula, in particular, plays a critical and causal

role in switching signals between the CEN and the default mode
network. Therefore, cortical surface area may be a promising
endophenotype for exploring the mechanisms underlying the ef-
fects of genotype on cognition. From such studies, we might gain
a better understanding of the neurophysiological mechanisms of
neurological or psychiatric diseases.
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